钛酸锶钡场致效应及热释电特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种典型的铁电材料,钛酸锶钡(BST)具有极强的非线性介电特性,其介电性能可随外加直流偏场变化(场致效应),被广泛用于压控滤波器、振荡器、微波移相器和场致热释电红外探测器中。为此,本文对BST材料的场致效应及其在非制冷红外探测器方面的应用进行了系统研究,为高性能非制冷红外焦平面阵列的研制奠定了基础。
     对BST场致效应的掺杂理论进行了论述,分析了掺杂物化合价、离子半径等对BST晶格常数、电畴结构等微观特性和介电可调率、场致热释电系数等宏观电学性能的影响。由于陶瓷晶粒尺寸和气孔等微结构与材料场致效应关系密切,本文在Johnson理论中引入了修正因子α,用以描述微结构对有效电场分布的调控作用。理论研究指出:随着晶粒尺寸的减小,晶界比例上升,晶界对电场的散射作用使陶瓷晶粒上的有效电场下降,材料抗值减小,介电可调率降低;当陶瓷中存在气孔时,圆形气孔上分配的有效电场要大于不规则形状气孔,气孔为不规则形状的多孔陶瓷的α值较大,晶粒上有效电场较高,与圆形气孔多孔陶瓷相比,其介电可调率较大。
     为了研究掺杂对材料场致效应的影响,进行了Mn受主掺杂实验。随着掺杂量的增大,BST的介电峰被压低、展宽,介电可调率减小,但介电损耗显著降低。当掺杂量为0.3 mol%时,室温下BST在400 V/mm直流电场下的介电可调率为20%,损耗降至0.2%,可调率优值FoM>100,场致热释电系数为84x 102μC/m2℃,探测率优值为17.3×10-5Pa-0.5,随着Mn掺杂量的继续增大,材料介电损耗上升,可调率和探测率优值急剧下降。为进一步提高BST的场致热释电性能,中和过量受主掺杂对介电损耗造成的负面影响,在Mn掺杂基础上进行了Y、Mn施、受主共掺杂实验。随着Y、Mn掺杂量的增大,BST介电常数减小,介电峰展宽,当Y、Mn掺杂量分别为1.2 mol%和0.6 mol%时,BST的介电损耗低于0.2%,场致热释电系为85×102μC/m2℃,探测率优值较Mn单元素掺杂提高到19.0×10-5Pa-0.5。
     为了研究晶粒尺寸对BST场致效应的影响,系统实验了二次烧结工艺,制备了晶粒尺寸在0.3μm至4μm的BST致密陶瓷,探讨了晶粒尺寸对BST掺杂元素分布、晶格常数、电畴结构等微观参数和介电可调率、场致热释电系数等宏观电学性能的影响。随着晶粒尺寸的减小,BST介电峰展宽,可调率下降,但介电损耗变化不大。晶粒的适当减小有助于BST场致热释电系数的提高,但若晶粒过小,晶粒间巨大的内应力使BST的晶格四方率急剧减小,铁电性下降,热释电性变差。实验显示BST的最佳晶粒尺寸为1μm,此时材料在500 V/mm直流偏场下的场致热释电系数为105×102μC/m2℃,探测率优值为22.0×10-4 Pa-0.5。
     根据理论研究设计了多孔陶瓷的微结构,研究了多孔陶瓷制备工艺。用聚甲基丙烯酸甲酯(PMMA)作为造孔剂制备了不同气孔率、气孔形状和孔径的多孔陶瓷,对理论进行了验证。实验证明晶粒尺寸大于1μm的致密陶瓷和气孔率小于14%、孔径大于10μm的陶瓷,其微结构因子α接近于1;对于气孔为非圆形的陶瓷,其α值大于1;而当气孔率大于22.3%时,BST的α值为0.9,说明改进后的理论使原有模型和实验结果之间的偏差缩小了约10%。
     气孔可削弱晶粒间的内应力和电场对介电峰的压峰效应,减小材料的体积热容,这都有利于热释电性能的提高,因此本文提出并制备了BST多孔场致热释电陶瓷。当气孔率为9.6%,外加直流偏场为400 V/mm时,材料的场致热释电系数为80×102μC/m2℃,探测率优值为27.0×10-5 Pa-05,综合热释电性能优于致密陶瓷。为进一步加大气孔对陶瓷内应力和有效电场分布的调控作用,本文采用多壁碳纳米管作为造孔剂制备了微气孔BST多孔场致热释电陶瓷。气孔率为9.5%的微气孔陶瓷的场致热释电系数和探测率优值分别可达到95×102μc/m2℃和32.0×10-5Pa-0.5,较PMMA制备的多孔陶瓷具有更理想的场致热释电性能。
     最后,通过陶瓷微加工工艺对BST多孔热释电陶瓷进行剪薄和切割,通过负胶光刻、金属蒸发和剥离工艺在陶瓷表面制备了银和镍铬合金电极,制作了红外信号探测元;针对BST的场致热释电效应,结合微电容检测原理,设计并搭建了红外探测器信号读出电路,使探测元实现了对黑体红外辐射信号的探测,这同时证明了本文制备的BST陶瓷和探测元性能良好。
As a kind of typical ferroelectric material, barium strontium titanate (BST) is of very strong nonlinear dielectric properties, which may vary due to DC field-induced effect. It is being broadly used in voltage-controlled filter, oscillator, microwave phase shifter and DC field-induced pyroelectric infrared detector. Therefore, this paper conducted the systematic research on the DC field-induced effect of BST material and its application on the uncooled infrared detector and thus laying a basis for the development of high-performance uncooled infrared focal plane array.
     The doping theory of BST material's DC field-induced effect was described, and the influences of the valence of dopant and ionic radius on the microscopic properties such as lattice constant and domain structure and the macroscopic properties like dielectric tunability, DC field-induced pyroelectric coefficient etc. were analyzed. Since the microstructure of ceramic grain, e.g. dimension and pore, had a close relationship with the DC field-induced effect of the material, this paper introduced the modifying factor a into Johnson theory for describing the microstructure's control over the electric field distribution. As pointed out by the theory, the grain size decreased, the proportion of the grain boundary rose, the scattering effect of the grain boundary made the effective electric field on the ceramic grain decrease, the a value of the material became smaller, and the dielectric tunability was weakened; there were pores in the ceramics, the effective electric field distributed on round pores was larger than that on pores of irregular shapes, the a value of porous ceramics with irregular-shape pores were larger and the effective electric field on their grains were higher, so compared with porous ceramics with round pores, their dielectric tunability was better.
