高功率锂离子电池用新型纳微分级结构Li_4Ti)5O_(12)负极材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锂离子电池具有开路电压高、能量密度大、使用寿命长、少污染等优点,它在总体性能上优于其它传统二次电池。电动汽车(EV、HEV)等环境负荷较低的“新一代汽车”要求搭载的储能器件具备高速充放电能力,所以动力型锂离子电池高功率化的研发不可或缺也十分紧迫。
     实现高功率锂离子电池的关键是开发性能优异的电池材料。Li4Ti5O12负极材料具有充放电过程中体积变化小、可逆性好等优点。然而,作为高功率动力型锂离子电池负极材料,其倍率性能还有待进一步提高。纳微分级结构不仅能够提供大的比表面积和短的离子扩散路径,而且热力学稳定,易于制备,是一种较为理想的结构体系,可有效提高电极材料的倍率性能。我们将Li4Ti5O12材料本身所具有的优越的循环性能和安全性能,与纳微分级结构有利于提高电极材料倍率性能的特点结合起来,设计合成出了一系列具有新型纳微分级结构的Li4Ti5O12,从而获得具有高功率、高安全性和长寿命的负极材料。主要研究内容如下:
     利用乙二醇-水混合溶剂热法制备了纳米片构成的花状Li4Ti5O12微球。循环伏安测试结果表明,该结构体系通过缩短锂离子的扩散路径,增强了材料中锂离子嵌/脱动力学性能。通过充放电测试,花状Li4Ti5O12表现出了高的可逆容量和较好的倍率性能,在8 C倍率下的首次放电容量为165 mAhg-1。鉴于纳米片自组装结构的良好性能,我们利用无定型水合二氧化钛微球作为前驱体,通过简单的水热合成及后续热处理,制备了新型Li4Ti5O12纳米片自组装空心微球。所合成的微球直径约400 nm,球体内中空,球壳由厚度约2-5 nm的Li4Ti5O12纳米片组成。通过考察分级结构空心微球的形成过程,提出其形成过程中可能存在着柯肯达尔效应(Kirkendall effect)。由于空心结构有利于离子快速传输,该结构Li4Ti5O12展现了更为优异的倍率性能和较高的容量,即使在50 C倍率下材料的放电容量仍可达到131 mAhg-1,显示出应用于高功率锂离子电池的潜力,值得期待。
     以水合二氧化钛微球作为前驱体,通过乙醇-水混合溶剂热以及后续热处理制备了介孔Li4Ti5O12微球,讨论了介孔微球的形成机理。研究了反应体系中乙醇含量对样品形貌的影响,结果表明:当溶液中乙醇含量低于30%,难以得到形貌均一的介孔Li4Ti5O12微球。将介孔Li4Ti5O12微球用于锂离子电池,研究了该结构Li4Ti5O12的充放电倍率性能。与微米级Li4Ti5O12颗粒相比,介孔Li4Ti5O12微球不仅倍率性能优异,30 C倍率下的放电容量为114 mAhg-1,而且具有非常好的容量保持率,在20 C倍率下200次循环后容量仍保持在125 mAhg-1左右,容量保持率接近100%。
     通过将H2O2引入反应体系,在低碱性溶液中,水热制备了钛酸钠纳米管自组装空心微球。水热后的钛酸钠用稀盐酸中和后,可得到相似结构的钛酸。进而以钛酸为反应前驱物,通过直接热处理或水热锂离子交换反应得到TiO2纳米管和Li4Ti5O12纳米管的自组装空心微球。将材料用于锂离子电池,研究了纳米管自组装结构Li4Ti5O12和TiO2的充放电性能。结果表明,纳米管自组装结构有利于提高电极材料的电化学性能,尤其TiO2纳米管自组装微球表出很好的倍率性能和循环可逆性:1 C倍率下100次循环后放电容量保持在160 mAhg-1左右,而8 C倍率的放电容量仍可达到90 mAhg-1。
Lithium ion battery has many merits (e.g., higher voltage, higher energy density, and longer cycle life) compared with traditional rechargeable batteries. Considerable attention has been paid to electrochemical energy storage devices with the ability to withstand fast charge-discharge over an adequate cycle life, because of their potential use in future electric vehicle (EV) or hybrid EV (HEV). Thus, the research and development of Lithium ion battery with outstanding high-rate performance is desirable and significative.
     As the performance of high–rate lithium ion battery these devices depends intimately on the properties of their materials, considerable attention has been paid to the research and development of key materials. Although spinel Li4Ti5O12 has a good reversibility and exhibits a very small volume change during charge–discharge process, the future importance of high-power applications encourages investigation of the high-rate performance of the material. Electrode materials with nano/micro hierarchical structures are the best systems of choice to improve high rate capability, because they have large specific surface area, short distance for lithium ion diffusion, good stability and easy of fabrication. Novel Li4Ti5O12 with nano/micro hierarchical structure may give an ideal host material for the rapid intercalation and deintercalation of Lithium ions and provide the possibility of efficient transport of electrons in the high-rate lithium ion batteries. The major research content is as follows:
     The flower-like spinel Li4Ti5O12 consisting of nanosheets was synthesized by a hydrothermal process in glycol solution and following calcination. The cycle voltammetric results of the electrodes indicate enhanced electrochemical kinetics for lithium insertion by reducing the distance of lithium ion diffusion in solid-state body. The capacity of the sample used as anode material for lithium ion battery was measured. This structured Li4Ti5O12 exhibited a high reversible capacity and an excellent rate capability of 165 mAhg-1 at 8 C. Besides the flower-like Li4Ti5O12, the Li4Ti5O12 hollow microspheres consisting of nanosheets have also been synthesized via a hydrothermal route and following calcination. The formation mechanism for the hollow microspheres was studied by tracking the crystallization and morphology of the product at different reaction stages. Because of the favorable transport properties of this hollow structure, when the Li4Ti5O12 hollow microspheres assembled by nanosheets were used as the anode material in lithium ion battery, they exhibited superior rate performance and high capacity even at a very high rate (131 mAhg-1 at 50 C), indicating potential application for high-rate lithium ion batteries.
     Mesoporous spinel lithium titanate Li4Ti5O12 microspheres were prepared by template-free hydrothermal process in ethanol-water mixed solution and subsequent heat treatment. The role of ethanol helps the formation of a mesoporous structure during the hydrothermal process. In general, well-defined mesoporous spheres can hardly be produced when r(EtOH vol% in the solvent of EtOH-H2O) is lower than 30%. A mechanism analogous to the Kirkendall effect was proposed to account for the template-free formation of these mesoporous nanostructures. As anode materials for high-rate lithium ion battery, the Li4Ti5O12 mesoporous spheres exhibited superior high-rate performance of 114 mAhg-1 at 30 C and good capacity retention of 125mAhg-1 after 200 cycles at 20 C.
