直接甲醇燃料电池膜电极的关键材料与模型模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
直接甲醇燃料电池(DMFC)是目前最具有市场应用前景的新能源之一。膜电极是直接甲醇燃料电池的核心部件,通过实验和模型模拟研究对于优化直接甲醇燃料电池的膜电极结构、提高电池的放电性能具有重要的研究意义。
     本论文从模型模拟和实验两个角度出发,旨在深入研究和识别膜电极的内部结构与电池宏观性能之间的构效关系。在直接甲醇燃料电池的参数统计分析和优化管理、膜电极关键材料的制备与表征、单电池的放电性能、模型模拟等方面分别做了系统性和具体化的研究与探讨,以提高膜电极的电池性能、稳定性和能源效率,为膜电极及电池结构优化设计提供指导。
     根据直接甲醇燃料电池参数的特性,将其划分为几何参数、物性参数、工作参数、常量参数四个类别。为了更好的对参数进行优化管理,我们建立参数分级模型,根据电池的性能与参数的偏导数函数将参数分成零级参数、一级参数、二级参数和三级参数。对于不同级别的参数,我们给予了相应的参数优化管理策略。该项研究工作为论文的研究方向做了有效的指导,确定研究工作的重点是在膜电极部分,并选择膜材料作为膜电极的关键材料进行研究。
     采用无机-有机杂化法对Nafion(?)进行改性,通过流延法制备得到了钛酸钠纳米管/Nafion(?)新型复合膜,并且对其微观结构和材料性能进行了表征和测试。研究结果表明,钛酸钠纳米管/Nafion(?)复合膜具有良好的高温保水能力,可以有效降低甲醇渗透系数高达一个数量级,同时提高相对选择性2-5倍,对钛酸钠纳米管/Nafion(?)新型复合膜的作用机理进行了探讨和分析。
     通过热压法制备了5wt.%钛酸钠纳米管含量的膜电极,测试和分析了复合膜的单电池放电性能。实验结果表明新复合膜的单电池性能要优于纯Nafion膜,同时考察了电池温度、阴极加湿温度、甲醇浓度、甲醇流速和空气流速5个操作参数对燃料电池性能的影响。电池阴极交流阻抗图谱结果表明Na2Ti3O7/Nafion(?)复合膜的阻抗明显低于Nafion(?)膜,成功降低了膜中的甲醇穿透,这主要是因为降低了电荷转移电阻,同时保护了阴极氧还原反应的有效面积。
     建立了直接甲醇燃料单电池模型,通过与实验数据的比较来验证模型和数值模拟方法的有效性。主要考察了甲醇的穿透的作用、阳极甲醇溶液和阴极氧气在膜电极中的浓度分布。结论是由于甲醇穿透的存在,在一定程度上降低了电池的性能。阳极甲醇进料浓度的增大会提高甲醇的穿透。改变电池的操作条件可以降低甲醇穿透的影响,从而提高电池性能。
Direct methanol fuel cells (DMFC) are a promising power source for various applications. Membrane Electrode Assembly (MEA) is the key unit in direct methanol fuel cells. It is significant for optimizing the strugture of MEA and improving the cell performance in DMFC throuth experiment, model and the simulation study.
     This purpose of this dissertation is to further research and identify the structure-activity relationship between internal structure of MEA and macro properties of cell. Research is done from the model simulation and experimental two directions. Parameters statistical analysis and optimization management in Direct methanol fuel cell, preparation and characterization of the key materials of MEA, performance of single cell, model and simulation have been studied and discussed respectively and systemic for improving the cell performance, stability and energy efficiency. The expectation of this research is to provide the guidance in designing and optimizing the strugture of MEA and the cell.
     According to the characteristics, parameters in the direct methanol fuel cell are classified as geometric parameters, physical parameters, working parameters and constant parameters. In order to optimize the parameters of management, Grading Model are established according the cell performance unction partial derivative parameters, and the parameters are divided into primary parameters of level zero parameters, level 1 parameters, level 2 parameters and level 3 parameters. For different level of parameters, we give the corresponding parameter optimizing management strategy. The research work did effective guidance for thesis research direction and helped determing the research work is on MEA parts, and chose the membrane materials as film electrode materials for research.
     In this study, novel sodium titanate (Na2Ti3O7) nanotube/Nafion(?) composite membranes were prepared by a solution casting method. The properties of these composite membranes were measured to evaluate the applicability of these membranes in DMFCs. It was found that the addition of Na2Ti3O7 nanotubes enhanced the water uptake and reduced the methanol permeability of the composite membranes as high as 10 times. The new composite membrane was found to have significantly 2-5 times higher selectivity than a pure Nation(?) membrane and thus has good potential to outperform Nation(?) in DMFCs. The mechanism is also discussed and analyzed.
     With new composite membrane materials of 5wt.% Na2Ti3O7/Nafion(?) for proton exchange membrane, Membrane Electrode Assembly (MEA) was prepared using hot-pressing method, and been tested in single direct methanol fuel cell. Operation parameters of cell temperature, cathode humidifying temperature, methanol concentration, methanol flow rate and air flow rate have been employed to study on the effect of direct methanol fuel cells polarization curve. The AC impedance maps were tested and analyzed. The results show that the cell performance of new composite membrane is superior to that of the pure Nafion membrane, which blocked the methanol crossover successfully. The main reason is that the novel composite membrane decreases the charge transfer resistance, and protectes the effect surface in the reduction reactions of Oxgen in cathode.