     In order to research the doping effect on the DC field-induced effect of BST material, the Mn-doping experiment was made. As more Mn was doped, the permittivity peak was depressed and broadened, the dielectric tunability was reduced, but the dielectric loss significantly declined. When 0.3 mol% Mn was doped, the dielectric tunability of BST at room temperature and under 400 V/mm DC bias field was 20%, the dielectric loss declined to 0.2%, the FoM (figure of merit) of tunability>100, the DC field-induced pyroelectric coefficient was 84×102μC/m2℃and the FoM of detectivity was 17.3×10-5 Pa-0.5. As Mn-dopant was increased, the dielectric loss became larger, but the FoMs of tunability and detectivity fell drastically. For further enhancing the DC field-induced pyroelectric properties of BST and neutralizing the negative effects of excessive doping on the dielectric loss, the Y, Mn acceptor-donor co-doping was conducted on the basis of Mn-doping. With more Y and Mn doped, the dielectric constant decreased, and the permittivity peak broadened. When the Y and Mn doping were respectively 1.2mol% and 0.6mol%, the dielectric loss was lower than 0.2%, DC field-induced pyroelectric coefficient of BST was 85×102μC/m2℃and the detectivity FoM increased to 19.0×10-5 Pa-0.5 as compared with Mn-doping.
     For exploring the influence of grain size on the DC field-induced effect of BST, the two-step sintering process was adopted to prepare compact BST ceramics with the grain size ranging between 0.3μm to 4μm and discussed the influences of grain size on the microscopic parameters, e.g. BST doping element, lattice constant and domain structure, and on the macroscopic parameters such as dielectric tunability and field-induced pyroelectric coefficient etc. As the grain size became smaller, the permittivity peak was broadened and the tunability decreased, but the dielectric loss changed slightly. The proper decrease of grain size was helpful for the increase of field-induced effect of BST. If the grain size was too small, the big internal stress between grains made the tetragonal lattices reduced radically, the ferroelectric properties declined and the pyroelectric properties became worse. The experiment indicated that the best grain size of BST was 1μm and now the field-induced pyroelectric coefficient of the material under 500 V/mm DC bias field was 105×102μC/m2℃and the FoM of the detectivity was 22.0×10-5 Pa-0.5.
     According to theory, the microstructure of porous ceramics was designed and its preparation process was explored, with polymethyl methacrylate (PMMA) as the pore former to prepare the porous ceramics of different porosities, pore shapes and apertures for verifying the theory. The experiment indicated that, for dense ceramics with grain size larger than 1μm and ceramics with the porosity smaller than 14% and aperture larger than 10μm, the microstructure factor a was close to 1; for ceramics with non-round pores, the a value was larger than.1; when the pority was larger than 22.3%, theαvalue was 0.9. This indicated that the theory after improvement reduced about 10% of the deviation of original model from the experimental results.
     The pores could weaken the internal stress between grain size and the peak-depressing effect of electric field on the dielectric peak and reduce the heat capacity per volume of materials, and thus being beneficial for enhancing the pyroelectric properties. Therefore, this paper proposed and prepared field-induced porous pyroelectric BST ceramics. When the porosity was 9.6% and the DC bias field was 400V/mm, the field-induced pyroelectric coefficient was 80×102μC/m2℃, the FoM of the detectivity was 27.0×10-5 Pa-0.5, and the comprehensive pyroelectric properties were better than those of dense samples. In order to further strengthen the tuning of pores on the internal stress of ceramics and the effective electric field distribution. This paper adopted the multiwall carbon nanotubes as the pore former to prepare the microporous field-induced pyroelectric BST ceramics. The field-induced pyroelectric coefficient and the FoM of detectivity of the microporous ceramics with the porosity of 9.5% could reach 95×102μc/m2℃and 32.0×10-5Pa-0.5, thus it had more ideal DC field-induced pyroelectric properties than PMMA-prepared porous ceramics.
     Finally, through shear thinning and cutting of porous pyroelectric BST ceramics by the micro-processing technology, the silver and nickel chromium alloy electrode were prepared on the ceramics surface by the photolithography, metal evaporation and negative photoresist stripping processes, and the detecting element of infrared detector was fabricated; aiming at the field-induced pyroelectric effect of BST, according to the micro capacitance measurement technology, the readout circuit of infrared detector unit was designed and built, enabling the detecting element to detect the black-body infrared radiation signal, and demonstrating that the BST ceramics and detecting element prepared in this paper had good performance.
引文
[1]Ezhilvalavan S, Tseng T Y. Progress in the developments of (Ba,Sr)TiO3 (BST) thin films for Gigabit era DRAMs. Materials Chemistry and Physics.2000,65(3): 227-248.
    [2]Scott, J F. Status report on ferroelectric memory materials. Integrated Ferroelectrics.1998,20(1-4):15-23.
    [3]Abe K, Yanase N, Sano K, et al. Modification of ferroelectricity in heteroepitaxial (Ba, Sr)TiO3 films for non-volatile memory applications. Integrated Ferroelectrics. 1998,21(1-4):197-206.
    [4]Scott J F. Device Physics of ferroelectric thin-film memories. Japanese Journal of Applied Physics.1999,38(4B):2272-2274.
    [5]Wada S, Suzuki S, Noma T, et al. Enhanced piezoelectric property of barium titanate single crystals with engineered domain configurations. Japanese Journal of Applied Physics.1999,38(9B):5505-5511.
    [6]Roberts S. Dielectric and piezoelectric properties of barium titanate. Physical Review.1947,71(12):890-895.
    [7]Takahashi H, Numamoto Y, Tani J, et al. Piezoelectric properties of BaTiO3 ceramics with high performance fabricated by microwave sintering. Japanese Journal of Applied Physics.2006,45(9B):7405-7408.
    [8]Berlincourt D, Jaffe H. Elastic and piezoelectric coefficients of single-crystal barium titanate. Physical Review.1958,111(1):143-148.
    [9]Guo Y, Suzuki K, Nishizawa K, et al. Dielectric and piezoelectric properties of highly (100)-oriented BaTiO3 thin film grown on a Pt/TiOx/SiO2/Si substrate using LaNiO3 as a buffer layer. Journal of Crystal Growth.2005,284(1-2): 190-196.
    [10]Mohammed M S, Auner G W. Temperature dependence of conventional and effective pyroelectric coefficients for compositionally graded BaxSr1-xTiO3 films. Journal of Applied Physics.1998,84(6):3322-3325.
    [11]Zhang T, Ni H. Pyroelectric and dielectric properties of sol-gel derived barium-strontium-titanate (Ba0.64Sr0.36TiO3) thin films. Sensors and Actuators A. 2002,100(2-3):252-256.
