钛酸锶钡系铁电薄膜材料特性及其移相器结构性能仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文阐述了基于热力学理论的Devonshire宏观唯像理论,分析了它在铁电体一级、二级相变及弥散相变中的应用,给出了铁电材料的自发极化、介电常数的理论计算方法,并进一步采用了Smolenskii的成份起伏理论解释了实际铁电体在居里温度附近出现弥散相变现象。另外在微观理论方面,为了解释ABO3钙钛矿铁电性的起源,采用第一性原理计算软件,计算了Ti位移对Ba1-xSrxTiO3 (BST)系材料体系能量的影响及BaTiO3的电子结构。
     基于对铁电相变理论的研究结论,本文深入研究了BST系陶瓷的制备工艺及电学性能。研究结果表明:Ba1-xSrxTiO3陶瓷的晶格常数随Sr含量的增加而减小Ba1-xPbxSr0.4TiO3(BPST)陶瓷的晶格畸变随Pb含量的增加而增加。BST系陶瓷的居里温度点可以通过改变A位替代的Sr、Pb成分来调制。对于Ba1-xSrxTiO3样品随着Sr含量的增加,居里温度降低。而对于Ba0.6-xSr0.4xTiO3陶瓷,随着Pb含量的增加,居里温度增加(从-25℃上升到120℃)。对BPST系陶瓷的拉曼光谱测试,发现TiO6八面体钙钛矿结构的BST系陶瓷随着Pb成份的变化由铁电四方相逐渐转变为顺电立方相结构时,290cm-1与720cm-1处的铁电特征峰几乎消失。BPST样品520-550 cm-1处的拉曼峰对应的Ti06伸缩模的频率随着Pb含量的增加而增加,这也说明TiO6八面体稳定性随着Pb含量的增加而加强。通过采用Smolenskii的成份起伏理论对BST系陶瓷介温峰进行了拟合,发现掺Pb的BST相对与纯的BST固溶体弥散指数明显增加,说明了对BST的A位Pb替代加剧了弥散相变。而对Ba2Pb4Sr4TiO3样品在不同频率下的介温测试发现该材料具有弥散相而没有驰豫体特性(即居里温度没有随频率而发生偏移),说明了弥散相的产生并非来源于内部的离子结构,而是因为微区内Pb,Sr,Ba的成份不均所致。
     为了使BST薄膜在室温附近兼有良好的介电和铁电性能,根据Ba0.6Sr0.4TiO3的化学分子式比例,采用了改进的固相反应法,制备了BST陶瓷靶材。采用RF磁控溅射法在Pt/Ti/SiO2/Si基片上制备了(Ba,Sr)TiO3薄膜,研究了基片温度、溅射气压、02气氛、靶基距对薄膜晶体结构及择优取向的影响,分析了形核过程中体形核(相变驱动力)、表面能、界面能等因素的作用机制。通过优化薄膜的磁控溅射工艺,获得(110)择优取向的BST薄膜,电滞回线测试表明其具有较高剩余极化强度。当电压为5V,对应电场强度为280KV/cm时,BST薄膜的矫顽场(EC+)为33kV/cm,剩余极化(2Pr)为6.2μC/cm2。经过1010读/写周期疲劳特性测试后,该薄膜的剩余极化几乎没有衰减。在7V扫描电压下,该薄膜的相对介电常数为161~255,调谐率约为37%。当工作电压低于5V,漏电流低于10-7A/cm2。该薄膜具有优良的介电调谐特性。
     最后,本文研究了介电常数可调的BST薄膜在移相器中的应用。根据准静态场法和全波分析法得出了共面波导型薄膜移相器(CPW)的等效介电常数和特性阻抗解。基于这些理论计算分析,设计了CPW的几何结构参数,并采用了HFSS软件分析了CPW的结构参数对移相器性能如器件损耗、特性阻抗、移相度等的影响。这为后续的移相器器件实用化制备提供了模型参考。
A phenomenological thermodynamic description of the Devonshire theory is introduced, the applications of which to the first-order, second-order and diffused phase transition (DPT) of ferroelctrics are analyzed. Meanwhile, the methods on how to compute the spontaneous polarization and permittivity are given. Furthermore, the mechanism of diffused phase transition for ferroelectrics is explained by adopting composition fluctuation hypothesis of Smolenskii based on the microscopic thermodynamic theory. To explain the origin of ferroelectricity in the ABO3 perovskite at the atomic-level, the influence of Ti atomic location on energies and density of state in BaTiO3-based ceramics are studied by first- principle calculation.