     Established a model of single direct methanol fuel, model and numerical simulation method is effective which are validated through the comparison with experimental data. The effect of methanol crossover, anode methanol solution and the cathode oxygen concentration distributions in the MEA are investigated. The Conclusion is cell performance is reduced due to the existence of methanol penetrate. Increase of anode methanol feed concentration will enhance the methanol crossover. The methanol penetrable influence could be reduced through the operating conditions, and thus cell performance also could be improved.
引文
[1]http://www.gov.cn/jrzg/2006-02/09/content_183787.htm
    [2]http://news.cctv.com/world/20060717/100213.shtml
    [3]http://www.sciencenet.cn/htmlnews/200791210590529189348.html
    [4]http://jiading.tongji.edu.cn/ShowPost.aspx?aT=News&PostId=2297
    [5]http://www.chinanews.com/ny/2011/03-04/2884273.shtml
    [6]詹姆斯.拉米尼等著,朱红译,衣宝廉校,燃料电池系统—原理.设计.应用.北京:科学出版社,2006
    [7]INTERNATIONAL ENERGY AGENCY, HYDROGEN & FUEL CELLS, (?)ECE/IEA,2004
    [8]毛宗强,编著.燃料电池.北京:化学工业出版社,2005
    [9]衣宝廉,著.燃料电池—原理.技术.应用.北京:化学工业出版社,2003
    [10]Grove W R. On voltaic series and the combination of gases by platinum. London and Edinburgh Philosophical Magazine and Journal of Science, Series 3,1839.Feb, (14):127-130
    [11]Scboebein C F. On the voltaic polarization of certain solid and fluid substances. London and Edinburgh Philosophical Magazine and Journal of Science,1839.Feb, (14):43-45
    [12]Rayleigh L. On a new form of gas battery. Proceeding of Cambridge Philosophical Society, 1882, (17);198
    [13]Mond L. Langer C. A new form of gas battery. Proceeding of Cambridge Philosophical Society, 1889, (46):296-304
    [14]谢晓峰,范星河译,燃料电池技术,化学工业出版社,2004
    [15]毛宗强.质子交换膜燃料电池最新进展[J]新能源1999,21(1):7-10
    [16]陈延禧.聚合物电解质燃料电池的研究进[J]电源技术1996,20(1):21-27
    [17]赵国方,燃料电池的开发现状和进展[J].江苏化工.1994,22(1):1-5
    [18]程学网http://www.sciencenet.cn/bbs/showpost.aspx?id=6234
    [19]http://www.elecfans.com/yuanqijian/dianchi/dianchijichu/2009102699744.html
    [20]http://www.chma100.com.cn/keji/shuma/2009/10/131407.html
    [21]M. Eikrling, A.S. Loselevich, A.A. Komyshev, How good are the electrodes we use in PEMFC, Fuel Cells,2004 (4):131-140.
    [22]Bjorn Winther-Jensen, et al. High Rates of Oxygen Reduction over a Vapor Phase Polymerized PEDOT Electrode Science,2008,321:671-674
    [23]Kuanping Gong, Feng Du, Zhenhai Xia, et al. Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction, Science,2009,323:760-764
    [24]K.E. Elkins, T.S. Vedantam, J.P. Liu, H. Zen, S. Sun, Y. Ding, Z.L. Wang, Nano Lett., Ultra-fine FePt nanoparticles prepared by chemically reduction method,2003,3:1647-1649.
    [25]J.M. Tian, F.B. Wang, Z.H. Shan, R.J. Wang, J.Y. Zhang, Effect of Preparation Conditions of Pt/C Catalysts on Oxygen Electrode Performance in Proton Exchange Membrane Fuel Cells, J. Appl. Electrochem.,2004,34 (5) 461-467.
    [26]X. Yu, S. Ye, Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC Part I. Physico-chemical and electronic interaction between Pt and carbon support, and activity enhancement of Pt/C catalyst, J. Power Sources,2007,172:133-144.
    [27]W. Li, C. Liang, W. Zhou, J. Qiu, H. Li, G. Sun, Q. Xin, Homogeneous and controllable Pt particles deposited on multi- wall carbon nanotubes as cathode catalyst for direct methanol fuel cells. Carbon,2004,42 (2) 436-439.
    [28]Y. Li, F.P. Hu, X. Wang, P.K. Shen, Anchoring metal nanoparticles on hydrofluoric acid treated multiwalled carbon nanotubes as stable electrocatalysts, Electrochem. Commun.2008,10:1101-1104.
    [29]M.H. Shao, K. Sasaki, R.R. Adzic, Pd-Fe nanoparticles as electrocatalysts for oxygen reduction. J. Am. Chem. Soc.,2006,128:3526-3527.
    [30]J. Zhang, K. Sasaki, E. Sutter, R.R. Adzic, Stabilization of Platinum Oxygen-Reduction Electrocatalysts Using Gold Clusters, Science,2007,315(5809):220-222
    [31]Y. Zhang, C. Wang, N. Wan, Z. Mao, Deposited RuO2-IrO2/Pt electrocatalyst for the regenerative fuel cell, Int. J. Hydrogen Energy,2007,32 (3):400-404.