    [12]Zhang T, Ni H. Fabrication and electrical properties of Ba0.64Sr0.36TiO3 thin films by sol-gel on platinum coated silicon. Journal of Materials Science.2002,37(19): 4155-4158.
    [13]Zhang T, Wang J, Zhang B, et al. Preparation and dielectric properties of compositionally graded (Ba,Sr)TiO3 thin film by sol-gel technique. Transactions of Nonferrous Metals Society of China.2006,16(1):119-122.
    [14]Sharma A, Ban Z G. Alpaya S P. Pyroelectric response of ferroelectric thin films. Journal of Applied Physics.2004,95(7):3618-3625.
    [15]Zhang L, Thakur O P, Feteira A, et al. Comment on the use of calcium as a dopant in X8R BaTiO3-based ceramics. Applied Physics Letters.2007,90(14):142914.
    [16]Tang B, Zhang S, Zhou X, et al. Doping effects of Mn2+ on the dielectric properties of glass-doped BaTiO3-based X8R materials. Journal of Materials Science:Materials in Electronics.2007,18(5):541-545
    [17]Na E, Choi S. C, Paik U. Temperature dependence of dielectric properties of rare-earth element doped BaTiO3. Journal of Ceramic Processing Research.2003, 4(4):181-184.
    [18]Li L, Han Y, Zhang P, et al. Synthesis and characterization of BaTiO3-based X9R ceramics. Journal of Materials Science.2009,44(20):5563-5568.
    [19]Zhang S, Wang S, Zhou X, et al. Influence of 3d-elements on dielectric properties of BaTiO3 ceramics. Journal of Materials Science:Materials in Electronics.2005, 16(10):669-672.
    [20]Pan M J, Rayne, R J, Bender B A, et al. Development of advanced dielectrics for high energy density capacitors. ASNE Electric Machine Technology Symposium. 2004, January,27-29.
    [21]Gorzkowski E P, Pan M J, Bender B, et al. Glass-ceramics of barium strontium titanate for high energy density capacitors. Journal of Electroceramics.2007, 18(3-4):269-276.
    [22]Gorzkowski E P, Pan M J, Bender B A, et al. Effect of additives on the crystallization kinetics of barium strontium titanate glass-ceramics. Journal of the American Ceramic Society.2008,91(4):1065-1069.
    [23]Ogihara H, Randall C A, Trolier s. High-energy density capacitors utilizing 0.7 BaTiO3-0.3 BiScO3 ceramics. Journal of the American Ceramic Society.2009, 92(8):1719-1724.
    [24]Chen J, Zhang Y, Deng C, et al. Improvement in the microstructures and dielectric properties of barium strontium titanate glass-ceramics by AlF3/MnO2 addition. Journal of the American Ceramic Society.2009,92(8):1863-1866.
    [25]Campbell C K, van Wyk J D, Holm M F K, et al. Aspects of modeling of high voltage ferroelectric nonlinear ceramic capacitors, IEEE Transactions on Components, Hybrids, and Manufacturing Technology.1992,15(2):245-251.
    [26]Campbell C K, van Wyk J D, Holm M F K, et al. Relaxation effects in high-voltage barium titanate nonlinear ceramic disk capacitors. Transactions on Components, Hybrids, and Manufacturing Technology.1993,16(4):418-423.
    [27]Yuan Z, Lin Y, Weaver J, et al. Large dielectric tunability and microwave properties of Mn-doped (Ba,Sr)TiO3 thin films. Applied Physics Letters.2005, 87(15):152901.
    [28]Cole M W, Joshi P C. Ervin M H, et al. La doped Ba1-xSrxTiO3 thin films for tunable device applications. Journal of Applied Physics.2001,89(11):6336-6340.
    [29]Cole M W, Hubbard C, Ngo E, et al. Structure-property relationships in pure and acceptor-doped Ba1-xSrxTiO3 thin films for tunable microwave device applications. Journal of Applied Physics.2002,92(1):475-483.
    [30]Zhang Y, Wang G, Chen Y, et al. Effect of donor, acceptor, and donor-acceptor codoping on the electrical properties of Ba0.6Sr0.4TiO3 thin films for tunable device applications. Journal of the American Ceramic Society.2009,92 (11):2759-2761.
    [31]Xu H, Hashimotob K, Mukaigawac T, et al. Development of Si monolithic (Ba,Sr)TiO3 thin-film ferroelectric microbolometers for uncooled chopperless infrared sensing. Proceedings of SPIE.2000,4130.
    [32]Hanel R. The dielectric bolometer:A new type of thermal adiation detector. Journal of the Optical Society of America.1961,52(2):220-224.
    [33]Watton R. Ferroelectric materials and devices in infrared detection and imaging. Ferroelectrics.1989,91(1):87-108.
    [34]Wu, C G, Li Y R, Zhu J, et al. Great enhancement of pyroelectric properties for Ba0.65Sr0.35TiO3 films on Pt-Si substrates by in-serting a self-buffered layer. Journal of Applied Physics.2009,105(4):044107.
    [35]Noda M, Hashimoto K, Kiyomoto T, et al. A new type of dielectric bolometer mode of detector pixel using ferroelectric thin film capacitors for infrared image sensor. Sensors and Actuators A.1999,77(1):39-44.
    [36]Noda M, Mukaigawa T, Hashimoto K, et al. A simple detector pixel of dielectric bolometer mode and its device structure for uncooled IR image sensor. Part of the SPIE Conference on Infrared Technolony and Applications XXV, Orlando, Florida, April 1999,3698,565-573.
    [37]Noda M, Inoue K, Ogura M, et al. An uncooled infrared sensor of dielectric bolometer mode using a new detection technique of operation bias voltage. Sensors and Actuators A.2002,97-98:36-329.
    [38]Chiou B S, K C M, Duh J G. The influence of firing profile and additives on the PTCR effect and microstructure of BaTiO3 ceramic. Journal of Materials Science. 1987,22(11):3893-3900.
    [39]Li B, Zhou D, Zhang D, et al. Analysis on the aging characteristics of PTCR of donor-doped barium titanate. Materials Science and Engineering B.2003,99(1-3): 394-398.
    [40]Hao Y, Zhao J, Zheng Y, et al. Magnetron sputtering electrode on the BaTiO3-based PTCR ceramics and the effect of heat treatment on their properties. Materials Science and Engineering B.2003,99(1-3):516-519.
    [41]Daniels J, Haerdtl K H, Wernicke R. The PTC effect of barium titanate. Philips Technical Review.1978,38(3):73-82.
    [42]Takahashi T, Nakano Y, Ichinose N. Influence of reoxidation on PTC effect of porous BaTiO3. Journal of the Ceramic Society of Japan.1990,98(8):879-884.
