熔融盐法制备钛酸钡和钛酸镁的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛酸钡是典型的铁电、压电、介电陶瓷材料,广泛应用于陶瓷电容器、热敏元件、铁电、压电器件,被称为电子陶瓷工业的支柱。钛酸镁是重要的微波介质陶瓷材料,具有介电损耗低、介电常数低等特点,在现代通信领域具有广阔的应用前景。因此,钛酸钡和钛酸镁的制备及应用成为当今研究的热点。本论文通过熔融盐法分别制备钛酸钡和钛酸镁,系统考察了各种因素对制备钛酸钡和钛酸镁的影响。
     本论文分别采用熔融盐法和改进的熔融盐法制备钛酸钡纳米颗粒及钛酸钡亚微米棒。采用X-射线衍射仪(XRD)、傅里叶变换红外光谱仪(FTIR)、扫描电子显微镜(SEM)等测试手段对样品进行表征。结果表明,当采用熔融盐法制备钛酸钡时,得到的钛酸钡为纳米颗粒,平均粒径约为50nm,钡钛比为1.018。当采用改进的熔融盐法制备钛酸钡时,成功地制备出钛酸钡亚微米棒,棒的直径在200nm左右,长达几微米;以溶胶-凝胶法制备的Ba-Ti前驱体,使钡源和钛源达到原子水平混合,有利于钛酸钡亚微米棒在熔盐中的形成。最后根据实验现象和测试结果,讨论了钛酸钡纳米颗粒以及钛酸钡亚微米棒在熔盐中的形成过程。
     在论文的最后一章,采用熔融盐法制备钛酸镁,分别采用XRD、SEM以及透射电镜(TEM)对样品进行表征。结果表明,以MgCl2·6H2O为镁源,可以成功制备出平均尺寸约为300nm、厚度40nm左右的钛酸镁六方片,并探讨了片状钛酸镁的形成机理。
Barium titanate is a typical ferroelectric, piezoelectric, and dielectric material, which is widely applied in ceramic capacitor, thermistor, ferroelectric and piezoelectric devices. It is called as "Backbone of Electronic Ceramic Industry". Magnesium titanate, possessing low dielectric loss and constant, is an important microwave dielectric ceramic material. It has a broad application prospect in modern communication field. Therefore, many researches are focused on preparation, application of barium titanate and magnesium titanate. In this paper, barium titanate and magnesium titanate were prepared by molten salt method, and the influence of various factors on the preparation was investigated.
     In the current work, barium titanate nanoparticle and submicro-rod were prepared by molten salt method and modified molten salt method, respectively. The as-prepared samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectrometry (FTIR), Scanned electron microscope (SEM) and so on. The results indicate that using molten salt method, the as-prepared barium titanate is nanoparticle which is about50nm in diameter, the ratio of Ba and Ti is1.018. Barium titanate submicro-rod is successfully synthesized by modified molten salt method. The average diameter of the rod is around200nm, and the length is up to several micrometers. Ba-Ti precursor prepared by sol-gel, is mixed at an atomic level, which is favorable for the formation of barium titanate submicro-rod in the molten salt. Finally, according to the experimental phenomena and test results, the formation processes of barium titanate nanoparticle and submicro-rod in the molten salt are discussed.
     In the last chapter, magnesium titanate was prepared by molten salt method. The samples were analyzed by XRD, SEM, and Transmission electron microscope (TEM), respectively. The results show that using MgCl2·6H2O as Mg source, magnesium titanate hexagonal flake is synthesized, which is about300nm in diameter, around40nm in thickness. The mechanism for flake-like magnesium titanate is proposed.
引文
[1]Deng H, Qiu Y C, Yang S H. General surfactant-free synthesis of MTiO3 (M=Ba, Sr, Pb) perovskite nanotrips [J]. Journal of Materials Chemistry,2009,19:976-982.
    [2]R(?)rvik P M, Lyngdal T, S(?)terli R, et al. Influence of volatile chlorides on the molten salt synthesis of ternary oxide nanorods and nanoparticles [J]. Inorganic Chemistry, 2008,47:3173-3181.