    [32]X.Y. Xie, Z.F. Ma, X. Wu, Q.Z. Ren, X. Yuan, et al., Preparation and electrochemical characteristics of CoTMPP-TiO2NT/BP composite electrocatalyst for oxygen reduction reaction, Electrochim. Acta,2007,52 (5):2091-2096.
    [34]H. Zhong, H. Zhang, G. Liu, Y. Liang, J.i Hu, B. Yi, A novel non-noble electrocatalyst for PEM fuel cell based on molybdenum nitride, Electrochem. Commun.,2006,8:707-712.
    [35]W. Li, W. Zhou, H. Li, Z. Zhou, B. Zhou, G. Sun, Q. Xin, Nano-stuctured Pt-Fe/C as cathode catalyst in direct methanol fuel cell, Electrochim. Acta,2004,49 (7)1045-1055
    [36]Q. Huang, H. Yang, Y. Tang, T. Lu, D.L. Akins, Carbon-Supported Pt-Co Alloy Nanoparticles for Oxygen Reduction Reaction, Electrochem. Commun.,2006,8:1220-1224.
    [37]Z.D. Wei, S.H. Chan, L.L. Li, H.F. Cai, Z.T. Xia, C.X. Sun, Electrodepositing Ptona Nafion-bonded carbon electrode as a catalyzed electrode for oxygenreduction reaction, Electrochim. Acta,2005,50:2279-2287.
    [38]H. Tang, J. H. Chen, Z. P. Huang, D.Z. Wang, Z.F. Ren, L.H. Nie, Y.F. Kuang, S.Z. Yao, High dispersion and electrocatalytic properties of platinum on well-aligned carbon nanotube arrays, Carbon,2004,42(1):191-197.
    [39]R.F. Wang, S.J. Liao, H.Y. Liu, H. Meng, Synthesis and characterization of Pt-Se/C electrocatalyst for oxygen reduction and its tolerance to methanol, J. Power Sources,2007, 171(2)471-476.
    [40]S. Song, Y. Wang, P.K. Shen, Pulse-microwave assisted polyol synthesis of highly dispersed high loading Pt/C electrocatalyst for oxygen reduction reaction, J. Power Sources,2007,170: 46-49.
    [41]M. Nie, P.K. Shen. Z. Wei, Nanocrystaline tungsten carbide supported Au-Pd electrocatalyst for oxygen reduction. J. Power Sources,2007,167:69-73.
    [42]Y. Zhao, Y. E, L. Fan, Y. Qiu, S. Yang, A new route for the electrodeposition of platinum-nickel alloy nanoparticles on multi-walled carbon nanotubes, Electrochim. Acta,2007,52(19) 5873-5878.
    [43]Cicero W.B. Bezerra, Lei Zhang, Hansan Liu.et al. A review of heat-treatment effects on activity and stability of PEM fuel cell catalysts for oxygen reduction reaction, Journal of Power Sources,2007,173(2):891-908.
    [44]Hee-Tak Kim, Dae Jong You, Hae-Kwon Yoon, et al. Cathode catalyst layer using supported Pt catalyst on ordered mesoporous carbon for direct methanol fuel, Journal of Power Sources, 2008,180, (2):724-732.
    [45]Y. Suo, L. Zhuang, J. Tao, First-Principles Considerations in the Design of Pd-Alloy Catalysts for Oxygen Reduction, Angew. Chem. Int. Ed.,2007,46 (16):2862-2864.
    [46]S. Zhang, H. Zhu, H. Yu, J.Hou, B. Yi, P. Ming, The Oxidation Resistance of Tungsten Carbide as Catalyst Support for Proton Exchange Membrane Fuel Cells, Chin. J. Catal.,2007,28 (2): 109-111.
    [47]J. Wang, G. Yin, Y. Shao, S. Zhang, Z. Wang, Y. Gao, Effect of carbon black support corrosion on the durability of Pt/C catalyst, J. Power Sources,2007,171 (2):331-339.
    [48]Y. Shao, G. Yin, Y. Gao, Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell, J. Power Sources,2007,171(2):558-566.
    [49]Afael Nogueira Bonifacio, Jose Octavio Armani Paschoal, Marcelo Linardi, Ricardo Cuenca, Catalyst layer optimization by surface tension control during ink formulation of membrane electrode assemblies in proton exchange membrane fuel cell, Journal of Power Sources,2011, 196(10):4680-468
    [50]Yong-Hun Cho, Jin Woo Bae, Yoon-Hwan Cho, Ju Wan Lim, Minjeh Ahn, Won-Sub Yoon, Nak-Hyun Kwon, Jae Young Jho, Yung-Eun Sung, Performance enhancement of membrane electrode assemblies with plasma etched polymer electrolyte membrane in PEM fuel cell, International Journal of Hydrogen Energy,2010,35(19):10452-10456
    [51]Daisuke Tashima, Yujiro Sakaguchi, Hiroaki Hidaka, Masahisa Otsubo, Basic examination of membrane electrode assembly of proton exchange membrane fuel cell considering heat deterioration, Chemical Engineering Research and Design,2011,89(7):1088-1093.
    [52]Daejong You, Yoonhoi Lee, Hyejung Cho, Joon-Hee Kim, Chanho Pak, Gyuhun Lee, Ka-Young Park, Jun-Young Park, High performance membrane electrode assemblies by optimization of coating process and catalyst layer structure in direct methanol fuel cells, International Journal of Hydrogen Energy,2011,36(18):5096-5103.