     A facile synthesis route was developed to prepare hierarchical hollow microspheres assembled by titanate nanotubes. Especially, H2O2 was found to be an efficient agent that can facilitate the roll of titanate sheets into nanotubes under low concentrated NaOH conditions. And the similar structured hydrogen titanate was prepared via acid washing of sodium titanate. After calcination, the hydrogen titanate can be transformed into TiO2 nanotube-based hollow spheres, and similar structured Li4Ti5O12 can be prepared by hydrothermal ion-exchange between lithium ion with hydrogen titanate and following calcination. When the hierarchical structured TiO2 were used as the anode material in lithium ion battery, they exhibited a high capacity and cycle stability of 160 mAhg-1 after 100 cycles at 1 C and a good rate performance of 90 mAhg-1 at 8 C.
引文
1. Tarascon J., Armand M., Issues and challenges facing rechargeable lithium batteries [J], Nature, 2001, 414, 359-367
    2. Yabunchi N., Ohzuku T., Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium- ion batteries [J], J. Power Sources, 2003, 119, 171- 174
    3. De Picciotto L. A., Adendorff K. T., Liles, D. C. Thackeray M.M., Structural characterization of Li1+xV3O8 insertion electrodes by single-crystal X-ray diffraction [J], Solid State Ionics, 1993, 62, 297-307.
    4. Antonini A., Bellitto C., Pasquali M., Pistoia G., Factors affecting the stabilization of Mn spinel capacity upon storing and cycling at high temperatures [J], J. Electrochem. Soc. 1998, 145, 2726-2732
    5. Padhi A. K., Nanjundaswamyks, Goodenough J. B., Phosphoolivines as positive- electrode materials for rechargeable batteries [J], J. Electrochem Soc. 1997, 144, 1188-1194.
    6. Li Z., Zhang D., Yang F., Developments of lithium-ion batteries and challenges of LiFePO4 as one promising cathode material [J], J. Mater. Sci. 2009, 44, 2435-2443
    7. Aurbach D., Markovsky B., Salitra G., Markevich E., Talyossef Y., Koltypin M., Nazar L., Kovacheva D., Review on electrode-electrolyte solution interactions, related to cathode materials for Li-ion batteries [J], J. Power Sources, 2007, 165, 491-499
    8. Mastragostino M., Soavi F., Strategies for high-performance supercapacitors for HEV [J], J. Power Sources, 2008, 174, 89-93
    9. Karden E., Ploumen S., Fricke B., Miller T., Snyder K., Energy storage devices for future hybrid electric vehicles [J], J. Power Sources, 2007, 168, 2-11
    10. Kozono S., Nakagawa H., Inamasu T., et al. Performance of lithium ion cells with electrolyte containing non-flammable solvent [J], GS Yuasa Technical Report, 2005, 6-31
    11. Arbizzani C., Biso M., Cericola D., Lazzari M., Soavi F., Mastragostino M., Safe, high-energy supercapacitors based on solvent-free ionic liquid electrolytes [J], J.Power Sources 2008, 185, 1575-1579
    12. Tobishima S., Yamaki J., A consideration of lithium cell safety [J], J. Power Sources, 1999, 81, 882-886
    13. Chagnes A., Diaw A., Carre B., Willmann P., Lemordant D., Mixed ionic liquid as electrolyte for lithium batteries [J], J. Power Sources, 2005, 145, 82-88
    14. Lee S. Y., Yong H. H., Kim S. K., Kim J. Y., Ahn S. H., Performance and thermal stability of LiCoO2 cathode modified with ionic liquid [J], J. Power Sources, 2005,146, 732-735
    15. Lewandowski A., Swiderska-Mocek A., Properties of the graphite-lithium anode in N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide as an electrolyte [J], J. Power Sources, 2007, 171, 938-943
    16. Fang S., Yang L., Wei C., Ionic liquids based on guanidinium cations and TFSIanion as potential electrolytes [J], Electrochimica Acta, 2009, 54,1752-1756
    17. Fang S., Yang L., Wang J., Guanidinium-based ionic liquids as new electrolytes for lithium battery [J], Journal of Power Source, 2009, 191,619-622
    18. Fang S., Yang L., Wang J., Ionic liquids based on functionalized guanidinium cations and TFSI anion as potential electrolytes [J], Electrochimica Acta, 2009, 54, 4269-4273
    19.雷永泉,新能源材料[M],天津大学出版社2000, 114
    20. Winter M., Besenhard J. O., Electrochemical lithiation of tin and tin-based intermetallics and composites [J], Electrochim. Acta, 1999, 45, 31-50
    21. Tamura N., Ohshita R., Fujitani S., Kamino M., Fujitani S., Advanced structures in electrodeposited tin base negative electrodes for lithium secondary batteries [J], J. Electrochem Soc, 2003, 150, A679-A685
    22. Wang X., Wen Z., Liu Y., Wu X., A novel composite containing nanosized silicon and tin as anode material for lithium ion batteries [J], Electrochimica Acta, 2009, 54, 4662-4667
    23. Beaulieu L. Y., Hatchard T. D., Dahn J. R., Fleischauer M.D., Dahn J.R., Reaction of Li with alloy thin filmd studies by in situ AFM [J], J. Electrochem Soc. 2003, 150, A1457-A1464
    24. Wang L B., Kitamura S., Sakai T., Obata K., Tanase S., Sakai T., Electroplated Sn-Zn alloy electrode for Li secondary batteries [J], J Electrochem Soc. 2003, 150, A1346-A1350
    25. Matsuno S., Noji M., Nakayama M., Wakihara M., Kobayashi Y., MiyashiroH., Dynamics of phase transition in Li-Cu-Sb anode material for rechargeable lithium ion battery [J], J. Electrochem.Soc. 2008, 155, A151-A157
    26. Matsuno S., Noji M., Kashiwagi T., Nakayama M., Wakihara M., Construction of the ternary phase diagram for the Li-Cu-Sb system as the anode material for a lithium ion battery [J], J. Phys. Chem. C 2007, 111, 7548-7553
    27. Courtney I. A., Dahn, J. R., Electrochemical and situ-X ray diffusion studies of the reaction of lithium with tin oxide composites [J], J. Electrochem.soc. 1997, 144, 2045-2052
    28. Beaulieu L Y., Hewitt K C., Dahn J R., Bonakdarpour A., Abdo A. A., Christensen L., Eberman K.W., Dahn J.R., The electrochemical reaction of Li with amorphous Si-Sn alloys [J], J. Electrochem. Soc. 2003, 150, A149-A156
    29. Thacheray M. M., Vaughey J. T., Edstrom K., Kropf A. J., Benedek R., Fransson L. M. L., Edstrom K., Structural considerations of intermetallic electrodes for lithium batteries [J], J. Power Sources, 2003, ll3, 124-130
