钛酸盐纳米管的结构稳定性和光学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于钛酸盐纳米管具有强的可见光吸收因而在太阳能利用方面将有潜在的应用前景而备受人们广泛的关注。水热法合成钛酸盐纳米管具有操作简单,成本低、产量高等优点因此引起了研究者广泛的兴趣。人们经过十多年的时间,对钛酸盐纳米管的组成、形成机理和物理化学性能进行了大量的研究,但是到目前为止,研究者对其形成机理、可见光吸收等特殊光电性质的来源、结构稳定性等方面的认识尚不清楚,因此本论文对这些方面开展了如下研究:
     在第二章中我们从热力学的角度系统地研究了煅烧温度对钛酸盐纳米管形貌、结构稳定性和光学性能的影响,发现钛酸钠纳米管是热力学稳定的,而钛酸纳米管是热力学不稳定的。通过控制合适的干噪过程可以实现纳米管在可见光区的强吸收和发射,并且纳米管具有特殊的吸收带是与其特定能级相联系的。纳米管这种特殊的光电性质是由钛酸盐独特的管状结构和缺陷决定的。发现钛酸纳米管在高温时向锐钛矿结构转变,相转变的机制是由于纳米管在热力学条件下层间和层内进行脱水,正交结构遭到破坏后结构进行重新排列而导致的。
     在第三章中我们从动力学的角度研究了纳米管在不同pH值和不同的酸浓度条件下形貌、结构稳定性和光学性能的变化规律。结果表明在稀酸和水洗这种温和的条件下管状结构并没有遭到破坏,可见光激发后纳米管随着pH值的减小荧光强度增加。这种特殊的光电性质来源于束缚单电子的氧空位。而在浓酸的作用下,管状结构遭到了严重的破坏,动力学不稳定使其结构进行重新排列由正交结构转变为锐钛矿结构。同时通过控制合适的后处理条件我们可以获得结构稳定的在可见区具有强的光吸收的钛酸盐一维纳米材料。
     为了深入研究钛酸盐纳米管的相变机制和其可见区的光吸收和发射的来源,在第四章中我们开展了高压下钛酸盐纳米管的结构相转变研究,以期为揭示钛酸盐纳米管结构相转变的本质和更深入的理解管状结构形成的机理和特殊光电性质的来源提供直接的实验证据。在第四章中我们对钛酸钠纳米管的高压结构相变进行了研究,利用高压拉曼和高压X射线衍射实验手段分析证明在我们所研究的压力范围内纳米管发生了两次结构相转变:一个是在压力小于5 GPa时发生了向纤铁矿结构(H0.7Ti1.825□0.175O4·H2O)的转变;另一个是当压力超过16.7 GPa时发生了向无定型的转变,同时纳米管发生了坍塌。钛酸盐纳米管的结构相转变属于不可逆相变,恢复到常压时高压亚稳相纤铁矿结构可以保持,Ti-O键在钛酸盐纳米管的结构相转变中扮演着十分重要的角色。
The titanate nanotubes have been attracted widely attention due to their strong absorption in the visible light region and potential application on the utilization of the solar energy. The titanate nanotubes prepared by the hydrothermal method have growing interest due to their simple operation, cheap fabrication and high yield. In the past decade, much research has been done on the composition, formation mechanism and physical and chemical properties. But so far, it is not clear that formation mechanism, the origin of specific photoelectric properties in the visible light region and structural stability. Our main investigation can be summarized as follows:
     We systemically studied the effect of the calcination temperature on the morphology, structural stability and optical properties of the titanate nanotubes from the thermodynamics degree. The results show that the sodium titanate nanotubes were thermally stable at T﹤600℃. But the titanic acid nanotubes were thermally unstable. It can be realized that the nanotubes have stronger absorption and emission in the visible light region by controlling the appropriate desiccation process. The three absorption peaks located at 515,575 and 675 nm, respectively.These specific absorption bands are in relation to the special energy levels. The specific photoelectric properties are determinated by the unique tubular structures and oxygen vacancies defects.We found that the titanic acid nanotubes transformed from orthorhombic to anatase at higher temperature.The mechanism of phase transition is that the dehydration of intralayered and interlayered groups in the titanate nanotubes under the thermodynamics conditions.After the orthorhombic structure was destroyed, the structure rearranged to form anatase lattice.
     We systemically studied the effect of the post treatment on the structure and optical properties of the titanate nanotubes from the dynamics degree.The results show that the photoluminescence intensity increases and the peak position shifts to shorter wavelength with the decrease of pH values under the visible light excitation. XPS results have verified that the specific optical properties are in relation to the elements under the different chemical environment.We further revealed that the formation mechanism of the nanotubes and the mechanism of the phase transition from the orthorhombic structure to anatase were controlled by the morphology change induced by the surface chemistry. At the same time we could obtain one-dimentional titanate materials by controlling the appropriate post treatment conditions, which has the structural stability and stronger absorption in the visible light region.