    [53]Hua-Neng Su, Shi-Jun Liao, Ting Shu, Hai-Li Gao, Performance of an ultra-low platinum loading membrane electrode assembly prepared by a novel catalyst-sprayed membrane technique, Journal of Power Sources,2010,195(3):756-761
    [54]R.W. Lindstrom, Electrocatalytic gas diffusion electrode employing thin carbon cloth layer, U.S. Patent,1987,4647359.
    [55]E.A. Ticianelli, C.R. Derouin, S. Sninivasan, Localization of platinum in low catalyst loading electrodes to attain high power densities in SPE fuel cells, J. Electroanal. Chem.251 (1988): 275-295.
    [56]G. S. Kumar, M. Raja, S. Parthasarathu, High performance electrodes with very low platinum loading for polymer electrolyte fuel cells, Electrochim. Acta,1995,40 (3) 285-290.
    [57]M.S. Wilson, S. Gottesfeld, High Performance Catalyzed Membranes of Ultra-Low Pt Loadings for Polymer Electrolyte Fuel Cells, J. Electrochem. Soc.,1992,139:L28-L30.
    [58]M.S. Wilson,, S. Gottesfeld, Thin-Film catalyst layers for polymer 188 electrolyte fuel cell electrodes, J. Appl. Electrochem.,1992,22:1-7.
    [59]T.E. Springer, M.S. Wilson.Modeling and Experimental Diagonotics in polymer Electrolyte Fuel Cells, J. Electrochem. Soc.,1993,140 (12):3513-3526.
    [60]张华民, 董明全, 邱艳玲,衣宝廉, 王晓丽, 王晓燕, 中国专利, 200410073803.6.
    [61]X. Zhang, P. Shi, Dual-bonded catalyst layer structure cathode for PEMFC, Electrochem. Commun.,2006,8:1229-1234.
    [62]X. Zhang, P. Shi, Nafion effect on dual- bonded structure cathode of PEMFC.Electrochem. Commun.,2006,8:1615-1620.
    [63]杨武斌,朱红,王明,张世超,纳米氧化物/Nafion复合膜的制备与性能表征,功能材料.2007,38(12):2077-2079,2083
    [64]林驭寒,李海东,刘桂华,薛彦虎,聂伟,姬相玲,Nafion/介孔二氧化硅复合质子交换膜的制备方法,中国专利,200810050985.3
    [65]沈培康,曾蓉,陈国庆,自保湿质子交换膜及其制备方法,中国专利,200510035005.9
    [66]刘永浩,衣宝廉,张华民,质子交换膜燃料电池用Nafion/SiO2复合膜,电源技术.2005,29(2):92-94,112
    [67]王诚,徐鹏,毛宗强,王利生,葛凯勇,徐景明,纳米TiO2复合膜的制备及在燃料电池中的应用,稀有金属材料与工程.2006,35(9):1432-1436。
    [68]徐双平,王洪波,周浩然,杜波,自组装法制备Nafion 117/蒙脱土复合膜,哈尔滨理工大学学报.2006,11(5):97-99,104
    [69]赵红,赵辉,霍丽华,任丹,高山,Nafion/TiO2复合膜的质子传导性能研究,无机化学学报.2006,22(1):106-110
    [70]余军,潘牧,袁润章,PEMFC 用Nafion 1135/SiO2复合膜的性能研究,电池.2005,35(2):83-84
    [71]刘富强,邢丹敏,于景荣,衣宝廉,张华民,质子交换膜燃料电池Nafion/PTFE复合膜的研究,电化学.2002,8(1):86-92
    [72]王晓恩,唐浩林,潘牧,李道喜,余军,Nafion/SiO2/PTFE复合膜的制备及性能,电池.2006,36(4):263-264
    [73]衣宝廉,刘永浩,张华民,一种碳纳米管增强的自增湿复合质子交换膜及其制备,中国专利,200610134078.8
    [74]杨金燕,王毅,方军,沈培康,磺化聚砜/Nafion复合膜的制备及其性能表征,中山大学学报:自然科学版.2007,46(5):10-13
    [75]Rhee, Chang Houn; Kim, Youngkwon; Lee, Jae Sung; Kim, Hae Kyung; Chang, Hyuk, Nanocomposite membranes of surface-sulfonated titanate and Nafion for direct methanol fuel cells, Journal of Power Sources,2006,159(2):1015-1024
    [76]Cho, Hyun Dong; Won, Jongok; Ha, Heung Yong; Kang, Yong Soo, afion composite membranes containing rod-shaped polyrotaxanes for direct methanol fuel cells, Macromolecular Research,2006,14(2):214-219
    [77]Liu, Zhaolin; Guo, Bing; Huang, Junchao; Hong, Liang; Han, Ming; Gan, Leong Ming; Nano-TiO2-coated polymer electrolyte membranes for direct methanol fuel cells, Journal of Power Sources,2006,157(1):207-211
    [78]Liang, Z. X.; Prabhuram, J.; iphenylsilicate-incorporated Nafion membranes for reduction of methanol crossover in direct methanol fuel cells, Journal of Membrane Science,2006,283(1-2): 219-224
    [79]Holmberg, Brett A.; Wang, Xin; Yan, Yushan; Nanocomposite fuel cell membranes based on Nafion and acid functionalized zeolite beta nanocrystals, Journal of Membrane Science,2008, 320(1-2):86-92
    [80]Kim, Tae Kyoung; Preparation of Nafion-sulfonated clay nanocomposite membrane for direct menthol fuel cells via a film coating process, Journal of Power Sources,2007,165(1):1-8
    [81]Baglio, V.; Arico, A. S.; Blasi, A. Di; Antonucci, V.; Antonucci, P. L.; Licoccia, S.; Traversa, E.; Fiory, F. Serraino; Nafion-TiO2 composite DMFC membranes:physico-chemical properties of the filler versus electrochemical performance, Electrochimica Acta,2005,50(5):1241-1246