    30. Endo M., Kim C., Nishimura K., Fujino T., Miyashita K., Recent development of carbon materials for Li ion batteries [J], Carbon, 2000, 38, 183-197
    31. Poizot P., Laruelle S., et al Nano-zised transition metal oxides as negative-electrode materials for lithiun-ion batteries [J], Nature, 2000, 407, 496-499
    32. Subramanian V., Burke W.W., Hongwei Z., Bingqing W., Novel microwave synthesis of nanocrystalline SnO2 and its electrochemical properties [J], J. Phys. Chem. C. 2008,112, 4550-4556
    33. Park M. S., Wang G. X., Kang Y. M., Wexler D., Dou S. X., Liu H. K., Preparation and electrochemical properties of SnO2 nanowires for application in lithium-ion batterie [J], Angew. Chem. Intern. Edit. 2007, 46, 750-753
    34. Zhang J. P., The limitations of energy density of battery/double-layer capacitor asymmetric cells [J], J. Electrochem. Soc. 2003, 150, A484-A492
    35. Yang L. C., Gao Q. S., Zhang Y. H., Tang Y., Wu Y. P., Tremella-like molybdenum dioxide consisting of nanosheets as an anode material for lithium ion battery [J], Electrochem. Commun. 2008, 10, 118–122
    36. Ding N., Feng X., Liu S., Xu J., Fang X., Lieberwirth I., Chen C., High capacity and excellent cyclability of vanadium (IV) oxide in lithium battery applications [J], Electrochem. Commun. 2009, 11, 538-541
    37. Inaba M., Oba Y., Niina F., Murota Y., Ogino Y., Tasaka A., Hirota K., TiO2(B) as a promising high potential negative electrode for large-size lithium-ion batteries [J], J. Power Sources 2009, 189, 580-584
    38. Erjavec B., Dominko R., Umek P., Sturm S., Pintar A., Gaberscek M., Tailoring nanostructured TiO2 for high power Li-ion batteries [J], J. Power Sources, 2009, 189, 869-874
    39. Uzunov I., Uzunova S., Kovacheva D., Vasilev S., Puresheva B., Iron-based composite oxides as alternative negative electrodes for lithium-ion batteries [J], J. Mater. Sci, 2007, 42, 3353-3357
    40. Li Z. M., Qiu W. H., Hu H. Y., Zhao H. L., Gao C. H. Optimized synthesis of LiMn2O2 cathode materials for Li-ion batteries [J], Wuji Cailiao Xuebao/J. Inorg. Mater. 2004, 19, 342-348
    41. Yang Z., Choi D., Kerisit S., Rosso K. M., Wang D., Zhang J., Graff G., Liu J. Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: A review [J], J. Power Sources, 2009, in Press
    42. Wu M., Chiang P. C. J., Electrochemically deposited nanowires of manganese oxide as an anode material for lithium-ion batteries [J], Electrochem. Commun. 2006, 8, 383-388
    43. Fu W., Huang E., Zhang Y., Chu Y., Qin Q., The electrochemical reaction ozinc oxide thin films with lithium [J], J.Electrochem.Soc. 2003, 150, A714-A720.
    44. Souza E. A., Santos A.O., Cardoso L. P., Tabacniks M. H., Landers R., Gorenstein A., Copper–vanadium mixed oxide thin film electrodes [J], J. Power Sources, 2006, 162, 679–684
    45. Limthongkul P., Wang H., Jud E., Chiang Y. M., Novel Composite Anodes Consisting of Lithium Transition-Metal Nitrides and Transition Metal Oxides for Rechargeable Li-Ion Batteries [J], J. Electrochem. Soc. 2002, 149, A1237-A1245
    46. Kang Y. M., Kim K. T., Kim J. H., Kim H. S., Lee P. S., Lee, J. Y., Liu H. K., Dou S. X., Electrochemical properties of Co3O4, Ni-Co3O4 mixture and Ni-Co3O4 composite as anode materials for Li ion secondary batteries [J], J. Power Sources, 2004, 133, 252-259
    47. Hosono E., Fujihara S., Honma I., Zhou H., The high power and high energy densities Li rechargeable battery by nanocrystalline and mesoporous Ni/NiO covered structure [J], Meeting Abstracts MA ,2005-02, 2332
    48. Pralong V., Souza D. C. S., Leung K. T., Nazar L. F., Reversible lithium uptake by CoP3 at low potential: Role of the anion [J], Electrochem. Commun. 2002, 4, 516-520
    49. Kim T., Kim C., Son D., Choi M., Park B., Novel SnS2-nanosheet anodes for lithium-ion batteries [J], J. Power Sources, 2007,167, 529-535
    50. Sun Q., Fu Z. W., An anode material of CrN for lithium-ion batteries [J], Electrochem. Solid-State Lett. 2007, 10, A189-A193
    51. Ding N., Xu J., Yao Y., Wegner G., Lieberwirth I., Chen C., Improvement of cyclability of Si as anode for Li-ion batteries [J], J. Power Sources 2009, in press
    52. Kim C., Nishimura K., Fujino T., Miyashita K., Endo M., Dresselhaus M. S., Structure and anode performance of pristine and B-doped graphites for Li-ion batteries Molecular Crystals and Liquid [J], Cryst. Sci. Tech. Section A: Molecular Crystals and Liquid Crystals, 2000, 340, 455-460
    53. Tsutomu O., Atsushi U., Norihiro Y., Zreo-strain insertion materials of Li[Li1/3Ti5/3]O4 for rechargeable lithium cells [J], J. Electrochem. Soc. 1995, 140, 1431-1435
    54. Ronci F., Stallworth P. E., Alamgir F, Schiros T., Van Sluytman J., Guo X., Reale P., Scrosati, B., Lithium-7 nuclear magnetic resonance and Ti K-edge X-ray absorp tion spectroscop ic investigation of electrochemical lithium insertion in Li4/3+xTi5/3O4 [J], J. Power Sources, 2003, 119, 631-636
    55. Kavan L., Procházka J., Spitler T.M., Kalbá? M., ZukalováM., Drezen T., Gr?tzel M. et al. Li insertion into Li4Ti5O12 ( spinel) charge capability vs. particle size in thin film electrodes [J], J. Electrochem Soc, 2003, 150, A1000-A1005.
    56. Wen Z., Huang S., Yang X., Lin B., High rate electrode materials for lithium ion batteries, Solid State Ionics 2008, 179, 1800–1805
    57. Zaghib K., Simoneau M., Armand M., Gauthier M.,. Electrochemical study of Li4Ti5O12 as negative electrode for Li-ion polymer rechargeable batteries [J], J Power Sources, 1999, 81-82, 300-305.
    58. Abe Y., Matsui E., Senna M., Preparation of phase pure and well-crystallized Li4Ti5O12 nanoparticles by precision control of starting mixture and calcining at lowest possible temperatures [J], J. Phys. Chem. Solids, 2007, 68, 681–686
    59. Prosini P. P., Mancini R., Petrucci L., Contini V., Villano P., Li4Ti5O12 as anode in all-solid-state, plastic, lithium-ion batteries for low-power applications [J], Solid State Ionics, 2001, 144, 185-192.