     In order to further investigate the formation mechanism of the nanotubes and the origin of specific photoelectric properties, we studied high pressure structural phase transitions of the sodium titanate nanotubes.In-situ high-pressure Raman and X-ray powder diffraction results show that two structural phase transitions were observed in the sodium titanate nanotubes in our pressure range. One is the phase transitions from the orthorhombic structure to lepidocate structure under the pressure of 5 GPa; the other is the phase transitions from lepidocate structure to the amorphous phase above the pressure of 16.7 GPa. At the same time the collapse of the tubular structure occurs. The structural phase transitions of the titanate nanotubes are irreversible. The high pressure metastable phase– the lepidocate structure can remain when the pressure recovers to ambient pressure. It demonstrates that Ti-O bonds play the important role in the structural phase transition of the titanate nanotubes.
引文
[1] O′REGAN B. and GRATZEL M., A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films [J]. Nature, 1991, 353:737.
    [2] WIJNHOVEN J E G J., BECHGER L., VOS W L., Fabrication and characterization of large macroporous photonic crystals in titania[J].Chemistry of Materials,2001,13:4486-4499.
    [3] IIJIMA S., Helical microtubules of graphitic carbon [J]. Nature, 1991, 354:56.
    [4] GONG D W., GRIMES C A., VARGHESE O K., et al. Titanium oxide nanotube arrays prepared by anodic oxidation [J].Journal of Materials Research,2001, 16: 3331.
    [5] MOR G K., VARGHESE O K., PAULOSE M., et al. Fabrication of tapered, conical-shaped titania nanotubes[J].Journal of Materials Research, 2003, 18(11):2588.
    [6] KASUGA T., HIRAMATSU M., HOSON A., et al.,Formation of Titanium Oxide Nanotube[J]. Langmuir, 1998,14: 3160-3163.
    [7] KASUGA T., HIRAMATSU M., HOSON A., et al., Titania Nanotubes Prepared by Chemical Processing [J].Advanced Materials, 1999, 11:1307-1311.
    [8] BAVYKIN D V., FRIEDRICH J M., WALSH F C., Protonated Titanates and TiO2 Nanostructured Materials: Synthesis, Properties, and Applications [J].Advanced Materials, 2006, 18: 2807.
    [9] CHEN Q., DU G H., ZHANG S., et al., The structure of trititanate nanotubes [J]. Acta Crystallographica Section B 2002,58: 587-593.
    [10] MA R Z., BANDO Y., SASAKI T., Nanotubes of lepidocrocite titanates [J]. Chemical Physics Letters, 2003,380: 577-582.
    [11] NAKAHIRA A., KATO W., TAMAI M., Synthesis of nanotube from a layered H2Ti4O9·H2O in a hydrothermal treatment using various titania sources [J].Journal of Materials Science, 2004, 39: 4239- 4245.
    [12] BAVYKIN D V., PARMON V N., LAPKINA A A., et al., The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes[J]. Journal of Materials Chemistry, 2004, 14: 3370–3377.
    [13] ZHANG S L., ZHOU J F., ZHANG Z J., et al., Morphological structure andphysicochemical properties of nanotube TiO2 [J].Chinese Science Bulletin.,2000, 45(16):1533-1536.
    [14]王晓东,李伟,杨建军,金振声,张治军,纳米管钛酸钠的组成分析,化学研究,2003,14(2):5-8.
    [15] YANG J J., JIN Z S., WANG X D., et al.,Study on composition, structure and formation process of nanotube Na2Ti2O4(OH)2 [J].Dalton Transactions. 2003,20: 3898-3901.
    [16] ZHANG J W., GUO X Y., JIN Z S., et al., TEM Study on the Formation Process of TiO2 Nanotubes[J]. Chinese Chemical Letters, 2003,14(4):419-422.
    [17] YANG H G., ZENG H C., Synthetic Architectures of TiO2/H2Ti5O11·H2O, ZnO/ H2Ti5O11·H2O, ZnO/TiO2/ H2Ti5O11·H2O, and ZnO/TiO2 Nanocomposites[J]. Journal of the American Chemical Society,2005, 127(1): 270-278.
    [18]ARMSTRONG A R., ARMSTRONG G., CANALES J., et al., TiO2-B nanowires[J]. Angewandte Chemie International Edition, 2004, 43: 2286-2288.
    [19] ARMSTRONG G., ARMSTRONG A R., CANALES J., et al., Nanotubes with the TiO2-B structure [J]. Chemical Communications, 2005, 2454–2456.
    [20] CHOY J H., LEE H C., JUNG H., et al., A novel synthetic route to TiO2-pillared layered titanate with enhanced photocatalytic activity[J]. Journal of Materials Chemistry,2001, 11: 2232–2234.
    [21] LEE H C., JUNG H., OH J M., et al., A New Nanohybrid Photocatalyst between Anatase (TiO2) and Layered Titanate[J]. Bulletin of the Korean Chemical Society, 2002, 23(3): 477-480.