     Based on the above discussion on phase transition of ferroelectric, the fabrication and properties of BST-based ceramics are investigated. The X-ray diffraction (XRD) shows that the lattice constant decreased for BST ceramics with the increasation of Sr content, the lattice distortion of Ba0.6-xPbxSr0.4TiO3 (BPST) ceramics increases with the increasation of Pb content. Dielectric-temperature (ε-T) properties reaveals that Cruie point for BST-based ceramics can be changed by A-site Sr or Pb ion substituation. For example, Cruie temperature (Tc) increases with the increasation for Pb content in BPST (e.g. ranging from -25℃to 120℃), and vice versa for Sr content in BST. This indicates the binding energy of Pb-O or Sr-O bond exerts different influences on TiO6 octahedron compared with Ba-O bond, e.g. Pb substitution on Ba ion enhances the stablity of TiO6 octahedron and Sr substitution Ba ion weakens the stablity of TiO6 octahedron. Furthermore, Raman spectrum shows that characteristic mode peaks of the tetragonal phase at 303 and 710 cm-1 appears when the macroscopic transition to the ferroelectric state of BST ceramics takes place at the vicinity of Tc. In addition, Raman spectra show that the Raman peak corresponding to the stretching mode of TiO6 octahedron at~550 cm-1 is shifted upward. This indicates that the A-site Pb substitution enhance the stablity of TiO6 octahedron. The fitting to the s-T property (measured at the frequency of 10 KHz) by the theory of Smolenskii indicates that the value of diffused exponentγ, determining the degree of diffuse transitions, of BST ceramics with Pb doping obviously is larger compared with BST ceramics without Pb doping. The phenomenon demonstrates that A-site Pb substitution enhances the degree of DPT. Furthermore, theε-T properties ceramic measured at different frequencies show that there has no shift of Tc compared with ferroelectric relaxtors, which implies that DPT of BST-based ceramic is induced by compositional inhomogeneity of Pb, Ba and Sr ions instead of ion structure from inside.
     Ba0.6Sr0.4TiO3 target is used for depositing BST film on Pt/Ti/SiO2/Si substrate by RF sputtering method, because its Curie temperature is near the room temperature which induces better dielectric and ferroelectric poperties. The influences of RF sputtering parameters,such as substate temperaute,sputtering pressure, substrate-target distance, O2 partial pressure etc., on microstructure and preffered orientation of film are discussed based on the theory of nucleation. It could be concluded that the nucleation of BST film deposited by RF sputtering is co-effected by interface energy, surface energy and bulk nucleation. Then, RF-sputtering parameters were optimized to obtain a developed perovskite (110)-oriented BST film. The P-V hysteresis loops of the film show that remnant polarization (2Pr) and electric coercive field (Ec) of its Pt/BST/Pt capacitor is about 6.2μc/m2 and 33 kV/cm, respectively, under the applied voltage of 5 V. And the film exhibits little fatigue degradation upon about 1010 switching cycles under voltage of 5 V. In addition, the film shows leakage current of 10-9-10-7A/cm2 within -5~5 V voltage, relative permittivity of 161-255 and tunability of about 37% within sweeping voltage of 7 V. In conlusion, BST-based films have many advantages such as high permittivity, low leakeage current and high tunability which make them have widen applications to phase shifter.
     Finally, the application to phase shifter device of BST film is considered. By the quasi-static field method and the full-wave analysis method, the characteristics impendence solution and equivalent permittivity of copular waveguide phase shifter (CPW) are derived separately. Based on the methods, the parameters of geometry structure of CPW are considered. Meanwhile, the effect of geometry structure on performance (e. g. characteristics impendence, device loss and so on) of CPW are simulated and analyized by High Frequency Structure Simulator (HFSS). The simulation will provide a reference model for the realization of CPW device.
