TiO2、SnO2纳米材料的水热制备与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用水热法合成了锐钛矿相TiO_2纳米棒状晶体、大尺度微米级SnO_2晶体及Sn掺杂的TiO_2纳米材料。
     以TiCl3为前驱物,180℃恒温保持24h,合成了纯金红石相纳米TiO_2棒状晶体。添加NaCl作矿化剂,反应产物仍是纯金红石相。添加KF为矿化剂,浓度大于0.2mol/L时,生成物转化为纯锐钛矿相纳米TiO_2。
     以TiCl3为前驱物,并在前驱物中添加一定的钛酸钠纳米管,填充度为68%,150℃恒温保持24h,生成物为锐钛矿TiO_2纳米晶体,晶体形貌为块状,当添加经400℃烧结过的钛酸纳米管时,合成了棒状锐钛矿晶体,晶体直径约为10nm,长度为30-100nm,最大长径比约为5:1。
     以SnCl4·5H2O和ZnO作前驱物,KOH作矿化剂,首先升温到180℃,反应12小时,合成了ZnSnO3,然后提高温度到430℃,反应24小时,利用ZnSnO3在高温分解时提供的溶质条件,实现了晶体的再生长,合成了微米级的SnO_2棒状晶体,晶体的直径可达150-200nm,长度为3-5μm。
     利用TiCl3与SnCl4·5H2O混合进行水热反应,合成了掺杂Sn的金红石相TiO_2纳米晶体,其中Ti3+,Sn4+离子比为1:1时,生成的晶体长度为80-200nm。根据X荧光能谱(EDS)测量,发现生成物中Sn成分很低,掺杂浓度仅为2.81at%,说明Sn在TiO_2晶体中固溶度很低。
In this work, the anatase TiO_2 nanorods, the large-scale micronsized SnO_2 crystals and Sn doped TiO_2 nanomaterials were synthesized by the hydrothermal method.
     The pure rutile TiO_2 nanorods are prepared using TiCl3 as the predecessor at 180℃for 24h, and the nanocrystals are still rutile through the addition NaCl solution as the mineralizer, but the TiO_2 nanomaterials turn into pure anatase while the concentration of KF solution is higher than 0.2mol/L as the mineralizer.
     The anatase TiO_2 nanocrystals are synthesized at 150℃for 24h with the TiCl3 and titanate sodium nanotubes as the predecessor at the filling factor of 68%, the morphology of crystal is bulk; When the titanate sodium nanotubes sintered at 400℃as precursor are added, the anatase TiO_2 nanorods are synthesized with the diameter of 10 nm, the length ranged from 30nm to 100nm, and the length-radins proportion of 5:1.
     The ZnSnO3 is prepared at 180℃for 12h with SnCl4·5H2O as the precursor, and KOH as the mineralizer, when the ZnO is added. Then the SnO_2 crystals with the diameter of 150-200nm and the length of 3μm-5μm are synthesized at 430℃for 24h based on the solute condition of the decomposition of the ZnSnO3 under high temperature.
     The Sn doped rutile TiO_2 nanocrystals are synthesized based on the hydrothermal reaction with the TiCl3 and SnCl4·5H2O as the precursor, which the crystals with the length of 80nm to 200nm. The Sn content of the crystal is low and the most doped content of Sn is 2.81at% by the measurement of the EDS equipment. The result shows that the Sn was limited solid solubilities in TiO_2 crystal.
引文
[1]高丽丽,刘力.纳米材料的研究.化工科技, 2006, 14(1):62~65.
    [2]胡安正.纳米科技与纳米材料的应用研究.郧阳师范高等专科学校学报,2005,25(6):39~43.
    [3]卢柯.纳米晶体材料的研究进展.中国科学基金,1994(4):245~251.
    [4]张志琨,崔作林.纳米技术与纳米材料[M].北京:国防工业出版社, 2002:2202224.
    [5] Yang H M, Liao P H. Preparation and activity of Cu/ZnO-CNTs nano-catalyst on steam reforming of methanol.Applied Catalysis A: General, 2007, 317(2): 226~233.