    [43]Heywang W. Semiconducting barium titanate. Journal of Materials Science.1971, 6(9):1214-1224.
    [44]Huang J, Cao Y, Hong M. Ag-Ba0.75Sr0.25TiO3 composites with excellent dielectric properties. Applied Physics Letters.2008,92(2),022911.
    [45]Chung U C, Elissalde C, Maglione M. Low-losses, highly tunable Ba0.6Sr0.4TiO3/MgO composite. Applied Physics Letters.2008,92(4),042902.
    [46]Whatmore R W. Pyroelectric Devices and Materials. Reports on Progress in Physics.1986,49(12):1335-1386.
    [47]Rupprecht G, Bell R O, Silverman B D. Nonlinearity and microwave losses in cubic strontium-titanate. Physical Review.1961,123(1):97-98.
    [48]Muller, H. Properties of rochelle salt. Physical Review.1940,57(9):829-839.
    [49]Muller, H. Properties of rochelle salt Ⅲ. Physical Review.1940,58(6):565-573.
    [50]Devonshire A F. Theory of barium titanate-part Ⅰ. Phil. Mag.1949,40:1040.
    [51]Devonshire A F. Theory of barium titanate-part Ⅱ. Phil. Mag.1951,42:1065.
    [52]Ginzburg V L. The dielectric properties of crystals of seignettcelectric substances and of barium titanate. Zhurnal Eksperimentalnoii Teoreticheskoi Fiziki.1945,15: 739.
    [53]Ginzburg V L. Theory of barium titanate-part Ⅰ. Zhurnal Eksperimentalnoii Teoreticheskoi Fiziki.1949,19:36.
    [54]Devonshire A F. Theory of ferroelectrics. Advances in Physics.1954,3(10): 85-130.
    [55]Landua L D. The transport equation in the case of Coulomb interactions. Zhurnal Eksperimentalnoii Teoreticheskoi Fiziki.1937,7(19):627.
    [56]Johnson K M. Variation of dielectric constant with voltage in ferroelectric and its application to parametric devices. Journal of Applied Physics.1962,33(9): 2828-2831.
    [57]Diamond H. Variation of permittivity with electric field in perovskite-like ferroelectric. Journal of Applied Physics.1961,32(5):909-915.
    [58]Drougrad M E, Young D R. Domain clamping effect in barium titanate single crystals. Physical Review.1954,94(6):1561-1564.
    [59]Marutake M, Ikeda T. Anisotropy in polarized barium titanate ceramics. Journal of the Physical Society of Japan.1957,12(3):233-240.
    [60]Uchida N, Ikeda T. Temperature and bias characteristics of Pb (Zr-Ti) 03 families ceramics. Japanese Journal of Applied Physics.1965,4(11):867-880.
    [61]Fousek J, Cross L E, Seely K. Some properties of the ferroelectric lithium thallium tartrate. Ferroelectrics.1970,1(1):63-70.
    [62]Barchaim N, Brunstein M, Grunberg J, et al. Electric field dependence of the dielectric constant of PZT ferroelectric ceramics. Journal of Applied Physics.1974, 45(6):2398-2405.
    [63]Li S, Cao W, Cross L E. The extrinsic nature of nonlinear behavior observed in lead zirconate titanate ferroelectric ceramic. Journal of Applied Physics.1991, 69(10):7219-7224.
    [64]Arlt G, Pertsev N A. Force constant and effective mass of 90° domain walls in ferroelectric ceramics. Journal of Applied·Physics.1991,70(4):2283-2289.
    [65]Yao X, Zhili C, Cross L E. Polarization and depolarization behavior of hot pressed lead lanthanum zirconate titanate ceramics. Journal of Applied Physics.1983, 54(6):8737-8746.
    [66]Dellis J L. Effects of a bias on the permittivity of PLZT 9/65/35. Journal of Physics:Condensed Matter.1996,8(2):7957-7965.
    [67]Zhang Y, Li L, Gui Z, et al. Dielectric response of PMZNT relaxor ferroelectric ceramics under various external field. Materials Letters.2000,43(5-6):230-233.
    [68]Ang C, Cross L E, Guo R, et al. Cluster polarization of Cd2Nb2O7 compound. Applied Physics Letters.2000,77(5):732-734.
    [69]Ang C, Bhalla A S, Guo R, et al. Effect of dc bias on dielectric properties of Cd2Nb207 ceramics. Journal of Applied Physics.2001,90(5):2465-2468.
    [70]Ang C, Bhalla A S, Cross L E. Dielectric behavior of paraelectric KTaO3, CaTiO3, and (Ln1/2Na1/2)TiO3 under a dc electric field. Physical Review B.2001,64(18): 184104.
    [71]Ang C, Yu Z. Dc electric-field dependence of the dielectric constant in polar dielectrics:Multipolarization mechanism model. Physical Review B.2004,69(17): 174109.
    [72]Liou J W, Chiou B S. Effect of direct-current biasing on the dielectric properties of barium strontium titanate. Journal of the American Ceramic Society.1997,80(12): 3093-3099.
    [73]Liou J W, Chiou B S. Analysis of the dielectric characteristics for polycrystalline Ba0.65Sr0.35TiO3 (Ⅰ):frequency dependence in the paraelectric state. Journal of Materials Science:Materials in Electronics.2000,11(8):637-643.
    [74]Liou J W, Chiou B S. Analysis of the dielectric characteristics for polycrystalline Ba0.65Sr0.35TiO3 (Ⅱ):dc field dependence with a modified bias equation. Journal of Materials Science:Materials in Electronics.2000,11(8):645-651.
    [75]Lim S S, Han M S, Han S R, et al. Dielectric and pyroelectric properties of (Ba,Sr,Ca)TiO3 ceramics for uncooled infrared detectors. Japanese Journal of Applied Physics.2000,39(8):4835-4838.
    [76]Kang D S, Han M S, Lee S G, et al. Dielectric and pyroelectric properties of barium strontium calcium titanate ceramics. Journal of the European Ceramic Society.2003,23(3):515-518.
    [77]Yoo J H, Gao W, Yoon K H. Pyroelectric and dielectric bolometer properties of Sr modified BaTiO3 ceramics. Journal of Materials Science.1999,34(21): 5361-5369.
    [78]Gao L N, Zhai J W, Yao X. The influence of Co doping on the dielectric, ferroelectric and ferromagnetic properties of Bao.7oSro.3oTi03 thin films. Applied Surface Science.2009,255(8):4521-4525.
    [79]Imai K, Takeno S, Nakamura K. Effect of Fe doping of thin (Ba,Sr)TiO3 films on increase in dielectric constant. Japanese Journal of Applied Physics.2002,41(10): 6060-6064.