    60. Liang C., Liu H. J., Zhang J. J., Xiong, H. M., Xia Y. Y., Nanosized Li4Ti5O12 prepared by molten salt method as an electrode material for hybrid electrochemical supercapacitors [J], J. Electrochem. Soc. 2006, 153, A1472-A1477
    61.王国庆,吕菲,白莹,吴锋,复合熔盐法合成Li4Ti5O12及其电化学性能研究[J],功能材料, 2008, 39, 1158-1165
    62. Hao Y., Lai Q., Xu Z., Liu X., Ji X., Synthesis by TEA sol–gel method and electrochemical properties of Li4Ti5O12 anode material for lithium-ion battery[J], Solid State Ionics, 2005, 176, 1201–1206
    63. Jiang C., Zhou Y., Honma I., Kudo T., Zhou H., Preparation and rate capability ofLi4Ti5O12 hollow-sphere anode material [J], J. Power Sources, 2007, 166, 514–518
    64. Sugita M., Tsuji M., Abe M., Synthetic inorganic ion-exchange materials LVIII. Hydrothermal synthesis of a new layered lithium titanate and its alkali ion exchange [J], Bull. Chem. Soc. Jpn. 1990, 63, 1978-1984
    65. Li J., Tang Z., Zhang Z., Controllable formation and electrochemical properties of one-dimensional nanostructured spinel Li4Ti5O12 [J], Electrochem. Commun. 2005, 7, 894–899
    66. Fattakhova D., Krtil P., Electrochemical Activity of Hydrothermally Synthesized Li-Ti-O Cubic Oxides toward Li Insertion [J], J. Electrochem. Soc. 2002, 149, A1224-A1229
    67. Huang S. H., Wen Z. Y., Zhu X. J., Gu Z., Preparation and electrochemical performance of Ag doped Li4Ti5O12 [J], Electrochem. Commun. 2004, 6, 1093-1097
    68. Huang S., Wen Z., Zhu X., Lin Z., Effects of dopant on the electrochemical performance of Li4Ti5O12 as electrode material for lithium ion batteries [J], J. Power Sources, 2007, 165, 408–412
    69. Chen C. H., Vaughey J. T., Jansen A. N., Dees D.W., Kahaian A. J., Goacher, T., Thackeray, M. M., Studies of Mg Substituted Li4-xMgxTi5O12 Spinel Electrodes (0≤x≤1) for Lithium Batteries [J], J Electrochem. Soc. 2001, 148, A102-A104.
    70. Wang G. J., Gao J., Fu L. J., Zhao N. H., Wu Y. P., Takamura T., Preparation and characteristic of carbon-coated Li4Ti5O12 anode material [J], J. Power Sources, 2007, 174, 1109–1112
    71. Yu H., Zhang X., Jalbout A. F., Yan X., Pan X., Xie H., Wang R., High-rate characteristics of novel anode Li4Ti5O12/polyacene materials for Li-ion secondary batteries [J], Electrochim. Acta, 2008, 53, 4200–4204
    72. Huang S., Wen Z., Zhu X., Yang X., Research on Li4Ti5O12/CuxO Composite Anode Materials for Lithium-Ion Batteries [J], J. Electrochem. Soc. 2005, 152, A1301-A1305
    73. Liu P., Sherman E., Verbrugge M., Electrochemical and structural characterization of lithium titanate electrodes [J], J. Solid State Electrochem. 2009, 1-7
    74. Kim D. H., Ahn Y. S., Kim J., Polyol-mediated synthesis of Li4Ti5O12 nanoparticle and its electrochemical properties [J], Electrochem. Commun. 2005, 7, 1340–1344
    75. Venkateswarlu M., Chen C. H., Do J. S., Lin C. W., Choud T. C., Hwang B. J., Electrochemical properties of nano-sized Li4Ti5O12 powders synthesized by a sol–gel process and characterized by X-ray absorption spectroscopy [J], J. Power Sources, 2005, 146, 204–208
    76. Jiang C., Ichihara M. Honma I., Zhou H., Effect of particle dispersion on high rate performance of nano-sized Li4Ti5O12 anode [J], Electrochim. Acta, 2007, 52, 6470–6475
    77. Wang D., Ding N., Song X. H., Chen C. H., A simple gel route to synthesize nano- Li4Ti5O12 as a high-performance anode material for Li-ion batteries [J], J.Mater Sci. 2009, 44, 198–203
    78. Singhal A., Skandan G., Amatucci G., Badway F., Ye N., Manthiram A., Ye H., Xu J. J., Nanostructured electrodes for next generation rechargeable electrochemical devices [J], J. Power Sources, 2004, 129, 38-44
    79. Kavan L., Gratzel M., Facile synthesis of nanocrystalline Li4Ti5O12 spinel exhibiting fast Li insertion [J], Electrochem. Solid-State Lett. 2002, 5, A39-A42
    80. Arico A. S., Bruce P., Scrosati B., Tarascon J. M., Van Schalkwijk W., Nanostructured materials for advanced energy conversion and storage devices [J], Nat. Mater. 2005, 4, 366-377
    81. Maier J., Nanoionics: Ion transport and electrochemical storage in confined systems [J], Nat. Mater. 2005, 4, 805-815
    82. Okubo M., Hosono E., Kim J., Enomoto M., Kojima N., Kudo T., Zhou H., Honma I., Nanosize effect on high-rate Li-ion intercalation in LiCoO2 electrode [J], J. Am. Chem. Soc. 2007, 129, 7444-7452
    83. Robertson A. D., Armstrong A. R., Bruce P. G., Layered LixMn1-yCoyO2 intercalation electrodes-Influence of ion exchange on capacity and structure upon cycling [J], Chem. Mater. 2001, 13, 2380-2386
    84. Pereira N., Dupont L., Tarascon J. M., Klein L. C., Amatucci G. G., Electrochemistry of Cu3N with Lithium: A Complex System with Parallel Processes [J], J. Electrochem. Soc. 2003, 150, A1273-A1280
    85. Alcántara R., Ortiz G., Rodríguez I., Tirado J. L., Effects of heteroatoms and nanosize on tin-based electrodes [J], J. Power Sources 2009, 189, 309-314
    86. Chen J., Xu L., Li W., Gou X.,α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications [J], Adv. Mater. 2005, 17, 582-586
    87. Jamnik J., Maier J., Nanocrystallinity effects in lithium battery materials: Aspects of nano-ionics. Part IV [J], Phys. Chem. Chem. Phys. 2003, 5, 5215-5220
    88. Amatucci G. G., Badway F., Pasquier A. D., Zheng T., An Asymmetric Hybrid Nonaqueous Energy Storage Cell [J], J. Electrochem. Soc. 2001, 148, A930-939
    89. Chan C. K., Peng H., Liu G., Mcilwrath K., Zhang X. F., Huggins R. A., Cui Y., High-performance lithium battery anodes using silicon nanowires [J], Nat. Nanotech. 2008, 3, 31-35
    90. Yamada A., Hosoya M., Chung S. C., Kudo Y., Hinokuma K., Liu K. Y., Nishi Y., Olivine-type cathodes: Achievements and problems [J], J. Power Source, 2003, 119, 232-238
    91. eng S., Tang K., Li T., Liang Z., Wang D., Wang Y., Qi Y., Zhou W., Facile route for the fabrication of porous hematite nanoflowers: Its synthesis, growth mechanism, application in the lithium ion battery, and magnetic and photocatalytic properties [J], J. Phys. Chem. C 2008, 112, 4836-4843
    92. Zeng S., Tang K., Li T., Liang Z., Wang D., Wang Y., Zhou W., Hematite hollow spindles and microspheres: Selective synthesis, growth mechanisms, and application in lithium ion battery and water treatment [J], J. Phys. Chem. C 2007 111, 10217-10225