    [22] CHOY J H., LEE H C., JUNG H., et al., Exfoliation and Restacking Routeto Anatase-Layered Titanate Nanohybrid with Enhanced Photocatalytic Activity [J]. Chemistry of Materials, 2002, 14(6): 2486-2491.
    [23] BAO N Z., FENG X., YANG Z H., et al., Highly Efficient Liquid-Phase Photooxidation of an Azo Dye Methyl Orange over Novel Nanostructured Porous Titanate-Based Fiber of Self-Supported Radially Aligned H2Ti8O171.5H2O Nanorods[J]. Environmental Science & Technology, 2004, 38(9): 2729-2736.
    [24]邵颖,薛宽宏,何春建,陈巧玲,陶菲菲,沈伟,冯玉英,TiO2纳米管的光催化降解SDBS实验,南京师大学报(自然科学版),2002,25(1):116-118.
    [25]马新起,郭新勇,金振声,杨建军,张治军,载铂TiO2纳米管的制备与表征,无机材料学报,2003,18(5): 1131-1134。
    [26] ZHANG M., JIN Z S., ZHANG J W., et al., Effect of annealing temperature on morphology, structure and photocatalytic behavior of nanotubed H2Ti2O4(OH)2 [J]. Journal of Molecular Catalysis A: Chemical, 2004, 217: 203–210.
    [27]王克,张敏,金振声,张顺利,杨建军,张治军,负载金的纳米管钛酸光催化氧化一氧化碳,催化学报,2005,26(4): 283-286.
    [28] IDAKIEVA V., YUANB Z Y., TABAKOVAA T., Titanium oxide nanotubes as supports of nano-sized gold catalysts for low temperature water-gas shift reaction[J]. Applied Catalysis A: General, 2005, 281: 149–155.
    [29] YU J G., ZHOU M H., Effects of calcination temperature on microstructures and photocatalytic activity of titanate nanotube films prepared by an EPD method [J]. Nanotechnology, 2008, 19: 045606.
    [30] MOR G P., SHANKAR K., PAULOSE M., et al., Enhanced Photocleavageof Water Using Titania Nanotube Arrays [J]. Nano Letters, 2005, 5(1):191-195.
    [31] MOHAPATRA S K., MAHAJAN V K., MISRA M., Double-side illuminated titania nanotubes for high volume hydrogen generation by water splitting, [J]. Nanotechnology, 2007, 18:445705.
    [32]GRATZEL M., Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 164: 3-14.
    [33] ADACHI M., OKADA I., NGAMSINLAPASATHIAN S., et al., Dye-sensitized solar cells using semiconductor thin film composed of titania nanotubes[J]. Electrochemistry, 2002, 70(6): 449-452.
    [34] ADACHI M., MURATA Y., OKADA I., et al., Formation of titania nanotubes and applications for dye-sensitized solar cells [J]. Journal of the Electrochemical Society, 2003, 150(8): G488-G493.
    [35]UCHIDA S., CHIBA R., TOMIHA M., et al., Application of titania nanotubes to a dye-sensitized solar cell [J]. Electrochemistry, 2002, 70(6):418-420.
    [36] NGAMSINLAPASATHIAN S., SAKULKHAEMARUETHAI S., PAVASUPREE S., et al., Highly efficient dye-sensitized solar cell using nanocrystalline titania containing nanotube structure [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 164: 145-151.
    [37] WEI M D., KONISHI Y., ZHOU H S., et al., Utilization of Titanate Nanotubes as an Electrode Material in Dye-Sensitized Solar Cells [J].Journal of the Electrochemical Society, 2006, 153(6):A1232-A1236.
    [38] KIM G S., SEO H K., GODBLE V P., et al., Electrophoretic deposition oftitanate nanotubes from commercial titania nanoparticles: Application to dye-sensitized solar cells[J]. Electrochemistry Communications, 2006, 8: 961-966.
    [39]PAULOSE M., SHANKAR K., VARGHESE O K., et al., Backside illuminated dye-sensitized solar cells based on titania nanotube array electrodes [J]. Nanotechnology, 2006, 17:1446-1448.
    [40]WANG H., YIP C T., CHEUNG K Y., et al., Titania-nanotube-array-based photovoltaic cells [J]. Applied Physics Letters, 2006, 89:023508.
    [41] ASAHI R., MORIKAWA T., OHWAKI T., et al., Visible-light photocatalysis in nitrogen-doped titanium oxides [J]. Science, 2001,293: 269-271.
    [42] SHANKAR K., TEP K C., MOR G K., et al., An electrochemical strategy to incorporate nitrogen in nanostructured TiO2 thin films: modification of bandgap and photoelectrochemical properties [J]. Journal of Physics D: Applied Physics, 2006,39(11): 2361-2366.
    [43]庄惠芳,赖跃坤,李静,孙岚,林昌健,氮掺杂TiO2纳米管阵列的制备及其可见光光电催化活性研究,电化学,2007, 13(3): 284-287.