    [3]Mao Y B, Banerjee S, Wong S S. Large-scale synthesis of single-crystalline perovskite nanostructures [J]. Journal of the American Chemical Society,2003,125:15718-15719.
    [4]Wang T X, Liu S Z, Chen J. Molten salt synthesis of SrTiO3 nanocrystals using nanocrystalline TiO2 as a precursor [J]. Powder Technology,2011,205:289-291.
    [5]王海华.二氧化钛纳米粒的制备及其性能[D].长沙:中南大学化学化工学院,2009.
    [6]Goto T, Toyoura K, Tsujimura H, et al. Formation and control of zinc nitride in a molten LiCl-KCl-Li3N system [J]. Materials Science and Engineering A,2004,380:41-45.
    [7]Jiang Z Y, Xu T, Xie Z X, et al. Molten Salt Route toward the growth of ZnO nanowires in unusual growth directions [J]. Journal of Physical Chemistry B,2005,109: 23269-23273.
    [8]Xu T, Zhou X, Jiang Z Y, et al. Syntheses of nano/submicrostrucutred metal oxides with all polar surface exposed via a molten salt route [J]. Crystal Growth & Design,2009, 9:192-196.
    [9]朱建华,梁飞,汪小红等.微波介质陶瓷材料介电性能间的制约关系[J].电子元件与材料,2005,24(3):32-35.
    [10]杨红星.中温烧结钛酸钡基X8R陶瓷研究[D].天津:天津大学电子信息工程学院,2009.
    [11]Yun W S, Urban J J, Gu Q, et al. Ferroelectric properties of individual barium titanate nanowires investigated by scanned probe microscopy [J]. Nano Letters,2002,2: 447-450.
    [12]Qiu J H, Ding J N, Yuan N Y, et al. Phase diagram and ferroelectric behaviors of BaTiO3 Nanowires [J]. Journal of Applied Physics,2011,109:054103.
    [13]Rath M K, Pradhan G K, Verma H C, et al. Synthesis, characterization and dielectric properties of europium-doped barium titante nanopowders [J]. Materials Letters,2008, 62:2136-2139.
    [14]Du XH, Wang Q M, Belegundu U, et al. Crystal orientation dependence of piezoelectric properties of single crystal barium titante [J]. Materials Letters,1999,40:109-113.
    [15]Kishi H, Mizuno Y, Chazono H. Base-metal electrode-multilayer ceramic capacitors:Past, Present and Future perspective [J]. Japanese Journal of Applied Physics,2003,42: 1-15.
    [16]Scott J F. Applications of modern ferroelctrics [J]. Science,2007,315:954-959.
    [17]Yuk J, Troczynski T. Sol-gel BaTiO3 thin film for humidity sensors [J]. Sensors and Actuators B,2003,94:290-293.
    [18]Wang L J, He Y, Hu J H, et al. DC humidity sensing properties of BaTiO3 nanof iber sensors with different electrode materials [J]. Sensors and Actuators B,2011,153:460-464.
    [19]Bernard J, Houivet D, Fallah J E, et al. MgTiO3 for Cu base metal multilayer ceramic capacitors [J]. Journal of the European Ceramic Society,2004,24:1877-1881.
    [20]Bernard J, Belnou F, Houivet D, et al. Low sintering temperature of MgTiO3 for type I capacitors [J]. Journal of the European Ceramic Society,2005,25:2779-2783.
    [21]Florent B, Jerome B, David H, et al. Low temperature sintering of MgTiO3 with bismuth oxide based additions [J]. Journal of the European Ceramic Society,2005,25:2785-2789.
    [22]王记江,崔斌,田靓等.不同Ti/Ba比钛酸钡纳米粉体及其陶瓷的制备和介电性能研究[J].化学研究与应用,2006,18(11):1262-1265.
    [23]杨芙丽,崔一强,陈洪利等.溶胶-凝胶法制备钛酸钡薄膜过程中溶剂的选择[J].河北化工,2010,33(2):27-29.