    [82]Kim, Daejin; Scibioh, M. Aulice; Kwak, Soonjong; Oh, In-Hwan; Ha, Heung Yong; Nano-silica layered composite membranes prepared by PECVD for direct methanol fuel cells, Electrochemistry Communications,2004,6(10):1069-1074
    [83]Vladimir Neburchilov, Jonathan Martin, Haijiang Wang, Jiujun Zhang, A review of polymer electrolyte membranes for direct methanol fuel cells, Journal of Power Sources 169 (2007) 221-238
    [84]Bijay P. Tripathi, Vinod K. Shahi, Organic-inorganic nanocomposite polymer electrolyte membranes for fuel cell applications, Progress in Polymer Science (2011),In Press
    [85]V. Baglioa, A.S. Aric'o, A. Di Blasia, V. Antonucci, P.L. Antonucci,S. Licoccia, E. Traversa, F. Serraino Fiory, Nafion-TiO2 composite DMFC membranes:physico-chemical properties of the filler versus electrochemical performance, Electrochimica Acta 50 (2005) 1241-1246
    [86]H. Ahmad, S.K. Kamarudin, U.A. Hasran, W.R.W. Daud, Overview of hybrid membranes for direct-methanol fuel-cell applications, International Journal of Hydrogen Energy,2010,35(5): 2160-2175
    [87]赵敬,倪红军,谢裕智,黄明宁,直接甲醇燃料电池高阻醇质子交换膜的研究进展,化工新型材料,2008,36(11):8-9,48
    [88]靳豪,谢晓峰,尚玉明,冯少广,吕亚非,直接甲醇燃料电池用有机-无机杂化质子交换膜研究进展,化工进展,2007,26(4):507-512
    [89]方勇,苗睿瑛,王同涛,王新东,方世璧,直接甲醇燃料电池用聚合物质子交换膜的研究进展,高分子学报,2009,10:992-1006
    [90]刁含斌,赵杰,仇波,严锋,直接甲醇燃料电池质子交换膜研究进展,化学世界,2008,11:688-702
    [91]陈煜,唐亚文,刘长鹏,邢巍,陆天虹,直接甲醇燃料电池中质子交换膜的研究进展,物理化学学报,2005,21(4):458-462
    [92]李涛,钟贵明,杨勇,直接甲醇燃料电池用阻醇全氟磺酸复合质子交换膜,化学进展,2010,22(2/3):522-536
    [93]揭雪飞,沈培康,聚合物改性Nation膜的研究进展,电池,2009,39(4):222-225
    [94]索春光,赵晓光,刘晓为,DMFC用阻醇质子交换膜的研究进展,电池,2008,38(3):189-191
    [95]索春光,刘晓为,张宇峰,张博,张鹏,王路文,直接甲醇燃料电池膜电极的研究与进展,化学进展,2009,21(7/8):1662-1671
    [96]耿佃国,董美丽,直接甲醇燃料电池用质子交换膜研究进展,精细石油化工进展,2007,8(10):3843
    [97]张颖,尹玉姬,姚康德,直接甲醇燃料电池用阻醇质子交换膜研究进展,化工进展,2007,26(4):501-506
    [98]葛善海,衣宝廉等,质子交换膜燃料电池模型研究进展,电化学,2002,8(4),363-375
    [99]Kim J, Lee S M. Modeling of proton exchange membrane fuel cell performance with an empirical equation. J. Electrochem. Soc.,1995,142(8):2670-2674
    [100]Squadrito G, Maggio G, An empirical equation for polymer electrolyte fuel cell behavior. J. Appl. Electrochem.,1999,29(12):1449-1455
    [101]Amphlett J C, Baumert R M, Performance modeling of the Ballard Mark IV solid polymer electrolyte fuel cell I. Mechanistic model development. J. Electrochem. Soc.,1995,42(1):1-8; 9-16
    [102]Lee W Y, Park G G, Yang T H, et al. Empirical modeling of polymer electrolyte membrane fuel cell performance using artificial neural networks. Int. J. Hydrogen Energy,2004,29(9): 961-966
    [103]Ou S, Achenie LEK. A hybrid neural network model for PEM fuel cells J. Power Sources, 2005,140(2):319-330
    [104]沈承,曹广益,朱新坚.燃料电池基于改进遗传算法的多层前向神经网络控制.化工自动化及仪表,2001,28(2):8-12
    [105]卫东,曹广益,朱新坚.基于神经网络辨识的质子交换膜燃料电池建模.系统仿真学报,2003,15(6):817-819
    [106]Maher A.R. Sadiq Al-Baghdadi, et al. Parametric and optimization study of a PEM fuel cell performance using three-dimensional computational fluid dynamics model. Renewable Energy 32(2007)1077-1101
    [107]Bernardi D M. Water-balance calculations for solid-polymer-electrolyte fuel cells. J. Electrochem. Soc.,1990,137(11):3344-3350
    [108]Springer T E, Zawodzinski T A, et al. Polymer electrolyte fuel cell model J. Electrochem. Soc., 1991,138(8):2334-2342
    [109]Pasaogullari U, Wang CY. Liquid water transport in gas diffusion layer of polymer electrolyte fuel cells J. Electrochem Soc.,2004,151 (3):A399-A406
    [110]Fuller T F, Newman J. Water and thermal management in solid-polymer-electrolyte fuel cells. J. Electrochem. Soc.,1993,140(5):1218-1225
    [111]Yi J S, Nguyen TV. An along-the-channel model for proton exchange membrane fuel cells J. Electrochem Soc,1998,145(4):1149-1159