    [44] HAHN R., GHICOV A., SALONEN J., et al., Carbon doping of self-organized TiO2 nanotube layers by thermal acetylene treatment [J]. Nanotechnology, 2007, 18:105604.
    [45] MA R Z., SASAKI T.,BANDO Y., Layer-by-Layer Assembled Multilayer Films of Titanate Nanotubes, Ag- or Au-Loaded Nanotubes, and Nanotubes/Nanosheets with Polycations [J]. Journal of the American Chemical Society, 2004,126(33): 10382-10388.
    [46] HUANG J G., KUNITAKE T., ONOUE S Y., A facile route to a highly stabilized hierarchical hybrid of titania nanotube and gold nanoparticle [J]. Chemical Communications, 2004, 1008-1009.
    [47] DING X., XU X G., CHEN Q., et al., Preparation and characterization of Fe-incorporated titanate nanotubes [J]. Nanotechnology, 2006,17: 5423-5427.
    [48] XU X G., DING X., CHEN Q., et al., Electronic, optical, and magnetic properties of Fe-intercalated H2Ti3O7 nanotubes: First-principles calculations and experiments [J]. Physics Review B, 2006, 73: 165403.
    [49] XU X G., DING X., CHEN Q., et al., Modification of electronic, optical, and magnetic properties of titanate nanotubes by metal intercalation [J]. Physics Review B, 2007,75: 035423.
    [50]宋旭春,岳林海,刘波,韩贵,陈卫祥,徐铸德,水热法合成掺杂铁离子的小管径TiO2纳米管,无机化学学报,2003,19(8): 899-901。
    [51] WU D., CHEN Y F., LIU J., et al.,Co-doped titanate nanotubes [J]. Applied Physics Letters, 2005, 87: 112501.
    [52] HUANG C M., LIU X Q., LIU Y P., et al., Room temperature ferromagnetism of Co-doped TiO2 nanotube arrays prepared by sol-gel template synthesis [J]. Chemical Physics Letters, 2006, 432 : 468-472.
    [53] WANG X W., GAO X P., LI G R., et al., Ferromagnetism of Co-doped TiO2(B) nanotubes[J]. Applied Physics Letters, 2007, 91: 143102.
    [54] GHICOV A., SCHMIDT B., KUNZE J., et al., Photoresponse in the visible range from Cr doped TiO2 nanotubes[J]. Chemical Physics Letters, 2007,433: 323-326.
    [55] KIM G S., ANSARI S G., SEO H K., et al., Growth and morphologicalstudy of zinc oxide nanoneedles grown on the annealed titanate nanotubes using hydrothermal method [J]. Journal of Applied Physics, 2007, 102:084302.
    [56] MANE R S., LEE W J., PATHAN H M., et al., Nanocrystalline TiO2/ZnO Thin Films: Fabrication and Application to Dye-Sensitized Solar Cells [J]. The Journal of Physics Chemistry B, 2005,109: 24254-24259.
    [57] LIAO S J., GEN H D., YU D H., et al., Preparation and characterization of ZnO/TiO2, SO42?/ZnO/TiO2 photocatalyst and their photocatalysis [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 168: 7-13.
    [58]XUE M., HUANG L., WANG J Q., et al., The direct synthesis of mesoporous structured MnO2/TiO2 nanocomposite: a novel visible-light active photocatalyst withlarge pore size [J]. Nanotechnology, 2008,19: 185604.
    [59]丁士文,王利勇,张绍岩,周秋香,丁宇,刘淑娟,刘燕朝,康全影,纳米TiO2-MnO2复合材料的合成结构与光催化性能,中国科学B辑,2003,33(4):306-311。
    [60]HODOS M., HORVATH E., HASPEL H., et al., Photosensitization of ion-exchangeable titanate nanotubes by CdS nanoparticles[J]. Chemical Physics Letters, 2004, 399: 512-515.
    [61]冯彩霞,金振声,杨建军,王晓冬,李昱昊,张治军,赵进才,镶嵌CdS的纳米管钛酸制备及其光催化性能研究,感光科学与光化学,2004,22: 272-276.
    [62] BESSEKHOUAD Y., ROBERT D., WEBER J V., Bi2S3/TiO2 and CdS/TiO2 heterojunctions as an available configuration for photocatalytic degradation of organic pollutant [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2004,163: 569-580.
    [63]郝彦忠,韩文涛,聚3-甲基噻吩及聚3-己基噻吩修饰钛酸盐纳米管的光电化学性能研究,化学学报,2006,64(18):1871-1875。
    [64]OUYANG M., BAI R.,YANG L G., et al., High Photoconductive Vertically Oriented TiO2 Nanotube Arrays and Their Composites with Copper Phthalocyanine [J]. The Journal of Physics Chemistry C 2008, 112: 2343-2348.