    [80]Park W Y, Hwang C S, Baniecki J D, et al. Unusual thickness dependence of permittivity and elastic strain in Sc modified epitaxial (Ba,Sr)TiO3 thin films. Applied Physics Letters.2008,92(10):102902.
    [81]Liang X, Meng Z, Wu W. Effect of acceptor and Donor dopants on the dielectric and tunable properties of barium strontium titanate. Journal of the American Ceramic Society.2004,87(12):2218-2222.
    [82]Shuvolov L A. Symmetry aspects of ferroelectricity. Journal of the Physical Society of Japan.1970,28(1):38-51.
    [83]Busch, G. Condensed Matter News.1991,1(2):20-29.
    [84]Lines, M.E., Glass, A.M. Principles and Applications of Ferroelectrics and Related Materials. Oxford, Clarendon Press,1977.
    [85]Fousek J. Ferroelectricity:Remarks on historical aspects and present trends. Ferroelectrics.1991,113(1):3-20.
    [86]Cochrn W. Crystal stability and the theory of ferroelectricity. Physical Review Letters.1959,3(9):412-414.
    [87]Cochrn W. Crystal stability and the theory of ferroelectricity. Advances in Physics, 1960,9(36):387-423.
    [88]King-Smith R D, Vanderbitl D. First-principles investigation of ferroelectricity in perovskite compounds. Physical Review B.1994,49(9):5828-5844.
    [89]Resta R, Posternak M, Baldereschi A. Towards a quantum theory of polarization in ferroelectrics:The case of KNbO3. Physical Review Letters.1993,70(7): 1010-1013.
    [90]Anderson P W. Dielektrikov Fizika. G.I.,Akad. Nauk. SSSR. Moscow,1960.
    [91]Uchino K, Sadanaga E, Hirose T. Dependence of the crystal structure on particle size in barium titanate. Journal of the American Ceramic Society.1989,72(8): 1555-1558.
    [92]Zhong W, Zhang P, Wang Y, et al. Size effect on the dielectric properties of BaTiO3. Ferroelectrics.1994,160(1):55-59.
    [93]Zewdie H, Brouers F. Theory of ferroelectric polymer-ceramic composites. Journal of Applied Physics.1990,68(2):713-717.
    [94]Burianova L, Hana P, Panos S. Pizoelectric, dielectric and pyroelectric properties of 0-3 ceramic-polymer composites. Ferroelectrics.2000,241(1):59-66.
    [95]Berbecaru C, Alexandru H V, Porosnicu C, et al. Ceramic materials Ba(1-x)SrxTiO3 for electronics-Synthesis and characterization. Thin Solid Films.2008,516(22): 8210-8214.
    [96]Cady, W.G. Piezoelectricity. McGraw-Hill Book Co, New Youk,1946.
    [97]Zhang G, Jiang S, Zhang Y, et al. Pyroelectric properties in three phases coexistence Pb[(Mn0.33Nb0.67)0.5(Mn0.33Sb0.67)0.5]0.08(ZrxTi1-x)0.92O3 lead ceramics. Current Applied Physics.2009,9(6):1434-1437.
    [98]Kulwicki B M, Amin A, Beratan H R, et al. Pyroelectric imaging. Applications of ferroelectrics, in:ISAF'92. Proceedings of the Eighth IEEE International Symposium,1992,1-10.
    [99]Wentz,J.L., Kennedy, L.Z. Primary pyroelectric effect in the PZT 95/5 ceramic. Journal of Applied Physics.1964,35(6):1767-1770.
    [100]Haertling G H. Ferroelectric ceramics-History and technology. Journal of the American Ceramic Society.1999,82(4):797-818.
    [101]Lines M E, Glass A M. Principles and application of ferroelectrics and related materials. Clarendon Press, Oxford.1997,620-630.
    [102]Glazer A M, Mabud S A, Clarke R. Powder profile refinement of lead zirconate titanate at several temperatures.Ⅰ. PbZr0.9Ti0.1O3. Acta Crystallographica Section B. 1978,34(4):1060-1065.
    [103]Glazer A M, Mabud S A. Powder profile refinement of lead zirconate titanate at several temperatures. Ⅱ. Pure PbTiO3. Acta Crystallographica Section B.1978, 34(4):1065-1070.
    [104]Clarke R, Glazer A M, Ainger F W, et al. Phase transitions in lead zirconate-titanate and their applications in thermal detectors. Ferroelectrics.1976, 11(1):359-364.
    [105]Jaffe, B., W. Cook Jr., Jaffe, H. Piezoelectric Ceramics. Academic Press, London, 1971.
    [106]Lang S B. Pyroelectricity:From ancient curiosity to modern imaging tool. Physics Today.2005,58(8):31-36.
    [107]Luo Y, Zeng Y, Jiang S. Advanced test system for pyroelectric coefficient. International symposium on test automation and instrumentation. ISTAI'2006, 27-30.
    [108]李标荣,王筱珍,张绪礼.无机电介质.(第一版).武汉:华中理工大学出版社,1995.
    [109]Kinoshita K, Yamaji A. Grain-Size effect on dielectric properties in barium titanate ceramics. Journal of Applied Physics.1976,47(1):371-373.
    [110]Arlt G, Hennings D. Dielectric properties of fine-grained barium titanate ceramics. Journal of Applied Physics.1985,58(4):1619-1625.
    [111]Shaikh A S, Vest R W, Vest G M, Dielectric properties of ultrafine grained BaTiO3. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.1989, 36(4):407-412.
    [112]Deng X, Wang X, Wen H, et al. Ferroelectric properties of nanocrystalline barium titanate ceramics. Applied Physics Letters.2006,88(25):252905.
    [113]Bell A J, Moulson A J, Cross L E. The effect of grain size on the permittivity of BaTiO3. Ferroelectrics.1984,54(1):147-150.
    [114]Samara G A. Pressure and temperature dependence of the dielectricproperties and phase transitions of the ferroelectric perovskites:PbTiO3 and BaTiO3. Ferroelectrics.1971,2(1):277-289.
    [115]Song S, Zhai J, Gao L, et al. Thickness-dependent dielectric and tunable properties of barium stannate titanate thin films. Journal of Applied Physics.2009,106(2): 024104
    [116]Sharma A, Ban Z G, Alpay S P. Pyroelectric response of ferroelectric thin films. Journal of Applied Physics.2004,95(7):3618-3625.
    [117]Horwitz J S, Chang W, Kim W Qadri, et al. The effect of stress on the microwave dielectric properties of Ba0.5Sr0.5TiO3 thin films. Journal of Electroceramics.2000, 4(2/3):357-363.