    [112]Gurau V, Liu H T, Kakac S. Two-dimensional model for proton exchange membrane fuel cells. AlChE J.,1998,44(11):2410-2422
    [113]Wang Z H, Wang C Y, et al. Two-phase flow and transport in the air cathode of proton exchange membrane fuel cells. J. Power Sources,2001,94(1):40-50
    [114]Dutta S, Shimpalee S, et al. Three-dimensional numerical simulation of straight channel PEM fuel cells J. Appl. Electrochem 2000,30(2):135-146
    [115]B.R. Sivertsen, N. Djilali. CFD-based modeling of proton exchange membrane fuel cells J. Power Sources 2005,141:65-78
    [116]Valeri A. Danilov, Jongkoo Lim, et al. Three-dimensional, two-phase, CFD model for the design of a direct methanol fuel cell J. Power Sources,2006,162:992-1002
    [117]Lee J H, Lalk T R. Modeling electrochemical performance in large scale proton exchange membrane fuel cell stacks. J. Power Sources,1998,70(2):258-268
    [118]Yuyao Shan, Song-Yul Choe. Modeling and simulation of a PEM fuel cell stack considering temperature effects. J. Power Sources,2006,158:274-286
    [119]Yuyao Shan, Song-Yul Choe, et al. Unsteady 2D PEM fuel cell modeling for a stack emphasizing thermal effects, J. Power Sources,2007,165:196-209
    [120]C. Graf a, A. Vath, Modeling of the heat transfer in a portable PEFC system within MATLAB-Simulink J. Power Sources,2006,155:52-59
    [121]N. Djilali, Computational modeling of polymer electrolyte membrane (PEM) fuel cells: Challenges and opportunities. Energy,2007,32:269-280
    [122]Lin Wang, Attila Husar, Tianhong Zhou, Hongtan Liu, A parametric study of PEM fuel cell performances, International Journal of Hydrogen Energy 28 (2003) 1263-1272
    [123]C.H. Min, Y.L. He, X.L. Liu, B.H. Yin, W. Jiang, W.Q. Tao, Parameter sensitivity examination and discussion of PEM, fuel cell simulation model validation Part II:Results of sensitivity analysis and validation of the model, Journal of Power Sources 160 (2006) 374-385
    [124]W.Q. Tao, C.H. Min, X.L. Liu, Y.L. He, B.H. Yin, W. Jiang, Parameter sensitivity examination and discussion of PEM fuel cell simulation model validation Part I. Current status of modeling research and model development, Journal of Power Sources 160 (2006) 359-373
    [125]Lixin You, Hongtan Liu, A parametric study of the cathode catalyst layer of PEM fuel cells using a pseudo-homogeneous model, International Journal of Hydrogen Energy 26 (2001) 991-999
    [126]L.R. Jordan, A.K. Shukla, T. Behrsing, N.R. Avery, B.C. Muddle, M. Forsyth, Diffusion layer parameters influencing optimal fuel cell performance, Journal of Power Sources 86, 2000.250-254
    [127]Wei-MonYana, Ching-Yi Hsueh, Chyi-Yeou Soong, Falin Chen, Chin-Hsiang Cheng, Sheng-Chin Mei, Effects of fabrication processes and material parameters of GDL on cell performance of PEM fuel cell, International Journal of Hydrogen Energy 32 (2007) 4452-4458
    [128]Jer-Huan Jang, Wei-Mon Yan, Chinh-Chang Shi, Effects of the gas diffusion-layer parameters on cell performance of PEM fuel cells, Journal of Power Sources 161 (2006) 323-332
    [129]A.J.-J. Kadjo a, P. Brault b, A. Caillard b, C. Coutanceau c, J.-P. Gamier a, S. Martemianov, Improvement of proton exchange membrane fuel cell electrical performance by optimization of operating parameters and electrodes preparation. Journal of Power Sources 172 (2007) 613-622
    [130]V I. MATRYONIN, A. T. OVCHINIKOV and A. P. TZEDILKIN, INVESTIGATION OF THE OPERATING PARAMETERS INFLUENCE ON H2·O2 ALKALINE FUEL CELL PERFORMANCE, International Journal of Hydrogen Energy 22 (1997) 1047-1052
    [131]Jarupuk Thepkaew, ApichaiTherdthianwong, SupapomTherdthianwong, Key parameters of active layers affecting proton exchange membrane (PEM) fuel cell performance, Energy 33 (2008) 1794-1800