    93. Fu L. J., Liu H., Li C., Wu Y. P., Rahm E., Holze R., Wu H. Q., Surface modifications of electrode materials for lithium ion batteries [J], Solid State Sci.2006, 8, 113-128
    94. Fu L. J., Liu H., Li C., Wu Y. P., Rahm E., Holze R., Wu H. Q., Surface modifications of electrode materials for lithium ion batteries [J], Solid State Sci. 2006, 8, 113-128
    95. Wang Q., Li H., Chen L. Q., Huang X. J., Monodispersed hard carbon spherules with uniform nanopores [J], Carbon, 2001, 39, 2211-2214
    96. Wang Z., Tian W., Liu X., Yang R., Li X., Synthesis and electrochemical performances of amorphous carbon-coated Sn-Sb particles as anode material for lithium-ion batteries [J], J. Solid State Chem. 2007, 180, 3360-3365
    97. Li H., Shi L. H., Wang Q., Chen L. Q., Huang X. J., Nano-alloy anode for lithium ion batteries [J], Solid State Ionics, 2002, 148, 247-258
    98. Wang Y., Chen T., Nonaqueous and template-free synthesis of Sb doped SnO2 microspheres and their application to lithium-ion battery anode [J], Electrochim. Acta, 2009, 54, 3510-3515
    99. Kalbac M., Zukalova M. Kavan L., Phase-pure nanocrystalline Li4Ti5O12 for a lithium-ion battery [J], J. Solid State Eletrochem. 2003, 8, 2-6
    100.Delmas C., Maccario M., Croguennec L., Le Cras F., Weill F., Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model [J], Nat. Mater. 2008, 7, 665-671
    101.Zhang P., Zhang H. P., Li G. C., Li Z. H., Wu Y. P., A novel process to prepare porous membranes comprising SnO2 nanoparticles and P(MMA-AN) as polymer electrolyte [J], Electrochem. Commun. 2008, 10, 1052-1055
    102.Lee T., Cho K., Oh J., Shin D., Electrochemical characteristics of LiCoO2 nano-powder synthesized via aerosol flame deposition (AFD) [J], J, Phys. Chem. Solids 2008, 69, 1242-1245
    103.Yang L. C., Gao Q. S., Tang Y., Wu Y. P., Holze R., MoO2 synthesized by reduction of MoO3 with ethanol vapor as an anode material with good rate capability for the lithium ion battery [J], J. Power Sources 2008, 179, 357-360
    104.Wang G., Shen X., Yao J., One-dimensional nanostructures as electrode materials for lithium-ion batteries with improved electrochemical performance [J], J. Power Sources 2009, 189, 543-546
    105.Masarapu C., Subramanian V., Zhu H., Wei B., Long-cycle electrochemical behavior of multiwall carbon nanotubes synthesized on stainless steel in Li ion batteries [J], Adv. Funct. Mater.2009, 19, 1008-1014
    106.Kim D.H., Yoon J. H., Lee K. S., Jung Y. H., Lee B. R., Jang J. S., Choi D. K., Lee K. S., Structural characterization of titanate nanotubes for lithium storage [J], J. Nanosci. Nanotech. 2008, 8, 5022-5025
    107.Zeng S., Tang K., Li T., Controlled synthesis ofα-Fe2O3 nanorods and its size-dependent optical absorption, electrochemical, and magnetic properties [J], J. Colloid Int. Sci. 2007, 312, 513-521
    108.Fang H., Li L., Yang Y., Yan G., Low-temperature synthesis of highly crystallized LiMn2O4 from alpha manganese dioxide nanorod [J]s, J. Power Sources, 2008, in Press
    109.Xu J., Jia C., Cao B., Zhang W. F., Electrochemical properties of anatase TiO2nanotubes as an anode material for lithium-ion batteries [J], Electrochim. Acta, 2007, 52, 8044-8047
    110.Reddy M. V., Yu T., Sow C. H., Shen Z. X., Lim C. T., Rao G. V. S., Chowdari B. V. R.,α-Fe2O3 nanoflakes as an anode material for li-ion batteries [J], Adv. Funct. Mater. 2007, 17, 2792-2799
    111.Yoo E. J., Kim J., Hosono E., Zhou H. S., Kudo T., Honma I., Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries [J], Nano Lett. 2008, 8, 2277-2282
    112.Seo J. W., Jun Y. W., Park S. W., Nah H., Moon T., Park B., Kim J. G., Cheon, J., Two-dimensional nanosheet crystals [J], Angew. Chem. Int. Ed. 2007, 46, 8828-8831
    113.Gao S., Yang S., Shu J., Zhang S., Li Z. Jiang K., Green Fabrication of Hierarchical CuO Hollow Micro/Nanostructures and Enhanced Performance as Electrode Materials for Lithium-ion Batteries [J], J. Phys. Chem. C 2008, 112, 19324–19328
    114.[Hosono E., Fujihara S., Honma I., Ichihara M., Zhou H., Fabrication of nano/micro hierarchical Fe2O3/Ni micrometer-wire structure and characteristics for high rate Li rechargeable battery [J], J. Electrochem. Soc. 2006, 153, A1273-A1278
    115.Wu J., Duan F., Zheng Y., Xie Y., Synthesis of Bi2WO6 nanoplate-built hierarchical nest-like structures with visible-light-induced photocatalytic activity [J], J. Phys. Chem. C. 2007, 111, 12866-12871
    116.Wang Q., Wen Z., Li J. A., Hybrid supercapacitor fabricated with a carbon nanotube cathode and a TiO2-B nanowire anode [J], Adv. Funct. Mater.2006, 16, 2141-2146
    117.Qiao H., Wang Y., Xiao L., Zhang L., High lithium electroactivity of hierarchical porous rutile TiO2 nanorod microspheres [J], Electrochem. Commun. 2008, 10, 1280-1283
    118.Wang H., Pan Q., Cheng Y., Zhao J., Yin G., Evaluation of ZnO nanorod arrays with dandelion-like morphology as negative electrodes for lithium-ion batteries [J], Electrochim. Acta, 2009, 54, 2851-2855
    119.Wang Q., Wen Z., Li J., Fast and reversible lithium-induced electrochemical alloying in tin-based composite oxide hierarchical microspheres assembled by nanoplate building blocks [J], J. Power Sources, 2008, 182, 334-339
    120.Wang H., Pan Q., Zhao J., Chen W., Fabrication of CuO/C films with sisal-like hierarchical microstructures and its application in lithium ion batteries [J], J. Alloys and Compounds, 2009, 476, 408-413
    121.Cao A., Hu J., Liang H., Wan L., Self-assembled vanadium pentoxide (V2O5) hollow microspheres from nanorods and their application in lithium-ion batteries [J], Angew. Chem. Int. Ed. 2005, 44, 4391–4395
    122.Li B., Rong G., Xie Y., Huang L., Feng C., Low-Temperature Synthesis of r-MnO2 Hollow Urchins and Their Application in Rechargeable Li+ Batteries [J], 2006, 45, 6404-6410
    123.Shen J. M., Feng Y., Formation of flower-like carbon nanosheet aggregationsand their electrochemical application [J], J. Phys. Chem. C. 2008, 112, 13114-13120