    [118]Wang Z, Jiang S, Li G, et al. Synthesis and characterization of Ba1-xSrxTiO3 nano powders by citric acid gel method. Ceramics International.2007,33(6): 1105-1109.
    [119]谢甜甜.水基胶态成型固化特性及其应用技术研究.[博士学位论文].武汉:华中科技大学,2009.
    [120]Harrison G, Lavedan L, Mdenaldson, Microwave ferroelectric phase shifters and switches. Final Report, Amy Contrace No. DA36-039AMC-024(E).1965.
    [121]Tsau Y M, Chen Y C, Cheng H F, et al. Ferroelectric (Ba,Sr)TiO3 and Pb(Zr,Ti)O3 thin films prepared by pulsed laser deposition. Journal of the European Ceramic Society.2001,21(10-11):1561-1564
    [122]Sumi T, Moriwaki N, Nakane G, et al.256Kb ferroelectric nonvolatile memory technology for 1T/1C cell with 100ns read/write time at 3V. Integrated Ferroelectrics.1995,6(1-4):1-13.
    [123]Sengupta L C, Ngo E, Stowell S, et al. Investigation of the electronic properties of doped Ba1-xSrxTiO3 phase shifting materials. Ferroelectrics.1994,153(1): 359-364.
    [124]Boyle T J, Al-shareef H N, Buchheit C D, et al. Non-traditional solution routes to ferroelectric materials. Integrated Ferroelectrics.1997,18(1-4):213-223.
    [125]Miranda F A, Mueller C H, Cubbage C D, et al. HTS/ferroelectric thin films for tunable microwave components. IEEE Transactions on Applied Superconductivity. 1995,5(2):3191-3194.
    [126]Sharma P K, Jose K A, Varadan V V. Pentadionate:an alternate sol-gel method for the synthesis of ferroelectric Ba1-xSrxTiO3. Materials Research Symposium Proceedings.2000,606:217-222.
    [127]Jain M, Majumder S B, Katiyar R S. et al. Novel barium strontium titanate Ba0.5Sr0.5TiO3/MgO thin film composites for tunable microwave devices. Materials Letters.2003,57(26-27):4232-4236.
    [128]Chang W, Horwitz J S, Kim W J, Pulsed laser deposition of BaxSr1-xTiO3 films on MgO, LaAlO3, and SrTiO3 for tunable microwave applications. Materials Research Symposium Proceedings.1999,514:693-698.
    [129]Horwitz J S, Chang W, Kim W, et al. The effect of stress on the microwave dielectric properties of Ba0.5Sr0.5TiO3 thin films. Journal of Electroceramics.2000, 4(2-3):357-363.
    [130]Acikel B, Taylor T R, Hansen P J, et al. A new high performance phase shifter using BaxSr1-xTiO3 thin films. IEEE Microwave and Wireless Components Letters. 2002,12(7):237-239.
    [131]York R A, Nagra A S, Periaswamy P, et al. Synthesis and characterization of (BaxSr1-x)TiO3 thin films and integration into microwave varactors and phase shifters. Integrated Ferroelectrics.2001,34(1-4):177-188.
    [132]Baki A, Troy R. T, Peter J H, et al. A new high performance phase shifter using BaxSr1-xTiO3 thin films. IEEE Microwave and Wireless Components Letters.2002, 12(7):237-239.
    [133]Zhang J, Zhai J, Jiang H, et al. Raman and dielectric study of Bao.4Sro.6Ti03-MgAl2O4 tunable microwave composite. Journal of Applied Physics.2008,104(8): 084102.
    [134]Zhang G, Jiang S, Zeng Y, et al. The modified model of the dielectric characteristics for porous Ba0.6Sr0.4TiO3 ceramics. Journal of Applied Physics. 2009,106(3):034110.
    [135]Kulwicki. B M, Amin A B, Howard R, et al. Pyroelectric Imaging. Proceedings of the Eighth IEEE International Symposium on Applications of Ferroelectrics, Greenville, SC, USA, August,1993,1-10.
    [136]Hanson C M. Uncooled thermal imaging at Texas Instruments. SPIE Infrared Technology XIX.1993,2020:330-339.
    [137]Zhang G, Jiang S, Zeng Y, et al. High pyroelectric properties of porous Ba0.67Sr0.33TiO3 for uncooled infrared detectors. Journal of the American Ceramic Society.2009,92(12):3132-3134.
    [138]Wu C G, Zhang W L, Li Y R, et al. High pyroelectric Ba0.65Sr0.35TiO3 thin films with Ba0.65Sr0.35RuO3 seeding-layer for monolithic ferroelectric bolometer. Infrared Physics & Technology.2006,48(3):187-191.
    [139]Cole M W, Joshi P C, Ervin M H, et al. The influence of Mg doping on the materials properties of Ba1-xSrxTiO3 thin films for tunable device applications. Thin Solid Films.2000,374(1):34-41.
    [140]Tkach A, Vilarinho P M, Kholkin A L, Structure-microstructure-dielectric tunability relationship in Mn-doped strontium titanate ceramics. Acta Meterialia. 2005,53(19):5061-1069.
    [141]Frey M H, Payne D A, Grain-size effect on structure and phase transformations for barium titanate. Physical Review B.1996.54(5):3158-3168.
    [142]Zhao Z, Buscaglia V, Viviani M, et al. Grain-size effects on the ferroelectric behavior of dense nanocrystalline BaTiO3 ceramics. Physical Review B.2004, 70(2):024107-024114.
    [143]Liou J W, Chiou B S, DC field dependence of the dielectric characteristics of doped Ba0.65Sr0.35TiO3 with various grain sizes in the paraelectric state. Japanese Journal of Applied Physics.1997,36(7A):4359-4368.
    [144]Zhang Y, Wang G, Wang K, et al. The model of electric field dependent dielectric properties for porous ceramics. Journal of Applied Physics.2008,103(11): 114103.
    [145]Zhang Y, Wang G, Zeng T, et al. Electric field-dependent dielectric properties and high tunability of porous Ba0.5Sr0.5TiO3 ceramics. Journal of the American Ceramic Society.2007,90(4):1327-1330.
    [146]Zachary N W, Brian W, John W H. Permittivity of porous titanate dielectrics. Journal of the American Ceramic Society.2007,90(1):137-142.
    [147]Nie H, Feng B, Chen X, et al. Enhanced ferroelectric properties of intragranular-porous Pb(Zr0.95Ti0.05)O3 ceramic fabricated with carbon nanotubes. Journal of the American Ceramic Society.2010,93(3):642-645.