    [132]Galip H. Guvelioglu, Harvey G. Stenger, Main and interaction effects of PEM fuel cell design parameters, Journal of Power Sources 156 (2006) 424-433
    [133]Hung-Hsiang Lin, Chin-Hsiang Cheng. Chyi-Yeou Soong, Falin Chen, Wei-Mon Yan, Optimization of key parameters in the proton exchange membrane fuel cell, Journal of Power Sources 162 (2006) 246-254
    [134]Maher A.R. Sadiq Al-Baghdadi, Haroun A.K. Shahad Al-Janabi, Parametric and optimization study of a PEM fuel cell, performance using three-dimensional computational fluid dynamics model, Renewable Energy 32 (2007) 1077-1101
    [135]C.Y. Du, G.P. Yin, X.Q. Cheng, P.F. Shi, Parametric study of a novel cathode catalyst layer in proton exchange membrane fuel cells. Journal of Power Sources 160 (2006) 224-231
    [136]Sleem-ur-Rahman, M.A. Al-Saleh, A.S. AL-Zakri, Parametric study of the preparation of gas-diffusion electrodes for alkaline fuel cells by a filtration method, Journal of Power Sources 72(1998)71-76
    [137]T. Berning, N. Djilali, Three-dimensional computational analysis of transport phenomena in a PEM fuel cell—a parametric study, Journal of Power Sources 124 (2003) 440-452
    [138]Kah Wai Lum, James Joseph McGuirk, Three-dimensional model of a complete polymer electrolyte membrane, fuel cell-model formulation, validation and parametric studies, Journal of Power Sources 143 (2005) 103-124
    [139]张高文,周震涛.磺化聚醚醚酮/蒙脱土复合型质子交换膜制备与性能[J].膜科学与技术,2006,26(4):6-9
    [140]张俊,周震涛.磺化聚醚醚酮/α-ZrP复合膜的制备、结构与性能[J].电源技术,2007,31(9):721-724
    [141]黄绵延,王宇新,蔡雨泉等.磺化聚醚醚酮/三羧基丁烷膦酸锆复合质子交换膜的研究[J].高分子学报,2007,4:337-342
    [142]靳豪,谢晓峰,尚玉明等.磺化聚醚醚酮(sPEEK)/SiO2杂化质子交换膜的制备与表征[J].清华大学学报(自然科学版),2007,47(12):2213-2215,2218
    [143]Lin C W, Fan K C, Thangamuthu R. Preparation and characterization of high selectivity organic-inorganic hybrid-laminated Nafion115 membranes for DMFC[J]. J. Membr. Sci.,2006, 278:437-446
    [144]Shen M, Roy S, Kuhlmann J W, et al. Grafted polymer electrolyte membrane for direct methanol fuel cells[J]. J. Membr. Sci.,2005,251:121-130
    [145]Fang J, Shen P K, Liu Q L. Low methanol permeable sulfonated poly(phthalazinone ether sulfone) membranes for DMFCs[J]. J. Membr. Sci.,2007,293:94-99
    [146]Gu S, He G H, Wu X M, et al. Synthesis and characteristics of sulfonated poly(phthalazinone ether sulfone ketone) (SPPESK) for direct methanol fuel cell (DMFC)[J]. J.Membr. Sci.,2006, 281:121-129
    [147]Su Y H, Liu Y L, Sun Y M, et al. Proton exchange membranes modified with sulfonated silica nanoparticles for direct methanol fuel cells[J]. J. Membr. Sci.,2007,296:21-28
    [148]王晓恩,唐浩林,潘牧等Nafion/SiO2/PTFE复合膜的制备及性能[J].电池,2006,36(4):263-264
    [149]Armstrong A R, Armstrong G, Canales J, et al. TiO2-B nanowires[J]. Angew. Chem. Int. Ed., 2004,43:286-288
    [150]B.Yang, Y.Z.Fu, A.Manthiram, Operation of thin Nafion(?)-based self-humidifying membranes in proton exchange membrane fuel cells with dry H2 and O2. J. Power Sources,2005; 139: 170-175.
    [151]S. Surampudi, S.R. Narayanan, E. Vamos, H. Frank. G. Halpert. Advances in direct oxidation methanol fuel cells. Journal of Power Sources,47(1994) 377-385.
    [152]S. R. Narayanan, A. Kindler, B. Jeffries-Nakamura, W. Chun, H. Frank, M. Smart, T.I. Valdez, S. Surampudi, G. Halpert, J. Kosek, C. Cropley, in Proceedings of 11th Annual Battery Conference on Applications and Advances, Long Beach, Calif., Jan.9-12, (1996) 113-122.
    [153]Jiabin Ge, Hongtan Liu, Experimental studies of a direct methanol fuel cell, Journal of Power Sources,142(2005) 56-69.
    [154]K. Ramya, K.S. Dhathathreyan, Direct methanol fuel cells:determination of fuel crossover in a polymer electrolyte membrane. Journal of Electroanalytical Chemistry,542(2003) 109-115.
    [155]J. Han, H. Liu, Real Time Measurements of Methanol Crossover in a DMFC, Journal of Power Sources,164(2007) 166-173.