    [65] AKATSUKA K.,EBINA Y., MURAMATSU M., et al.,Photoelectrochemical Properties of Alternating Multilayer Films Composed of Titania Nanosheets and Zn Porphyrin[J]. Langmuir, 2007, 23: 6730-6736.
    [66]OTSUKA Y.,OKAMOTO Y.,AKIYAMA H Y., et al., Photoinduced Formation of Polythiophene/TiO2 Nanohybrid Heterojunction Films for Solar Cell Applications, [J]. The Journal of Physics Chemistry C,2008, 112:4767-4775.
    [67]SUN X M., LI Y D., Synthesis and Characterization of Ion-Exchangeable Titanate Nanotubes[J]. Chemistry-A European Journal,2003, 9: 2229-2238.
    [68]宋旭春,郑遗凡,殷好勇,曹广胜,过渡金属离子置换钛酸盐纳米管的合成和表征,物理化学学报,2005,21(10): 1076-1080.
    [69]MA R Z., SASAKI T., BANDO Y., Alkali metal cation intercalation properties of titanate nanotubes[J]. Chemical Communications, 2005, 948-950.
    [70]GAO X P.,ZHU H Y.,PAN G L., et al., Preparation and Electrochemical Characterization of Anatase Nanorods for Lithium-Inserting Electrode Material[J]. The Journal of Physics Chemistry B, 2004, 108(9): 2868-2872.
    [71]ZUKALOVA M., KALBAC M., KAVAN L., et al., Pseudocapacitive lithium storage in TiO2(B) [J]. Chemistry of Materials, 2005,17(5): 1248-1255.
    [72] LI J R., TANG Z L., ZHANG Z T., H-titanate nanotube:a novel lithium intercalation host with large capacity and high ratecapability[J].Electrochemistry Communications, 2005,7: 62-67.
    [73]LI J R., TANG Z L., ZHANG Z T., Preparation and novel lithium intercalation properties of titanium oxide nanotubes[J]. Electrochemical and Solid-State Letters, 2005, 8(6): A316-A319.
    [74] VARGHESE O K.,GONG D W., PAULOSE M., et al., Extreme changes in the electrical resistance of titania nanotubes with hydrogen exposure[J].Advanced Materials,2003,15(7-8): 623-627.
    [75] VARGHESE O K.,GONG D W., PAULOSE M., et al., Hydrogen sensing using titania nanotubes[J]. Sensors and Actuators B, 2003,93: 338-344.
    [76]MOR G K.,CARVALHO M A., VARGHESE O K., et al., A room-temperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination[J]. Journal of Materials Research, 2004,19(2): 628-634.
    [77] LIU A H., ZHOU H S., HONMA I., et al., Switchable titanate-nanotube electrode sensitive to nitrate[J]. Applied Physics Letters,2007, 90: 253112.
    [78]董亚杰,李亚栋,一维纳米材料的合成,组装与器件,科学通报,2002,47(9): 641-649.
    [79] HONG J., CAO J., SUN J Z., et al., Electronic structure of titanium oxide nanotubules[J]. Chemical Physics Letters, 2003, 380: 366-371.
    [80]杨大纲,李秋叶,张顺利,金振声,张治军,二氧化钛纳米膜电极的形貌和光电化学性质,化学研究,2004,15(4): 6-9.
    [81]李秋叶,杨大纲,张顺利,金振声,纳米管钛酸钠薄膜电极的制备表征及光电化学研究,河南大学学报(自然科学版),2005,35(1): 27-30.
    [82]LI Q Y., ZHANG J W.,JIN Z S., et al., Photo and photoelectrochemicalproperties of p-type low-temperature dehydrated nanotube titanic acid[J]. Electrochemistry Communications, 2006, 8: 741-746.
    [83] CHEN Y S., CRITTENDEN J C., HACKNEY S., et al., Preparation of a novel TiO2-based p-n junction nanotube photocatalyst [J]. Environmental Science & Technology, 2005, 39(5): 1201-1208.
    [84]郝彦忠,韩文涛,钛酸盐纳米管的制备及光电性能研究,物理化学学报,2006,22(2): 221-225。
    [85]TOKUDOME H., MIYAUCHI M., Electrochromism of titanate based nanotubes[J]. Angewandte Chemie International Edition, 2005,44: 1974-1977.
    [86] MIYAUCHI M., TOKUDOME H., Super-hydrophilic and transparent thin films of TiO2 nanotube arrays by a hydrothermal reaction [J]. Journal of Materials Chemistry, 2007,17: 2095-2100.
    [87] OH S H., FINONES R R., DARAIO C., et al.,Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes [J]. Biomaterials, 2005, 26: 4938–4943.
    [1] IIJIMA S. Helical microtubules of graphitic carbon [J].Nature,1991, 354:56-58.
    [2] QIAN L.,JIN Z S.,ZHANG J W., et al., Study of the visible-excitation luminescence of NTA-TiO2(AB) with single-electron-trapped oxygen vacancies[J].Applied Physics A:Materials Science and Processing,2005,80:1801-1805.