    124.Fu L. J., Zhang T., Cao Q., Zhang H. P., Wu Y. P., Preparation and characteriza- tion of three-dimensionally ordered mesoporous titania microparticles as anode material for lithium ion battery [J], Electrochem. Commun. 2007, 9, 2140-2144
    125.Kim H., Cho J., Hard templating synthesis of mesoporous and nanowire SnO2 lithium battery anode materials [J], J. Mater. Chem. 2008, 18, 771-775
    126.Guo Y.G., Hu Y. Sheng., Sigle W., Maier J., Superior Electrode Performance of Nanostructured Mesoporous TiO2 (Anatase) through Efficient Hierarchical Mixed Conducting Networks, [J] Adv. Mater. 2007, 19, 2087-2091
    127.Derrien G., Hassoun J., Panero S., Scrosati B., Nanostructured Sn-C composite as an advanced anode material in high-performance lithium-ion batteries [J], Adv. Mater. 2007, 19,2336-2340
    5. Favier F., Walter E.C., Zach M.P., Benter T., Penner R.M., Hydrogen sensors and switches from electrodeposited palladium mesowire arrays [J], Science, 2001, 293, 2227-2231
    6. Xia Y., Yang P., Sun Y., Wu Y., Mayers B., Gates B., Yin Y., Kim F., Yan H., One-dimensional nanostructures: Synthesis, characterization, and applications [J], Adv. Mater. 2003,15, 353-389
    7. Patzke G. R., Krumeich F., Nesper R., Oxidic nanotubes and nanorods Anisotropic modules for a future nanotechnology [J], Angew. Chem., Int. Ed. 2002, 41, 2446-2461
    8. Bruce P.G., Scrosati B., Tarascon J.M., Nanomaterials for rechargeable lithium batteries [J], Angew. Chem. Int. Ed., 47 (2008) 2930-2946
    9. Wang Y., Cao G..Z., Developments in nanostructured cathode materials for high-performance lithium-ion batteries [J], Adv. Mater. 2008, 20, 2251-2269
    10. Lee Y. J., Kim M.G., Cho J., Layered Li0.88[Li0.18Co0.33Mn0.49]O2 nanowires for fast and high capacity Li-ion storage material [J], Nano Lett. 2008, 8, 957-961
    11. Chen H.L., Grey C.P., Molten salt synthesis and high rate performance of the "desert- rose" form of LiCoO2 [J], Adv. Mater. 2008, 20, 2206-2210
    12. Yang L.C., Gao Q.S., Zhang Y.H., Tang Y., Wu Y.P., Tremella-like molybdenum dioxide consisting of nanosheets as an anode material for lithium ion battery [J], Electrochem. Commun. 2008, 10, 118-122
    13. Ge H., Li N., Li D., Dai C., Wang D., Electrochemical characteristics of spinel Li4Ti5O12 discharged to 0.01V [J], Electrochem. Commun. 2008, 10, 719-722
    14. Ouyang C.Y., Zhong Z.Y., Lei M.S., Ab initio studies of structural and electronic properties of Li4Ti5O12 spinel [J], Electrochem. Commun. 2007, 9, 1107-1112
    15. Sorensen E.M., Barry S.J., Jung H.K., Rondinelli J.R., Vaughey J.T., Poeppelmeier K.R., Three-dimensionally ordered macroporous Lu4Ti5O12: Effect of wall structure on electrochemical properties [J], Chem. Mater. 2006, 18, 482-489
    16. Huang S.H., Wen Z.Y., Zhu X.J., Gu Z.G., Preparation and electrochemical performance of Ag doped Li4Ti5O12 [J], Electrochem. Commun. 2004, 6, 1093-1907
    17. Takai S., Kamata M., Fujine S., Yoneda K., Kanda K., Esaka T., Diffusion coefficient measurement of lithium ion in sintered Li1.33Ti1.67O4 by means of neutron radiography [J], Solid State Ionics 1999, 123, 165-172
    18. Zaghib K., Simoneau M., Armand M., Gauthier M., Electrochemical study of Li4Ti5O12 as negative electrode for Li-ion polymer rechargeable batteries [J], J. Power Sources, 1999, 81-82, 300-305
    19. Huang S.H., Wen Z.H., Zhang J.C., Gu Z.H., Xu X.H., Li4Ti5O12/Ag composite as electrode materials for lithium-ion battery [J], Solid State Ionics, 2006, 177, 851-855
    20. Wolfenstine J.,. Allen J.L, Electrical conductivity and charge compensation in Tadoped Li4Ti5O12 [J], J. Power Sources, 2008, 180, 582-585
    21. Bach S., Pereira-Ramos J.P., Baffier N., Electrochemical behavior of a lithium titanium spinel compound synthesized via a sol-gel process [J], J. Mater. Chem. 1998, 8, 251-253
    22. Venkateswarlu M., Chen C.H., Do J.S., Lin C.W.,. Chou T.C, Hwang B.J., Electrochemical properties of nano-sized Li4Ti5O12 powders synthesized by a sol-gel process and characterized by X-ray absorption spectroscopy [J], J. Power Sources, 2005, 146, 204-208
    23. Li J.R., Tang Z.L., Zhang Z.T., Controllable formation and electrochemical properties of one-dimensional nanostructured spinel Li4Ti5O12 [J], Electrochem. Commun. 2005, 7, 894-899
    24. Fattakhova D., Petrykin V., Brus J., Kostlanova T., Dedeek J., Krtilz P., Solvothermal synthesis and electrochemical behavior of nanocrystalline cubic Li-Ti-O oxides with cationic disorder [J], Solid State Ionics,2005, 176, 1877-1885
    25. Huang S.H., Wen Z.Y., Zhu X.J., Yang X.L., Research on Li4Ti5O12/CuxO composite anode materials for lithium-ion batteries [J], J. Electrochem. Soc. 2005, 152, 1301-1305
    26. Huang S.H., Wen Z.Y., Zhang J.C., Yang X.L., Improving the electrochemical performance of Li4Ti5O12/Ag composite by an electroless deposition method [J], Electrochim. Acta, 2007, 52, 3704-3708
    1. Guo Y.G., Hu J.S., Wan L.J., Nanostructured materials for electrochemical energy conversion and storage devices [J], Adv. Mater. 2008, 20, 2877-2887
    2. Cao A.M., Hu J.S., Liang H.P., Wan L.J., Self-assembled vanadium pentoxide (V2O5) hollow microspheres from nanorods and their application in lithium-ion batteries [J], Angew. Chem. Int. Ed. 2005, 44, 4391-4395
    3. Yu J.G., Guo H.T., Davis S.A., Mann S., Fabrication of hollow inorganic microspheres by chemically induced self-transformation [J], Adv. Funct. Mater. 2006, 16, 2035-2041
    4. Liu, B., Zeng, H.C. Fabrication of ZnO“Dandelions”via a Modified Kirkendall Process [J], J. Am. Chem. Soc. 2004, 126, 16744-16746
    5. Wang Y.W., Xu H., Wang X.B., Zhang X., Jia H.M., Zhang L.Z., Qiu J.R., A general approach to porous crystalline TiO2, SrTiO3, and BaTiO3 spheres [J], J. Phys. Chem. B 2006, 110, 13835-13840
    6. Sugita M., Tsuji M., Abe M., Synthetic inorganic ion-exchange materials. LVIII. Hydrothermal synthesis of a new layered lithium titanate and ots alkali ion exchange [J], Bull. Chem. Soc. Jpn. 1990, 63,1978-1984
    7. Ohzuku T., Ueda A., Yamamoto N., Zero-strain insertion material of Li[Li1/3Ti5/3Ti5/3]O4 for rechargeable lithium cells [J], J. Electrochem. Soc. 1995, 142, 1431-1435.