    [24]刘兵,张兴堂,王洪哲等.溶胶-凝胶模板法制备钛酸钡纳米管[J].化学学报,2005,63(21):2013-2016.
    [25]Miao Y M, Zhang Q L, Yang H, et al. Low-temperature synthesis of nano-crystalline magnesium titanate materials by the sol-gel method [J]. Materials Science and Engineering B,2006,128:103-106.
    [26]Kang H M, Wang L Q, Xue D F, et al. Synthesis of tetragonal flake-like magnesium titanate nanocrystallites [J]. Journal of Alloys and Compounds,2008,460:160-163.
    [27]Li D D, Wang L Q, Xue D F. Stearic acid gel derived MgTiO3 nanoparticles:a low temperature intermediate phase of Mg2TiO4 [J]. Journal of Alloys and Compounds,2010, 492:564-569.
    [28]Wang L Q, Liu L, Xue D F, et al. Wet routes of high purity BaTiO3 nanopowders [J]. Journal of Alloys and Compounds,2007,440:78-83.
    [29]Xing X R, Deng J X, Chen J, et al. Phase evolution of barium titanate from alkoxide gel-derived precursor [J]. Journal of Alloys and Compounds,2004,384:312-317.
    [30]何英,王平,杨庚蔚等.水热法制备掺杂镝BaTiO3粉体及介电性能的研究[J].材料开发与应用,2007,22(4):34-37.
    [31]徐华蕊,高濂,郭景坤.水热合成高纯四方相钛酸钡纳米粉末研究[J].功能材料,2001,32(5):558-560.
    [32]付乌有,哈日巴拉.微波-水热制备钛酸钡纳米晶[J].内蒙古民族大学学报(自然科学版),2005,20(1):43-46.
    [33]冯秀丽,王庆印,杨争等.常压水热法制备纳米钛酸钡粉体的分散性研究[J].材料导报,2006,20(专辑Ⅶ):167-169.
    [34]Wu Z Y, Kumagai N, Yoshimura M. Hydrothermal formation and growth of single-and double-ldyer BaTiO3 and SrTiO3 films on the flexible polymer film substrates from sol-gel amorphous titanium oxide films [J]. Chemistry of materials,2000,12: 3356-3361.
    [35]Joshi U A, Yoon S, Baik S, et al. Surfactant-free hydrothermal synthesis of highly tetragonal barium titante nanowires:a structural investigation [J]. Journal of Physical Chemistry B,2006,110:12249-12256.
    [36]Joshi U A, Lee J S. Template-free hydrothermal synthesis of single-crystalline barium titante and strontium titanate nanowires [J]. Small,2005,1:1172-1176.
    [37]Testino A, Buscaglia V, Buscaglia M T, et al. Kinetic modeling of aqueous and hydrothermal synthesis of barium titanate (BaTiO3) [J]. Chemistry of materials,2005, 17:5346-5356.
    [38]武淑艳,王静,李金良等.化学共沉淀法制备BaTiO3陶瓷粉体及煅烧温度对粉体形貌的影响[J].佳木斯大学学报(自然科学版),2004,22(5):368-370.
    [39]安富强,郭瑞,高保娇.化学共沉淀法制备纳米钛酸钡的研究[J].中北大学学报(自然科学版),2006,27(3):244-248.
    [40]温传庚,王开明,周英彦等.特殊液相沉淀法制备镁的钛酸盐[J].鞍山科技大学学报,2005,28(34):161-163.
    [41]李霞,李振文.钛酸钡纳米粉体的共沉淀法合成与研究[J].压电与声光,2009,31(4):528-530.
    [42]吴东辉,施新宇,张海军.草酸盐共沉淀法制备钛酸钡粉体研究[J].压电与声光,2009,31(2):251-253.
    [43]徐静,朱秀慧,王开明等.纳米ZnTiO3粉体的制备[J].鞍山科技大学学报,2007,30(5):453-455.