    [3] BAVYKIN D V., FRIEDRICH J M., WALSH F C., et al.,Protonated Titanatesand TiO2 Nanostructured Materials: Synthesis, Properties, and Applications [J]. Advanced Materials,2006,18:2807.
    [4] KASUGA T., HIRAMATSU M., HOSON A., et al.,Formation of Titanium Oxide Nanotube[J]. Langmuir, 1998,14:3160-3163.
    [5] KASUGA T., HIRAMATSU M., HOSON A., et al., Titania Nanotubes Prepared by Chemical Processing [J]. Advanced Materials, 1999, 11:1307.
    [6]HOYER P., Formation of a Titanium Dioxide Nanotube Array [J]. Langmuir, 1996, 12: 1411-1413.
    [7] GONG D W., GRIMES C A., VARGHESSE O K., et al., Titanium oxide nanotube arrays prepared by anodic oxidation [J].Journal of Materials Research., 2001, 16:3331.
    [8]ZHANG S L., ZHOU J F., ZHANG Z J.,et al.,Morphological structure and physicochemical properties of nanotube TiO2 [J].Chinese Science Bulletin, 2000 ,45: 1533.
    [9] YANG J J., JIN Z S., WANG X D., et al.,Study on composition, structure and formation process of nanotube Na2Ti2O4(OH)2 [J]. Dalton Transactions. 2003,20: 3898.
    [10]WANG N., LIN H.,LI J B., et al., Effect of annealing temperature on phase transition and optical property of titanate nanotubes prepared by ion exchange approach[J].Journal of Alloys and Compounds, 2006,424: 311-314.
    [11] KIM G S.,ANSARI S G.,SEO H K., et al., Effect of annealing temperature on structural and bonded states of titanate nanotube films[J]. Journal of Applied Physics,2007,101: 024314.
    [12] YU J G.,ZHOU M H.,Effects of calcination temperature on microstructuresand photocatalytic activity of titanate nanotube films prepared by an EPD method[J]. Nanotechnology, 2008,19: 045606.
    [13] ZHANG S L., LI W., JIN Z S., et al., Study on ESR and inter-related properties of vacuum-dehydrated nanotubed titanic acid[J]., Journal of Solid State Chemistry, 2004, 177: 1365–1371.
    [14] TIAN B L., ZHANG X T., DAI S X., et al., Strong visible absorption and photoluminescence of titanic acid nanotubes by hydrothermal method[J]. The Journal of Physics Chemistry C 2008, 112:5361-5364.
    [15] BACH U., LUPO D., COMTE P., Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies[J]. Nature, 1998, 395: 583.
    [16] MCFARLAND E W., TANG J., A photovoltaic device structure based on internal electron emission[J].Nature, 2003, 421: 616.
    [17] NISHIMURA S., ABRAMS N., LEWIS B A., et al.Standing Wave Enhancement of Red Absorbance and Photocurrent in Dye-Sensitized Titanium Dioxide Photoelectrodes Coupled to Photonic Crystals [J].Journal of American Chemical Society[J]. 2003,125: 6306.
    [18] ASAHI R., MORIKAWA T., OHWAKI T., et al. Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides[J]. Science, 2001, 293: 269.
    [19] KHAN S U M., AL-SHAHRY M., INGLER W B., Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2[J].Science, 2002, 297: 2243.
    [20] BAVYKIN D V., GORDEEV S N.,MOSKALENKO A V.,et al.,Apparent two-dimensional behavior of TiO2 nanotubes revealed by light absorption and luminescence[J].The Journal of Physical Chemistry B,2005,109:8565-8569.
    [21]RISS A.,ELSER M J.,BERNARDI J.,et al., Stability and photoelectronic properties of layered titanate nanostructures [J]. Journal of the American Chemical Society, 2009, 131: 6198–6206.
    [22] QIAN L.,JIN Z S.,YANG S Y.,et al.,Bright Visible Photoluminescence from Nanotube Titania Grown by Soft Chemical Process[J].Chemistry of Materials,2005, 17: 5334-5338.
    [1] TSAI C C., TENG H S., Regulation of the physical characteristics of titaniananotube aggregates synthesized from hydrothermal treatment [J]. Chemistry of Materials, 2004, 16(22): 4352-4358.
    [2] TSAI C C., TENG H S., Structural Features of Nanotubes Synthesized from NaOH Treatment on TiO2 with Different Post-Treatments [J]. Chemistry of Materials, 2006, 18(2): 367-373.
    [3] YANG J J., JIN Z S., WANG X D., et al., Study on composition, structure and formation process of nanotube Na2Ti2O4(OH)2 [J]. Dalton Transactions, 2003,3898-3901.
    [4] CHEN Q., ZHOU W Z., Du G H., et al., Trititanate nanotubes made via a single alkali treatment [J]. Advanced Materials, 2002,14(17):1208-1211.