    8. Vinu A., Sawant D.P., K. Ariga, M. Hartmann, S. B. Halligudi, Benzylation of benzene and other aromatics by benzyl chloride over mesoporous AlSBA-15 catalysts [J], Micro. Meso. Mater. 2005, 80,195-203.
    9. Kavan L., Gratzel M., Porous films from TiO2 (anatase) with bimodal morphology: Li-insertion electrochemistry [J], Electrochem. Solid-State Lett. 2007, 10, A85-A87
    10. Kalbac M., Zukalova M., Kavan L., Phase-pure nanocrystalline Li4Ti5O12 for a lithium-ion battery [J], J. Solid State Eletrochem. 2003, 8, 2-6.
    11. Sudant G., Baudrin E., Larcher D., Tarascon J. M., Electrochemical lithium reactivity with nanotextured anatase-type TiO2 [J], J. Mater. Chem. 2005, 15, 1263-1269.
    12. Hu Y.S., Kienle L., Guo Y.G., Maier J., High lithium electroactivity of nanometer-sized rutile TiO2 [J], Adv. Mater. 2006, 18, 1421-1426.
    13. Tang Y., Yang L., Qiu Z., Huang J., Preparation and electrochemical lithium storage of flower-like spinel Li4Ti5O12 consisting of nanosheets [J], Electrochem. Commun. 2008, 10, 1513-1516.
    14. Singhal A., Skandan G., Amatucci G., Badway F., Ye N., Manthiram A., Ye H., Xu J.J., Nanostructured electrodes for next generation rechargeable electrochemical devices [J], J. Power Sources 2004, 129, 38-44
    1. Kresge C.T., Leonowicz M.E., Roth W.J., Vartuli J.C., Beck J.S., Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism [J], Nature 1992, 359, 710-712
    2. Maschmeyer T., Rey F., Sankar G., Thomas J.M., Heterogeneous catalysts obtained by grafting metallocene complexes onto mesoporous silica [J], Nature 1995, 378, 159-162
    3. Tanev P.T., Pinnavaia T.J., A neutral templating route to Mesoporous molecular sieves [J], Science 1995, 267, 865-867
    4. Stein A., Advances in microporous and mesoporous solids - Highlights of recent progress [J], Adv. Mater. 2003, 15, 763-775
    5. Bach U., Lupo D., Comte P., Moser J.E., Weissortel F., Salbeck J., Spreitzer H., Gratzel M., Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies [J], Nature 1998, 395, 583-585
    6. Guo Y.G., Hu Y.S., Maier J., Synthesis of hierarchically mesoporous anatase spheres and their application in lithium batteries [J], Chem. Commun. 2006, 2783-2785
    7. Guo Y.G., Hu Y.S., Sigle W., Maier J., Superior electrode performance of nanostructured mesoporous TiO2 (Anatase) through efficient hierarchical mixed conducting networks [J], Adv. Mater. 2007, 19, 2087-2091
    8. Hu Y.S., Adelhelm P., Smarsly B.M., Hore S., Antonietti M., Maier J., Synthesis of hierarchically porous carbon monoliths with highly ordered microstructure and their application in rechargeable lithium batteries with high-rate capability [J], Adv. Funct. Mater. 2007, 17, 1873-1878
    9. Jiao F., Shaju K.M., Bruce P.G., Synthesis of nanowire and mesoporous low-temperature LiCoO2 by a post-templating reaction [J], Angew. Chem. Int. Ed. 2005, 44, 6550-6553
    10. Kim H., Cho J.J., Hard templating synthesis of mesoporous and nanowire SnO2lithium battery anode materials [J], J. Mater. Chem. 2008, 18, 771-775
    11. Li Y.Z., Kunitake T., Fujikawa S., Efficient fabrication and enhanced photocatalytic activities of 3D-ordered films of titania hollow spheres [J], J. Phys. Chem. B 2006, 110, 13000-13004.
    12. Dong A.G., Ren N., Tang Y., Wang Y.J., Zhang Y.H., Hua W.M., Gao Z.J., General synthesis of mesoporous spheres of metal oxides and phosphates [J], J. Am. Chem. Soc. 2003, 125, 4976-4977
    13. Kim T.W., Kleitz F., Pau B. l, Ryoo R., MCM-48-like large mesoporous silicas with tailored pore structure: Facile synthesis domain in a ternary triblock copolymer-butanol-water system [J], J. Am. Chem. Soc. 2005, 127, 7601-7610
    14. Lai X.Y., Li X.T., Geng W.C., Tu J.C., Li J.X., Qiu S.L., Ordered mesoporous copper oxide with crystalline walls [J], Angew. Chem., Int. Ed. 2007, 46, 738-741
    15. Lu Y.F., Fan H.Y., Stump A., Ward T.L., Rieker T., Brinker C.J., Aerosol-assisted self-assembly of mesostructured spherical nanoparticles [J], Nature 1999, 398, 223-226
    16. Lakshminarasimhan N., Bae E., Choi W., Enhanced photocatalytic production of H2 on mesoporous TiO2 prepared by template-free method: Role of interparticle charge transfer [J], J. Phys. Chem. C 2007, 111, 15244-15250
    17. Mayo M.J., Chen D.J., Hague D.C., In Nanomaterials: Synthesis, Properties and Applications; Edelstein, A. S., Cammarata, R. C., Eds.; Institute of Physics Publishing: Bristol, 1996.