    [156]P. Argyropoulos, K. Scott, W. M. Taama, Pressure drop modelling for liquid feed direct methanol fuel cells Part II. Model based parametric analysis, Chemical Engineering Journal, 73(1999)229-245.
    [157]Johan Ko, Purushothama Chippar, Hyunchul Ju, A one-dimensional, two-phase model for direct methanol fuel cells-Part I:Model development and parametric study, Energy,35(2010) 2149-2159.
    [158]R. Carter, R. Wycisk, H. Yoo, P. N. Pintauro, Blended polyphosphazene/Polyacrylonitrile Membranes for Direct Methanol fuel cell, Electrochemical and Solid-State Letters,5 (2002) A195-A197.
    [159]L. Li, J. Zhang, Y. Wang, Sulfonated poly(ether ether ketone) membranes for direct methanol fuel cell. Journal of Membrane Science,226(2003) 159-167.
    [160]N. Carretta, V. Tricoli, F. Picchioni, Ionomeric membranes based on partially partially sulfonated poly(styrene):synthesis, proton conduction and methanol permeation, Journal of Membrane Science,166(2000) 189-197.
    [161]P. Piela, R. Fields, P. Zelenay, Electrochemical Impedance Spectroscopy for Direct Methanol Fuel Cell Diagnostics. Electrochemical Society,153(2006)A1902-A1913.
    [162]S. Matar, H. Liu, Effect of cathode catalyst layer thickness on methanol cross-over in a DMFC, Electrochemica Acta,561(2010) 600-606.
    [163]Sang Hern Seo, Chang Sik Lee, A study on the overall efficiency of direct methanol fuel cell by methanol crossover current, Applied Energy,87 (2010):2597-2604
    [164]T. I. Valdez and S.R. Narayanan, Recent studies on methanol crossover in liquid-feed direct methanol fuel cell, Electrochemical Society, Proton Exchange Membrane Symposium Boston, MA, USA,1998
    [165]Adam Z. Weber, John Newman, Modeling Transport in Polymer-Electrolyte Fuel Cells, Chem. Rev.2004, (104):4679-4726.
    [166]Gurau V, Liu H T, Kakac S. Two-dimensional model for proton exchange membrane fuel cells. AIChE J.,1998,44(11):2410-2422
    [167]Chao-Yang Wang, Fundamental models for fuel cell engineering, Chem. Rev.2004, (104): 4727-4766.
    [168]Maher A.R. Sadiq Al-Baghdadi, et al. Parametric and optimization study of a PEM fuel cell performance using three-dimensional computational fluid dynamics model. Renewable Energy 32(2007)1077-1101
    [169]刘志祥,王诚,毛宗强等,质子交换膜燃料电池空气流场的优化设计,清华大学学报(自然科学版),2006,46(12):2081-2085
    [170]胡桂林,刘永江,樊建人等,质子交换膜燃料电池内传递现象的数值模拟,工程热物理学报,2004,25(5):828-830
    [171]涂海涛,孙文策,解茂昭等,质子交换膜燃料电池内部传热传质三维模拟,太阳能学报,2007,4:368-374
    [172]Xun Zhu, P.C. Sui, Ned Djilali, Dynamic behaviour of liquid water emerging from a GDL pore into a PEMFC gas flow channel, J. Power Sources.2007,172:287-295.
    [173]Luis Matamoros, Dieter Bruggemann, Numerical study on PEMFC's geometrical parameters under different humidifying conditions, J. Power Sources,2007,172:253-264
    [174]Wenpeng Liu, Chao-Yang Wang, Three-Dimensional Simulations of Liquid Feed Direct Methanol Fuel Cells, Journal of The Electrochemical Society,2007,154:B352-B361
    [175]Jiabin Ge, Hongtan Liu, A three-dimensional two-phase flow model for a liquid-fed direct methanol fuel cell, Journal of Power Sources 163 (2007) 907-915
    [176]Springer T.E., Zawodzinski T.A., Gottesfeld S., Polymer electrolyte fuel cell model, J.Electrochem. Soc.1991,138(8):2334-2342
    [177]Scott K., Argyropoulos P., Sundmacher K.., A model for the liquid feed direct methanol fuel cell, Journal of Electroanalytical Chemicsity,1999,477:97-110
    [178]Gao X P, Zhu H Y, Pan G L, et al. Preparation and electrochemical characterization of anatase nanorods for lithium inserting electrode materials. J Phys Chem B,2004,108:2868-2872
    [179]A K Sahu, S Pitchumani, P Sridhar, A K Shukla, Nafion and modified-Nafion membranes for polymer electrolyte fuel cells:An over view. Bull. Mater. Sci., Vol.32, No.3, June 2009, pp285-294
    [180]孙琨,基于膜改性的新型质子交换膜的制备与表征,北京交通大学硕士学位论文,2009
    [181]Yongsheng Wei, Liangbo Shen, Zhongming Wang etc., A Novel Membrane for DMFC-Na2Ti3C>7 Nanotubes/Nafion(?) Composite Membrane, International Journal of Hydrogen Energy,2011,36(8): 5088-5095
    [182]Zhongqing Jiang, Zhong-jie Jiang, Yuedong Meng, Optimization and synthesis of plasma polymerized proton exchange membranes for direct methanol fuel cells, Journal of Membrane Science, Volume 372. Issues 1-2.15 April 2011, Pages 303-313

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700