    [5] OHSAKA T., IZUMI F., FUJIKI Y., Raman spectrum of anatase, TiO2 [J].Journal of Raman Spectroscopy, 1978, 7:321.
    [6] MIYAJI F., YOKO T, KOZUKA H., et al., Structure of Na2O·2TiO2 glass [J]. Journal of Materials Science, 1991,26: 248-252.
    [7] KIM H M., MIYAJI F, KOKUBO T., Effect of heat treatment on apatite-forming ability of Ti metal induced by alkali treatment [J]. Journal of Materials Science: Materials in Medicine, 1997,8: 341-347.
    [8] QIAN L., DU Z L., YANG S Y., et al., Raman study of titania nanotube by soft chemical process [J]. Journal of Molecular Structure, 2005, 749: 107–111.
    [9] RISS A., BERGER T., GROTHE H., et al., Chemical Control of Photoexcited States in Titanate Nanostructures [J]. Nano Lettters, 2007,7: 433–438.
    [10] BAVYKIN D V., GORDEEV S N., MOSKALENKO A V., et al., Apparent Two-Dimensional Behavior of TiO2 Nanotubes Revealed by Light Absorption and Luminescence[J].The Journal of Physical Chemistry B, 2005, 109: 8565-8569.
    [11]KUDO A., SAKATA T., Photoluminescence of Layered Alkali-metal Titanates (A2TinO2n+1, A = Na, K) at 300 and 77 K [J]. Journal of Material Chemistry,1993,3(10): 1081-1082.
    [12] ZHANG S L.,LI W.,JIN Z S., et al., Study on ESR and inter-related properties of vacuum-dehydrated nanotubed titanic acid[J]. Journal of Solid State Chemistry, 2004, 177:1365–1371.
    [13] QIAN L.,JIN Z S.,YANG S Y., et al., Bright Visible Photoluminescence from Nanotube Titania Grown by Soft Chemical Process[J].Chemistry of Materials,2005, 17: 5334-5338.
    [14] QIAN L.,JIN Z S.,ZHANG J W., et al., Study of the visible-excitation luminescence of NTA-TiO2(AB) with single-electron-trapped oxygen vacancies[J].Applied Physics A:Materials Science and Processing,2005,80:1801-1805.
    [15]李秋叶,金振声,张顺利,田宝丽,张治军,真空100℃热处理对纳米管钛酸荧光性质的影响[J].光谱学与光谱分析,2005,25(12):2044-2047.
    [16] TANG H., BERGER H., SCHMID P E.,et al., Photoluminescence in TiO2 anatase single crystals [J]. Solid State Communications, 1993, 87:847-850.
    [17] SARAF L V., PATIL S I., OGALE S B., et al., Synthesis of Nanophase TiO2 by ion beam sputtering and cold condensation technique [J]. International Journal of Modern Physics B, 1998, 12(25): 2635-2647.
    [18]SERPONE N.,LAWLESS D.,KHAIRUTDINOV R., Size Effects on the Photophysical Properties of Colloidal Anatase TiO2 Particles: Size Quantization or Direct Transitions in This Indirect Semiconductor[J]. The Journal of Physical Chemistry,1995, 99: 16646-16654.
    [19]FORSS L., SCHUBNELL M., Temperature Dependence of the Luminescence of TiO2 Powder [J]. Applied Physics B: Photophysics and Laser Chemistry, 1993, 56: 363-366.
    [20] KIM G S., ANSARI S G., SEO H K., et al., Effect of annealing temperature on structural and bonded states of titanate nanotube films[J].Journal of Applied Physics,2007,101:024314.
    [21]WANG L S., XIAO M W., HUANG X J., et al., Synthesis, characterization, and photocatalytic activities of titanate nanotubes surface-decorated by zinc oxide nanoparticles[J]. Journal of Hazardous Materials, 2009, 161: 49.
    [22] SODERGREN S., SIEGBAHN H., RENSMO H., et al., Lithium intercalation in nanoporous anatase TiO2 studied with XPS [J]. The Journal of Physical Chemistry B, 1997,101: 3087-3090.
    [23] YU J G., YU H G., CHENG B., et al., The effect of calcination Temperature on the Surface Microstructure and Photocatalytic Activity of TiO2 Thin Films Prepared by Liquid Phase Deposition [J]. The Journal of Physical Chemistry B, 2003, 107: 13871-13879.
    [24] WANG Y D., MA C L., SUN X D., et al., Synthesis and characterization of amorphous TiO2 with wormhole-like framework mesostructure [J]. Journal of Non-Crystalline Solids, 2003, 319:109-116.
    [25] ZHU H Y.,LAN Y.,GAO X P.,et al., Phase Transition between Nanostructures of Titanate and Titanium Dioxides via Simple Wet-Chemical Reactions[J].Journal of the American Chemical Society,2005, 127: 6730-6736.