    [6] Du Y, Chen H L, Chen R Z, et al. Poisoning effect of some nitrogen compounds on nano-sized nickel catalysts in p-nitrophenol hydrogenation. Chemical Engineering Journal, 2006, 125(1) :9~14.
    [7] Souza M O, Rodrigues L R, Pastore H O, et al. A nano-organized ethylene oligomerization catalyst: Characterization and reactivity of the Ni(MeCN)6(BF4)2/[Al]-MCM-41/AlEt3 system. Microporous and Mesoporous Materials, 2006, 96 (1-3) : 109~114.
    [8] Lu S G, Yu Y J, Mak C L, et al. Nonlinear optical properties in CdS/silica nanocomposites. Microelectronic Engineering, 2003, 66 (1-4) : 171~179.
    [9] Sáfrán G, Suzuki T, Ouchi K, et al. Nano-structure formation of Fe–Pt perpendicular magnetic recording media co-deposited with MgO, Al2O3 and SiO2 additives. Thin Solid Films, 2006, 496(2): 580~584.
    [10] Senevirathna M K I, Pitigala P K D D P, Premalal E V A, et al. Stability of the SnO2/MgO dye-sensitized photoelectrochemical solar cell. Solar Energy Materials and Solar Cells, 2006, In Press.
    [11] Pan K, Zhang Q L, Wang Q, et al. The photoelectrochemical properties of dye-sensitized solar cells made with TiO2 nanoribbons and nanorods. Thin Solid Films, 2006, In Press.
    [12] Chang L, Zhang Z, Breidt C, et al. Tribological properties of epoxy nanocomposites: I. Enhancement of the wear resistance by nano-TiO2 particles. Wear, 2005, 258(1-4): 141~148.
    [13] Keis K, Bauer C, Boschloo G, et al. Nanostructured ZnO electrodes for dye-sensitized solar cell applications [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 148 (1-3) : 57~64.
    [14] Jeong W J, Kim S K, Park G. C. Preparation and characteristic of ZnO thin film with high and low resistivity for an application of solar cell [J]. Thin Solid Films, 2005, In Press.
    [15] Sahu D R, Lin Shin-Yuan, Huang Jow-Lay. ZnO/Ag/ZnO multilayer films for the application of a very low resistance transparent electrode [J]. Applied Surface Science, 2005, In Press.
    [16] Han C H, Han S D, Singh, et al. Micro-bead of nano-crystalline F-doped SnO2 as a sensitive hydrogen gas sensor. Sensors and Actuators B: Chemical, 2005, 109 (2): 264~269.
    [17] Park K B, Han S D, Kim I J, et al. Sensitivity enhancement for H2 gas detection using a SnO2–Ag2O–PdOx nanocrystalline system. Materials Science and Engineering: B, 2006, 130(1-3): 158~162.
    [18]唐一科,刁宇翔.纳米气敏材料的研究与发展趋势.油气田环境保护,2004,(2):12~18.
    [19] Majumdar B, Bysak S, Akhtar D. Nanocrystallization of soft magnetic Fe(Co)–Zr–B–Cu alloys. Journal of Magnetism and Magnetic Materials, 2007, 309(2): 300~306.
    [20] Ramanujan RV, Du S W. Nanocrystalline structures obtained by the crystallization of an amorphous Fe40Ni38B18Mo4 soft magnetic alloy [J]. Journal of Alloys and Compounds, 2006, 425(1-2):251-260.
    [21]白春礼.纳米科技发展趋势分析[J].纳米科技,2005, (5):3~5.
    [22] Hideyuki Kamisaka, Takahisa Adachi, Koichi Yamashita. Theoretical study of the structure and optical properties of carbon-doped rutile and anatase titanium oxides[J].Chem.Phys,2005,123:84704.
    [23] Linda.Zou, Yuncang.Li,Eric. Hu.Photocatalytic Decolorization of Lanasol Blue CE Dye Solution Using a Flat-Plate Reactor.[J].Envir. Engrg, 2005,131:102.