    [148]刘欢.微纳半导体陶瓷及其敏感元件研究.[博士学位论文].武汉:华中科技大学,2008.
    [149]钟维列.铁电体物理学.(第一版).北京:科学出版社.2000.
    [150]Setter N, Cross L E. The contribution of structural disorder to diffuse phase transitions in ferroelectrics. Journal of Materials Science.1980,15(10): 2478-2482.
    [151]Setter N, Cross L E. The role of B-site cation disorder in diffuse phase transition behavior of perovskite ferroelectrics. Journal of Applied Physics.1980,51(8), 4356-4360.
    [152]Galasso F, Darby W. Ordering of the octahedrally coordinated cation position in the perovskite structure. Journal of Physical Chemistry.1962,66(1):131-132.
    [153]Tagantsev A K, Shermen V O, Astafiev K F, et al. Ferroelectric materials for microwave tunable applications, Journal of Electroceramics.2003,11(1-2):5-66.
    [154]Buessem W R, Cross L E, Goswami A K. Phenomenological theory of high permittivity in fine-grained barium titanate. Journal of the American Ceramic Society.1966,49(1):33-36.
    [155]Martirena H T, Burfoot J C. Grain-size effects on properties of some ferroelectric ceramics. Journal of Physics C:Solid State.1974,7(17):3182-3192.
    [156]Arlt G, Peusens H. The dielectric constant of coarse grained BaTiO3 ceramics. Ferroelectrics.1983,48(1):213-224.
    [157]Pohanka R C, Rice R W, Walker B E. Effect of Internal Stress on the Strength of BaTiO3. Journal of the American Ceramic Society.1976,59(1-2):71-74.
    [158]Huibregtse E J, Young D R. Triple hysteresis loops and the free-energy function in the vicinity of the 5℃ transition in BaTiO3. Physical Review.1956,103(6): 1705-1711.
    [159]Lines M E, Glass A M. Principles and applications of ferroelectrics and related materials. Oxford:Oxford University Press,1979.
    [160]Stern E, Lurio Allen. Dielectric properties of BaTiO3 single crystals in the paraelectric state from 1 kc/sec to 2000 Mc/sec. Physical Review.1961,123(1): 117-123.
    [161]Wei X, Feng Y, Yao X. Dielectric relaxation behavior in barium stannate titanate ferroelectric ceramics with diffused phase transition. Applied Physics Letters.2003, 83(10):2031-2033.
    [162]Seifert A, Muralt P, Setter N. High figure-of-merit porous Pb1-xCaxTiO3 thin films for pyroelectric applications. Applied Physics Letters.1998,72(19):2409-2411.
    [163]Suyal G, Setter N. Enhanced performance of pyroelectric microsensors through theintroduction of nanoporosity. Journal of the European Ceramic Society.2004, 24(2):247-251.
    [164]Zeng T, Dong X, Mao C, et al. Effects of pore shape and porosity on the properties of porous PZT 95/5 ceramics. Journal of the European Ceramic Society.2007, 27(4):2025-2029.
    [165]Dietze M, Krause J, Solterbeck C H, et al. Thick film polymer-ceramic composites for pyroelectric applications. Journal of Applied Physics.2007,101(5):054113.
    [166]Zeng T, Wang G, Dong X, et al. Investigation on FR(LT)-FR(HT) phase transition and pyroelectric properties of porous Zr-rich lead zirconate titante ceramics. Materials Science and Engineering B.2007,140(1-2):5-9.
    [167]Shaw C P, Whatmore R W, Alcock J R, et al. Porous, functionally gradient pyroelectric materials. Journal of the American Ceramic Society.2007,90(1): 137-142.
    [168]Whatmore R W, Zhang Q, Shaw C P, et al. Pyroelectric ceramics and thin films for applications in uncooled infra-red sensor arrays. Physica Scripta.2007,129: 6-11.
    [169]Wong C K, Poon Y M, Shin F G. Explicit formulas for effective piezoelectric coefficients of ferroelectric 0-3 composites. Journal of Applied Physics.2001, 90(9):4690-4700.
    [170]Dariskii B M, Sidorkin A S, Milovidova S D. Appearance of internal bias field in ferroelectric growth process. Ferroelectrics.1993,142(1):45-50.
    [171]Lohkamper R, Neumann H, Arlt G. Internal bias in acceptor-doped BaTiO3 ceramics:numerical evaluation of increase and decrease. Journal of Applied Physics.1990,68(8):4220-4222.
    [172]Eichel R A. Defect structure of oxide ferroelectrics-valence state, site of incorporation, mechanisms of charge compensation and internal bias fields. Journal of Electroceramics.2007,19(1):9-21.
    [173]Batllo F, Duverger E, Jules J C, et al. Dielectric and EPR studies on Mn-doped barium titanate. Ferroelectrics.1990,109(1),113-118.
    [174]金学淼.钛酸锶钡热释电陶瓷的制备及其性能研究.[硕士学位论文].武汉:华中科技大学,2006.
    [175]张海波.钛酸铋钠钾压电厚膜的制备与性能研究.[博士学位论文].武汉:华中科技大学,2008.
    [176]Wong W L E, Gupta M. Development of Mg/Cu nanocomposites using microwave assisted rapid sintering. Composites Science and Technology.2007,67(7-8): 1541-1552
    [177]Mahboob S, Dutta A B, Prakash C, et al. Dielectric behaviour of microwave sintered rare-earth doped BaTiO3 ceramics. Materials Science and Engineering B. 2006,134(1):36-40.
    [178]Chen Y T, Sheu C I, Lin S C, et al. Effects of microwave heating on dielectric and piezoelectric properties of PZT ceramic tapes. Ceramics International,2008,34 (3): 621-624.
    [179]Blake R D, Meek T T. Microwave processed composite materials. Journal of Materials Science Letters.1986,5(11):1097-1098.
    [180]Chang H Y, Sheu C I, Cheng S Y. Microwave enhanced sintering of tape-cast ferroelectric films. Journal of the European Ceramic Society.2007,27(5): 3793-3797.
    [181]Guo L, Lyashchenko A, Dong X L. Synthesis of zirconium-rich PZT ceramics by hydroxide coprecipitation under hot-press. Materials Letters.2002,56(5): 849-855.
    [182]Chen Y, Sakai T, Chen T, et al. Screen printed thick self-biased, low-loss, barium hexaferrite films by hot-press sintering. Journal of Applied Physics.2006,100(4): 043907.
    [183]Ma R Z, Wu J, Wei B Q, et al. Processing and properties of carbon nanotubes-nano-SiC ceramic. Journal of Materials Science.2004,33(21): 5243-5246.