    1. Lijima S., Helical microtubules of graphitic carbon [J], Nature, 1991, 354, 56-58
    2. Wong E.W., Sheehan P. E., Lieber C.M., Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes [J], Science, 1997, 277, 1971-1975
    3. Chen Z., Waje M., Li W., Yan Y., Supportless Pt and PtPd nanotubes as electrocatalysts for oxygen-reduction reactions [J], Angew. Chem. Int. Ed. 2007, 46, 4060–4063
    4. Liu Y., Chu Y., Zhuo Y., Dong L., Li L., LiM., Controlled synthesis of various hollow Cu nano/microStructures via a novel reduction route [J], Adv. Funct. Mater. 2007, 17, 933–938
    5. Ishai B.M., Patolsky F., Shape-and dimension-controlled single-crystalline silicon and sige nanotubes: Toward nanofluidic fet devices [J], J. Am. Chem. Soc. 2009, 131, 3679–3689
    6. Huang K., Rzayev J., Well-defined organic nanotubes from multicomponent bottlebrush copolymers [J], J. Am. Chem. Soc. 2009, 131, 6880-6885
    7. Lu F., Gu L., Meziani J. M., Wang X., Luo P., Veca L. M., Cao L., Sun Y., Advances in bioapplications of carbon nanotubes [J], Adv. Mater. 2009, 21, 139–152
    8. Wang Z. J., Qu S. C., Zeng X. B., Liu J. P., Zhang C. S., Tan F. R., Jin L., Wang Z. G., Hybrid bulk heterojunction solar cells from a blend of poly(3-hexylthiophene) and TiO2 nanotubes [J], App. Surf. Sci. 2008, 255, 1916-1920
    9. Wang Y., Wang G., Wang H., Cai W., Zhang L., One-pot synthesis of nanotube-based hierarchical copper silicate hollow spheres [J], Chem. Commun. 2008, 6555–6557
    10. Piao Y., An K., Kim J., Yu T., Hyeon T., Sea urchin shaped carbon nanostructured materials: Carbon nanotubes immobilized on hollow carbon spheres [J], J. Mater. Chem. 2006, 16, 2984–2989
    11. Yada M., Taniguchi C., Torikai T., Watari T., Furuta S., Katsuki H., Hierarchical two- and three-dimensional microstructures composed of rare-earth compound nanotubes [J], Adv. Mater. 2004, 16, 1448-1453
    12. Mao Y., Kanungo M., Hemraj-Benny T., Wong S. S., Synthesis and growth mechanism of titanate and titania one-dimensional nanostructures self-assembled into hollow micrometer-scale spherical aggregates [J], J. Phys. Chem. B 2006, 110, 702-710
    13. Bavykin D.V., Friedrich J.M., Walsh F. C., Protonated titanates and TiO2 nanostructured materials: Synthesis, properties, and applications [J], Adv. Mater. 2006, 18, 2807–2824
    14. Chen X., Mao S. S., Titanium dioxide nanomaterials: Synthesis, properties, modifications and applications [J], Chem. Rev. 2007, 107, 2891-2959
    15. Kasuga T., Hiramatsu M., Hoson A., Sekino T., Niihara K., Formation of titanium oxide nanotube [J], Langmuir 1998, 14, 3160-3163
    16. Ou H. H., Lo S. L., Review of titania nanotubes synthesized via the hydrothermal treatment: Fabrication, modification, and application [J], Seperat. Purif. Tech. 2007, 58, 179–191
    17. Chen Q., Zhou W., Du G., Peng L.M., Trititanate nanotubes made via a single alkali treatment [J], Adv. Mater. 2002, 14, 1208-1211
    18. Ma R., Bando Y., Sasaki T., Nanotubes of lepidocrocite titanates [J], Chem. Phys. Lett. 2003, 380, 577–582
    19. Ma R., Fukuda K., Sasaki T., Osada M., Bando Y., Structural features of titanate nanotubes/nanobelts revealed by raman, X-ray absorption fine structure and electron diffraction characterizations [J], J. Phys. Chem. B 2005, 109, 6210–6214
    20. Tsai C. C., Teng H., Nanotube formation from a sodium titanate powder via low-temperature acid treatment [J], Langmuir 2008, 24, 3434-3438
    21. Yang J., Jin Z., Wang X., Li W., Zhang J., Zhang S., Guo X., Zhang Z., Study on composition, structure and formation process of nanotube Na2Ti2O4(OH)2 [J], Dalton Tans. 2003, 20, 3898-3901
    22. Tang Y., Yang L, Qiu Z., Huang J., Li4Ti5O12 hollow microspheres assembled bynanosheets as an anode material for high-rate lithium ion batteries [J], Electochim. Acta 2009, 54, 6244-6249
    23. Tang Z.L., Li J.R., Zhang Z.T., Preparation and novel lithium intercalation properties of titanium oxide nanotubes [J], Electrochem. Solid-State Lett. 2005, 8, 316-319
    24. He B.L., Dong B., Li H.L., Preparation and electrochemical properties of Ag-modified TiO2 nanotube anode material for lithium-ion battery [J], Electrochem. Commun. 2007, 9, 425-430
    25. Bavykin D.V., Friedrich J.M., Walsh F.C., Protonated titanates and TiO2 nanostructured materials [J], Adv. Mater, 2006,18,2807-2824.
    26. Huang H., Zhang W.K., Gan X.P., Wang C., Zhang L., Electrochemical investigation of TiO2/carbon nanotubes nanocomposite as anode materials for lithium-ion batteries [J], Mater. Lett. 2007, 61, 296-299.
    27. Li J.R., Tang Z.L., Zhang Z.T., H-titanate nanotube: a novel lithium intercalation host with large capacity and high rate capability [J], Electrochemistry Communication. 2005,7, 62-67
    28. Li J., Tang Z., Zhang Z., Layered Hydrogen Titanate Nanowires with Novel Lithium Intercalation Properties [J], Chem. Mater., 2007,17, 5848-5855
    29. Xu J., Jia C., Cao B., Electrochemical properties of anatase TiO2 nanotubes as an anode material for lithium-ion batteries [J], Electrochemical Acta., 2007, 52, 8044-8047
    30. Wang Q., Wen Z., Li J., Solvent-controlled synthesis and electrochemical lithium storage of one–dimentional TiO2 nanostructures [J], Inorganic Chemistry. 2006, 45, 6944-6949
    31. Li J., Tang Z., Zhang Z., Preparation and novel lithium intercalation properties of titanium oxide nanotubes [J], Electrochem Solid-State Lett. 2005, 8, A316-A319
    32. Oh S.W., Park S.H., Sun Y.K., Hydrothermal synthesis of nano-sized anatase TiO2 powers for lithium secondary anode materials [J], J Power Sources, 2006, 161, 1314-1318
    33. Li J., Tang Z., Zhang Z., Controllable formation and electrochemical properties ofone-dimentional nanostructured spinel Li4Ti5O12 [J]. Electrochem Commu. 2005, 7, 894-899
    34. Wang D.W., Fang H.T., Li F., Chen Z.G., Aligned Titania Nanotubes as an intercalation anode material for hybrid electrochemical energe storage [J], Adv. Funct. Mater. 2008,18, 3787-3793

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700