    [24] Kenta Yoshida, Jun Yamasaki, Nobuo Tanaka.situ high-resolution transmission electron microscopy observation of photodecomposition process of poly-hydrocarbons on catalytic TiO2 films[J].Appl.Phys. Lett.2004, 84:2542.
    [25]张立德.我国纳米材料技术应用的现状和产业化机遇,纳米材料和技术应用进展.全国第二届纳米材料和技术应用会议论文集,北京, 2001,14~23.
    [26]曾乐才,廖文俊,魏静.纳米技术国内外研究概况与在装备业中的应用前景.新材料产业, 2005,(5):58~62.
    [27] Matt Law, Lori E.Greene, Justin C. Johnson, Richard S.and P. D. Yang. Nanowire dye-sensitized solar cells.nature,2005,4:455~459.
    [28] Meng Ni, Michael K.H. Leung, Dennis Y.C. Leung, K. Sumathy. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renewable and Sustainable Energy Reviews,2007,(11):401~425.
    [29] Ji-Jun Zou, Hei He, Lan Cui and Hai-Yan Du. Highly efficient Pt/TiO2 photocatalyst for hydrogen generation prepared by a cold plasma method international Journal of Hydrogen Energy,Anders Hagfeldt and Michael Gratzel. Molecular Photovoltaics. Acc. Chem. Res. 2000, 33, 269~277.
    [30]王桂强,傅忠君.染料敏化纳晶TiO2太阳能电池[J].染色与染料; 2005,5(42):1~5.
    [31] B.R.Sankapal, M.Ch.Lux-Steiner, A.Ennaou.Synthesis and characterization of anatase-TiO2 thin films. Applied Surface Science, 2005 (239):165~170.
    [32] Hyeok Choi, Elias Stathatos and Dionysios D.Dionysiou.Photocatalytic TiO2 films and membranes for the development of efficient wastewater treatment and reuse systems.Desalination,2007 (202): 199~206.
    [33] Yan Hu and Chunwei Yuan.Low-temperature preparation of photocatalytic TiO2 thin films from anatase sols.Journal of Crystal Growth,2005 (274):563~568.
    [34] W.H.Brattain and J.Bardeen.Surface Properties of Germanium[J]. BelllSyst.Tech. J., 1953: 32:1.
    [35] G.Heiland, D.Kohl. Physical and chemical aspects of oxide semiconductor gas sensor. int. Seiyama(ed)[J].Chemical sensor Technology, 1988, 1:15~38.
    [36] V. Lantto, P.Romppainen, S. Leppavuori. Response studies of some semiconductor gas sensors under different experimental conditions [J].Sensors and Actuators, 1988. 5: 347~357.
    [37] T.Maekawa, J.Tamaki, N. Miura et al. Improvement of copper oxide–tin oxide sensor for dilute hydrogen sulphide[J]. J. Mater. Chem,1994, 4:1259.
    [38] K. Ihokura,J. Watson .The Stannic Oxide Gas Sensor [M]. CRC Press, Boca Raton , 1994.
    [39] V.Lantto, J. Mizsei. H2S monitoring as an air pollutant with silve–doped SnO2 thin film sensors [J]. Sens. Actuators, 1991, B5: 21.
    [40] K.D.Schierbaum,U.Weimar, W. Gopel. Comparison of ceramics, thick and thin film chemicalsensors based upon SnO2 [J] .Sens.Actuators, 1992, B7:709~716.
    [41] G. G. Mandayo, E. Castano, F. J. Gracia, et al. Strategies to enhancethe carbon monoxide sensitivity of tin oxide thin film [J]. Sens. Actuators, 2003, B95: 90~96.
    [42] zhenjun wang, wendong wang and jinke tang. Extraordinary Hall effect and ferromagnetism in Fe-doped reduced rutile. Appl.Phys.Lett, 2003. 21(83):83518~520.