    [184]Takeuchi T, Tabuchi M, Kageyama, H, et al. Preparation of dense BaTiO3 ceramics with submicrometer grains by spark plasma sintering, Journal of the American Ceramic Society.1999,82(4):939-943.
    [185]Li B, Wang X, Cai M, et al. Densification of uniformly small-grained BaTiO3 using spark-plasma-sintering. Materials chemistry and physics.2003,82 (1): 173-180.
    [186]Li B, Wang X, Li L, et al. Dielectric properties of fine-grained BaTiO3 prepared by spark-plasma-sintering. Materials chemistry and physics,2004,83(1):23-28.
    [187]Luan W, Gao L, Hirokazu K, et al. Fabrication and characteristics of fine-grained BaTiO3 ceramics by spark plasma sintering. Ceramics international.2004,30(3): 405-410.
    [188]Teresa H, Miguel A, AnaB H. Dense, fine-grained Ba1-xSrxTiO3 ceramics prepared by the combination of mechanosynthesized nanopowders and spark plasma sintering. Chemistry of materials.2005,17(24):6205-6212.
    [189]Deng X, Wang X, Wen H, et al. Phase transitions in nanocrystalline barium titanate ceramics prepared by spark plasma sintering. Journal of the American Ceramic Society.2006,89(3):1059-1064.
    [190]Liu J, Shen Z, Mats N. Spark plasma sintering behavior of nano-sized (Ba, Sr)TiO3 powders:Determination of sintering parameters yielding nanostructured ceramics. Journal of the American Ceramic Society.2006,89(9):2689-2694.
    [191]Xue H, Xiong Z, Zhou H. The structure and dielectric tunable properties of fine-grained Ba0.6Sr0.4TiO3 ceramics prepared by spark plasma sintering. Journal of the American Ceramic Society.2007,90(8):2653-2656.
    [192]Chen I W, Wang X H, Sintering dense nanocrystalline ceramics without final-stage grain growth. Nature,2000,404(6774):168-171.
    [193]Wang X H, Chen P L, Chen I W, Two-step sintering of ceramics with constant grain-size, I. Y2O3, Journal of the American Ceramic Society.2006,89(2): 431-437.
    [194]Wang X H, Deng X Y, Bai H L, et al. Two-step sintering of ceramics with constant grain-size, Ⅱ:BaTiO3 and Ni-Cu-Zn ferrite. Journal of the American Ceramic Society.2006,89(2):438-443.
    [195]Deng X, Li D, Li J, et al. Preparation of nanocrystalline BaTiO3 ceramics. Science in China Series E, Technological Sciences.2009,52(6):1730-1734.
    [196]Hennings D, Rosenstein G. Temperature-stable dielectrics based on chemically inhomogeneous BaTiO3. Journal of the American Ceramic Society.1984,67(4): 249-254.
    [197]Buscaglia M T, Viviani M, Zhao Z, et al. Synthesis of BaTiO3 core-shell particles and fabrication of dielectric ceramics with local graded structure. Chemistry of materials.2006,18(17):4002-4010.
    [198]Yasukawa K, Nishimura M, Nishihata Y, et al. Core-shell structure analysis of BaTiO3 ceramics by synchrotron X-Ray diffraction. Journal of the American Ceramic Society.2007,90(4):1107-1111.
    [199]Hsi C S, Chen Y C, Jantunen H, et al. Barium titanate based dielectric sintered with a two-stage process, Journal of the European Ceramic Society.2008,28(13): 2581-2588.
    [200]Kim J S, Kang S J L, Formation of core-shell structure in the BaTiO3-SrTiO3 system. Journal of the American Ceramic Society.1999,82(4):1085-1088.
    [201]Chazono H, Kishi H. Sintering Characteristics in the BaTiO3-Nb2O5-Co3O4 ternary system:Ⅱ, stability of so-called "core-shell" structure. Journal of the American Ceramic Society.2000,83(1):101-106.
    [202]Wang Y, Damjanovic D, Klein N, et al. High-temperature instability of Li- and Ta-modified (K,Na)NbO3 piezoceramics. Journal of the American Ceramic Society.2008,91(6):1962-1970.
    [203]Mizuno Y, Hagiwara T, Chazono H, et al. Effect of milling process on core-shell microstructure and electrical properties for BaTiO3-based Ni-MLCC. Journal of the European Ceramic Society.2001,21(10-11):1649-1652.
    [204]Sun C, Wang X, Ma C, et al. Low-temperature sintering barium titanate-based X8R ceramics with Nd2O3 dopant and ZnO-B2O3 flux agent. Journal of the American Ceramic Society.2009,92(7):1613-1616.
    [205]Wen H, Wang X, Chen R, et al. Modeling of Dielectric Behaviors of Multilayer Ceramic Capacitors Under a Direct Current Bias Field. Journal of the American Ceramic Society.2006,89(2):550-556.
    [206]Stroud D. The effective medium approximations:some recent developments. Superlattices Microstruct.1998,23(3/4):567-573.
    [207]Stroud D. Generalized effective-medium approach to the conductivity of an inhomogeneous material. Physical Review B.1975,12(8),3368-3373.
    [208]Koh Y H, Lee E J, Yoon B H, et al. Effect of polystyrene addition on freeze casting of ceramic/camphene slurry for ultra-high porosity ceramics with aligned pore channels. Journal of the American Ceramic Society.2006,89(12): 3646-3653.
    [209]Lee S H, Jun S H, Kim H E. Piezoelectric Properties of PZT-Based Ceramic with Highly Aligned Pores. Journal of the American Ceramic Society.2008,91(6): 1912-1915.
    [210]Wang Q, Chen Q, Zhu J, et al. Effects of pore shape and porosity on the properties of porous LNKN ceramics as bone substitute. Materials Chemistry and Physics. 2008,109(2-3):488-491.
    [211]Carroll M M, Holt A C. Static and dynamic pore-collapse for ductile porous materials. Journal of Applied Physics.1972,43(4):1626-1635.
    [212]Rogalski A. Infrared detectors:an overview. Infrared Physics & Technology.2002, 43(3-5):187-210.
    [213]Rogalski A. Infrared detectors:status and trends. Progress in Quantum Electronics. 2003,27(2-3):59-210.
    [214]Noda M, Zhu H, Xu H, et al. A new dielectric bolometer mode of detector pixel for uncooled infrared image sensor with ferroelectric BST thin film prepared by metal-organic decomposition. Integrated Ferroelectrics.2001,35(1-4):31-39.
    [215]Hashimoto K, Xu H, Mukaigawa T, et al. Si monolithic microbolometers of ferroelectric BST thin film combined with readout FET for uncooled infrared image sensor. Sensors and Actuators A.2001,88(1):10-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700