    [26] NOSHEEN S., GALASSO F S., SUIB S L.,Role of Ti-O Bonds in Phase Transitions of TiO2 [J].Langmuir, 2009, 25(13): 7623–7630.
    [1] DEWHURST J K., LOWTHER J E., High-pressure structural phases of titanium dioxide[J].Physics Review B,1996,54:R3673- R3675.
    [2]HAINES J., LEGER J M., X-ray diffraction study of TiO2 up to 49 GPa[J]. Physica B, 1993,192: 233 ~237.
    [3]SATO H., ENDO S., SUGIYAMA M., et al. Baddeleyite-Type High-Pressure Phase of TiO2[J]. Science, 1991,251: 786 ~788.
    [4] BIRCH F, Finite Elastic Strain of Cubic Crystals [J]. Physics Review,1947, 71: 809~824.
    [5] WANG Z W., SAXENA S K., PISCHEDDA V., et al. X-ray diffraction study on pressure-induced phase transformations in nanocrystalline anatase/rutile (TiO2) [J]. Journal of Physics: Condensed Matter,2001,13: 8317–8323.
    [6] HEARNE G R., ZHAO J., DAWE A M., et al. Effect of grain size on structural transitions in anatase TiO2:A Raman spectroscopy study at high pressure, Physics Review B[J]. 2004,70: 134102.
    [7] SWAMY V., KUZNETSOV A., DUBROVINSKY L S., et al. Finite-size and pressure effects on the Raman spectrum of nanocrystalline anatase TiO2[J]. Physics Review B, 2005,71: 184302.
    [8] ZHANG F X., MANOUN B., SAXENA S K., et al. Structure change of pyrochlore Sm2Ti2O7 at high pressures [J]. Applied Physics Letters 2005,86: 181906.
    [9] ZHANG F X., MANOUN B., SAXENA S K., et al. Pressure-induced order–disorder transitions in pyrochlore RE2Ti2O7 (RE=Y, Gd) [J].Materials Letters,2006,60: 2773–2776.
    [10] ZHANG F X., LIAN J., BECKER U., et al. Structural change of layeredperovskite La2Ti2O7 at high pressures[J]. Journal of Solid State Chemistry 2007,180: 571–576.
    [11] HAZEN R M. and YANG H X., Increased Compressibility of Pseudobrookite-Type MgTi2O5 Caused by Cation Disorder[J]. Science, 1997,277:1965-1967.
    [12] ZHA C S., KALINICHEV A G., BASS J D., et al. Pressure dependence of optical absorption in PbTiO3 to 35 GPa: Observation of the tetragonal-to-cubic phase transition[J].Journal of Applied Physics, 1992, 72:3705-3707.
    [13]VILLAGRAN-MUNIZ M., NAVARRETE M., MEJIA-URIARTE M., Photoacoustic determination of phase transition in BaTiO3 induced by high pressure at room temperature [J]. Review of Scientific Instruments, 2003,74:732-734.
    [14] HAINES J, ROUQUETTE J, BORNAND V, et al. Raman scattering studies at high pressure and low temperature: technique and application to the piezoelectric material PbZr0.52Ti0.48O3[J]. Journal of Raman Spectroscopy, 2003, 34: 519–523.
    [15] MAO H K., BELL P M., SHANER J W., et al. Specific volume measurements of Cu, Mo, Pd, and Ag and calibration of the ruby R1 fluorescence pressure gauge from 0.06 to 1 Mbar[J]. Journal of Applied Physics, 1978, 49: 3276-3283.
    [16] OHSAKA T., IZUMI F., FUJIKI Y., Raman spectrum of anatase, TiO2 [J].Journal of Raman Spectroscopy, 1978,7: 321.
    [17] MIYAJI F., YOKO T, KOZUKA H., SAKKA S. Structure of Na2O·2TiO2 glass [J]. Journal of Materials Science, 1991,26: 248-252.
    [18] KIM H M., MIYAJI F, KOKUBO T., Effect of heat treatment onapatite-forming ability of Ti metal induced by alkali treatment [J]. Journal of Materials Science: Materials in Medicine, 1997,8: 341-347.
    [19] TKACH A., Vilarinho P M., Kholkin A L., et al. Lattice dynamics and dielectric response of Mg-doped SrTiO3 ceramics in a wide frequency range [J]. Journal of Applied Physics, 2005, 97: 044104-044109.
    [20] WANG Z W., DOWNS R T., PISCHEDDA V., et al. High-pressure x-ray diffraction and Raman spectroscopic studies of the tetragonal spinel CoFe2O4 [J].Physics Review B, 2003,68: 094101.
    [21] GAO T., FJELLVAG H., NORBY P., Crystal structures of titanate nanotubes: A Raman scattering study [J]. Inorganic Chemistry, 2009, 48: 1423-1432.
    [22] GILLET P., HEMLEY R J., MCMILLAN P F., Vibrational properties at high pressures and temperatures [J]. Reviews in Mineralogy, 1998, 37: 525-590 .

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700