    [43] Di Wu,Yan feng Chen,Ji Liu, Xiaoning Zhao,Aidong Li,and Naiben Ming. Co-doped titanate nanotubes.Appl.Phy.Lett.2005,(87):112501~3.
    [44] L.R.Sheppard, T.Bak, J.Nowotny, M.K.Nowotny.Titanium dioxide for solar-hydrogen.v.metallic-type conduction of Nb-doped TiO2.International Journal of Hydrogen Energy, 2006.
    [45]黄雪锋,唐玉朝,黄显怀,桂和荣.铁改性TiO2光催化性能研究进展.合肥工业大学学报(自然科学版),2006,29(9):1124~1128.
    [46]黄冬根,廖世军,党志.氟掺杂锐钛矿型TiO2溶胶的制备、表征及催化性能.化学学报,2006,64(17):1805~1811.
    [47]李艳红,曹文斌,韦林,冉凡勇,张小宁.氮掺杂纳米TiO2粉体的制备研究.无机材料学报, 2006,21(5):1067~1072.
    [48]施尔畏,陈之战,等,水热结晶学.科学出版社,2004,(9):37.
    [49]韦志仁,葛世艳,窦军红,等. LiOH矿化剂对水热合成ZnO晶体形貌的影响.人工晶体学报, 2005,34(1):112~115.
    [50]付三玲,蔡淑珍,张晓军,王伟伟,韦志仁.水热法制备ZnO晶体及纳米材料研究进展.人工晶体学报,2006,35(5):1016~1020.
    [51]郑燕青,施尔畏,李汶军,等.水热条件下二氧化钛同质变体的形成[J].中国科学(E), 2001, 31(3): 204~212.
    [52]郑燕青,施尔畏,元如林,等.二氧化钛晶粒的水热制备及其形成机理研究[J].中国科学(E), 1999, 29(3):206~213.
    [53] Jiang Benpeng, Yin Hengbo, Jiang Tingshun, et al. Hydrothermal synthesis of rutile TiO2 nanoparticles using hydroxyland carboxyl group-containing organics as modifiers [J]. Materials Chemistry and Physics, 2006, 98: 231~235.
    [54] Choa Churl Hee, Han Moon Hee, Kim Do Hyeong,et al. Morphology evolution of anatase TiO2 nanocrystals under a hydrothermal condition (pH = 9.5) and their ultra-highphoto-catalytic activity [J]. Materials Chemistry and Physics, 2005, 92: 104~111.
    [55] Nag M, Basak P, et al. Low-temperature hydrothermal synthesis of phase-pure rutile titaniananocrystals: Time temperature tuning of morphology and photocatalytic activity [J]. Mater. Res. Bull., 2007, doi: 10.1016 [J]. materresbull. 2006.11.03.
    [56] Yang Juan, Mei Sen, Ferrei JoséM.F, et al. Fabrication of rutile rod-like particle by hydrothermal method:an insight into HNO3 peptization [J]. Journal of Colloid and Interface Science, 2005, 283: 102~106.
    [57] Pavasupree S, Ngamsinlapasathian S, Suzuki Y, et al. Preparation and characterization of high surface area nanosheet titania with mesoporous structure [J]. Mater . Lett. 2006, doi: 10.1016/[J]. matlet. 2006.10.056.
    [58] Han Yi, Li Guicun, Zhang Zhikun, et al. Synthesis and optical properties of rutile TiO2 microspheres composed of radially aligned nanorods [J]. Journal of Crystal Growth, 2006, 295: 50~53.
    [59] Keita Kakiuchia, Eiji Hosonob, Hiroaki Imaia, et al. {1 1 1}-faceting of low-temperature processed rutile TiO2 rods [J]. Journal of Crystal Growth, 2006, 293: 541~545.
    [60] Eiji Hosono, Shinobu Fujihara, Keita Kakiuchi, et al. Growth of Submicrometer-Scale Rectangular Parallelepiped Rutile TiO2 Films in Aqueous TiCl3 Solutions under Hydrothermal Conditions [J]. AM. CHEM. SOC., 2004, 126: 7790~7791.