    [44]郭光美,丁士文.均匀沉淀法合成纳米钛酸锌及其形态结构分析[J].无机盐工业,2006,38(6):36-38.
    [45]曾东,刘晓林,陈建峰等.沉淀法制备纳米钛酸锌粉体的研究[J].北京化工大学学报,2005,32(5):39-42.
    [46]杨芙丽.钛酸钡系薄膜的制备及表征[D].石家庄:河北师范大学化学与材料科学学院,2004.
    [47]顾大明,刘志刚,孔德艳等.功能材料制备实验[M].哈尔滨:哈尔滨工业大学出版社,2011.
    [48]赵艳敏,王越,王公应.纳米钛酸钡的水热合成进展[J].合成化学,2003,4:300-306.
    [49]公衍生,涂溶,後藤孝.激光化学气相沉积快速生长高取向TiNx薄膜的研究[J].无机材料学报,2010,25(4):391-395.
    [50]王辉,王瑾,赵洋等.金属有机化学气相沉积法制备ZnO和ZnO:Ni薄膜及其特性分析[J].高等学校化学学报,2011,32(12):2717-2720.
    [51]曾建明,王弘,王民等.钛酸钡铁电薄膜的常压MOCVD制备及其物理性质的研究[J].功能材料与器件学报,1997,3(2):129-135.
    [52]张迎光,白雪峰,张洪林等.化学气相沉积技术的进展[J].科技论坛,2005,12:82.
    [53]王伟田,杨光,关东仪等.金属纳米团簇复合薄膜Au/BaTiO3与Fe/BaTi03的PLD制备及其光吸收特征[J].物理学报,2004,53(3):932-935.
    [54]冯秀丽,王公应,邱发礼.钛酸盐功能材料的研究与应用[J].化学进展,2005,17(6):1019-1027.
    [55]艾桃桃.钛酸盐功能陶瓷的研究进展[J].陶瓷(科技篇),2011,42-45.
    [56]Katsui H, Nagata S, Tsuchiya B, et al. Hydrogen trapping and luminescence characteristic in ion-implanted Li2TiO3 and Li2ZrO3 [J]. Nuclear Instruments and Methods in Physics Research B,2012,272:275-279.
    [57]刘微.水热合成锂离子电池负极材料钛酸锂的结构及性能研究[D].郑州:郑州大学材料科学与工程学院,2011.
    [58]Lu J, Nan C Y, Peng Q, et al. Single crystalline lithium titanate nanostructures with enhanced rate performance for lithium ion battery [J]. Journal of Power Sources,2012, 202:246-252.
    [59]徐如人,庞文琴,霍启升.无机合成与制备化学(上册)[M].北京:高等教育出版社,2009.
    [60]隋凝.熔融盐法制备功能氧化物纳米材料研究[D].济南:山东大学化学与化工学院,2009.
    [61]田洋.熔融盐法制备无机功能纳米材料[D].济南:山东大学化学与化工学院,2007.
    [62]Deng Z, Dai Y, Chen W, et al. Syhtesis and Characterization of single-crystalline BaTi2O5 nanowires [J]. Journal of Physical Chemistry C,2011,114:1748-1751.
    [63]蔡政,卢文庆,焦程敏.钛酸钡纳米晶中钡钛比的测定方法[J].吉首大学学报(自然科学版),2003,24(4):58-60.
    [64]李晓雷,曲远方,马卫兵等.钡钛比对钛酸钡陶瓷PTCR性能的影响[J].无机盐工业,2005,37(1):13-15.
    [65]Dutta P K, Gallagher P K, Twu J. Raman spectroscopic and thermoanalytical studies of the reaction of Ba(OH)2with anatase and titanium oxide gels [J]. Chemistry of materials, 1992,4:847-851.
    [66]吴玉庭,朱建坤,张丽娜等.高温熔盐的制备及实验研究[J].北京工业大学学报,2007,33(1):62-66.
    [67]郝华,罗大兵,刘韩星等.熔盐法合成SrBi4Ti4O15片状铁电陶瓷粉末[J].武汉理工大学学报,2004,26(1):4-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700