    [61] Keita Kakiuchia, Eiji Hosonob, Hiroaki Imaia, et al. {1 1 1}-faceting of low-temperature processed rutile TiO2 rods. Journal of Crystal Growth, 2006 (293):541~545.
    [62] Benpeng Jiang, Hengbo Yin, Tingshun Jiang, et al. Hydrothermal synthesis of rutile TiO2 nanoparticles using hydroxyland carboxyl group-containing organics as modifiers.Materials Chemistry and Physics ,2006,(98): 231~235.
    [63] Jun-Nan Nian and Hsisheng Teng.Hydrothermal Synthesis of Single-Crystalline Anatase TiO2 Nanorods with Nanotubes as the Precursor. J.Phys.Chem. B, 2006,110:4193~4198.
    [64] Huogen Yu, Jiaguo Yu, Bei Cheng, Minghua Zhou.Effects of hydrothermal post-treatment on microstructures and morphology of titanate nanoribbons. Journal of Solid State Chemistry.2006 (179) 349~354.
    [65] Jae-Pyoung Ahn, Jung-Han Kim, Jong-Ku Park, Moo-Young Huh,Microstructure and gas-sensing properties of thick film sensor using nanophase SnO2 powder. Sensors and Actuators B,2004 (99): 18~24.
    [66] Yi Hu, S.H.Hou,Preparation and characterization of Sb-doped SnO2 thin films from colloidal precursors. Materials Chemistry and Physics, 2004 (86):21~25.
    [67] Hongyan Miao,Changsheng Ding,Hongjie Luo.Antimony-doped tin dioxide nanometer powders prepared by the hydrothermal method. Microelectronic Engineering, 2003 (66):142~146.
    [68] Haiying Jin, Yaohua Xu, Guangsheng Pang, et al. Al-doped SnO2 nanocrystals from hydrothermal systems. Materials Chemistry and Physics, 2004, (85): 58~62.
    [69] Sanju Rani, Somnath C.Roy, M.C.Bhatnagar. Effect of Fe doping on the gas sensing properties of nano-crystalline SnO2 thin films.Sensors and Actuators B, 2006 (xxx):xxx-xxx.
    [70] Gil Vilaca, Bernard Jousseaume, Cedrick Mahieux, et al. Tin Dioxide Materials Chemically Modified with Trialkynylorganotins: Functional Nanohybrids for Photovoltaic.Applications. Adv. Mater., 2006, (18):1073~1077.
    [71] Duan J, Yang S, Liu H, et al. Single crystal SnO2 zigzag nanobelts[J]. J Am Chem Soc, 2005,127(17): 6180~6181.
    [72] Liu Y, Liu M. Growth of aligned square-shaped SnO [J]. Chem Mater, 2005,17 (15):3997~4000.
    [73] Pang G, Chen S, Koltyp in Y, et al. Controlling the particle size of calcined SnO2 nanocrystals [J]. Nano Letters, 2001, 1 (12) :723~726.
    [74] Xue X Y, Chen Y J, Wang Y G. Synthesis and ethanol sensing properties of ZnSnO3 nanowires[J]. Appl. Phys. Lett., 2005, 86: 233101.
    [75] Rong A, Gao X P, Li G R, et al. Hydrothermal Synthesis of Zn2SnO4 as Anode Materials for Li-Ion Battery. ChemInform, 2006,37 (44):
    [76] Zhu Hongliang, Yang Deren, Yu Guixia, et al. Hydrothermal Synthesis of Zn2SnO4 Nanorods in the Diameter Regime of Sub-5nm and Their Properties[J]. ChemInform, 2006,37(30):
    [77]刘兆阅.染料敏化复合氧化物纳米晶电极的光电化学性质研究.吉林大学博士学位论文, 2005.6.
    [78]霍华.纳米氧化物的制备及性质研究.吉林大学硕士学位论文, 2004.5:43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700