引文
[1]H. Mueller. Rocheller salt Ⅲ. Physics Review,1940,58(6):565-573
    [2]H. Mueller. Properties of Rochelle salt. Physics Review,1940,57(9):829-839
    [3]V. L. Ginsburg. Dielectric properties of ferroelectric crystals and of barum titanate. Zh. Eksp. Teor. Fiz.,1945,15(12):739-750
    [4]Devonshire A F. Theory of barium titanate Ⅱ. Philosophical Magazine,1951,42: 1065-1079
    [5]Devonshire A F. Theory of barium titanate Ⅰ. Philosophical Magazine,1949,40: 1040-1063
    [6]Landau L D, Liftshitz E M. Statistical physics,3rd Edition. Oxford:Pegamon Press,1980:120-130
    [7]Cochran W. Theory of the lattice vibrations of germanium. Phys Rev Lett,1959, 2(12):495-497
    [8]Cochran W. Crystal stability and the theory of ferroelectricity. Adv Phys,1960, 9(36):387-423
    [9]Cochran W Lattice vibrations. Rep Prog Phys.,1963,26:1-45
    [10]Cochran W. Crystal stability and the theory of ferroelectricity Part Ⅱ. Piezoelectric crystals. Adv. Phys.,1961,10(40):401-420
    [11]R. Migoni, H. Bilz, D. Bauerle. Origin of Raman Scattering and Ferroelectricity in Oxidic Perovskites. Physical Review Letters,1976,37(17):1155-1158
    [12]Scott J F. Soft-mode spectroscopy-experimental studies of structural phase-transitions. Review Modern Physics,1974,46(1):83-128
    [13]Degennes. P. G. Collective motions of hydrogen bonds. Solid State Communications,1963,1(6):132-137
    [14]Brout R, Muller K A, Thomas H. Tunnelling and collective excitations in a microscopic model of ferroelectricity. Solid State Commun,1966,4(10):507-510
    [15]Li B L, Liu X P, Fang F. Monte Carlo simulation of ferroelectric domain growth. Physical Review B,2006,73(1):014107
    [16]Stamenkovic S, Plakida N M, Aksienov V L. Possible unified theory of ferroelectricity. Ferroelectrics,1976,14(12):655-659
    [17]Koehler T R, Gillis N S. Phase-transitions in a model of interacting anharmonic oscillators. Physical Review B,1973,7(11):4980-4999
    [18]R. E. Cohen. Origin of ferroelectricity in Perovskite oxides. Nature,1992,358(9): 136-138
    [19]C. Berbecaru, H. V. Alexandru, C. Porosnicu, et al. Ceramic material Ba(1-x)SrxTiO3 for electronics---Synthesis and charaterization. Thin Solid Films,2008,516: 8210-8214
    [20]J. W. Liou, B. S. Chiou. Dielectric characteristics of doped Ba1-xSrxTiO3 at the paraelectric state. Materials Chemistry and Physics,1997,51:59-63
    [21]H. Saito, H. Chazono, H. Kishi, et al. X7R multilayer ceramic capacitors with nickel electrodes. Jpn. J. Appl. Phys.,1991(30):2307-2310
    [22]W. H. Lee, T. Y. Tseng, D. F. K. Hennings. Effects of calcination temperature and A/B ratio on the dielectric properties of(Ba, Ca)(Ti, Zr, Mn)03 for multilayer ceramic capacitors with nickel electrodes. J. Am. Ceram. Soc.,2000,83(6): 1402-1406
    [23]K. Takemura, T. Sakuma, Y. Miyasaka. High dielectric constant(Ba, Sr)-TiO3 thin films prepared on RuO2/sapphire. Appl. Phys. Lett.,1994,64:2967-2969
    [24]T. Kawahara, M. Yamamuka, A. Yuuki, et al. Surface morphologies and electrical properties of(Ba, Sr)TiO3 films prepared by two-step deposition of liquid source chemical vapor deposition. Jpn. J. Appl. Phys.,1995,34 5077-5082
    [25]Soon Oh Park, Cheol Seong Hwang, Hag-Ju Cho, et al. Fabrication and electrical characterization of Pt/(Ba, Sr)TiO3/Pt capacitors for utralarge-scale intergrated dynamics random access memory applications Jpn. J. Appl. Phys.,1996,35: 1548-1552
    [26]Qingduan Meng, Xueqiang Zhang, Fei Li, et al. An Impedance Matched Phase Shifter Using BaSrTiO3 Thin Film. IEEE Microwave and Wireless Compenents Letters,2006,16(6):345-347
    [27]Bondurant D. Ferroelectric RAM memory family for critical data storage. Ferroelectrics,1990,112:273-282
    [28]J. R. Anderson. Ferroelectric Material Storage Element for Digital Computers and Switching Systems. Electrical Engineering,1952,71(8):916-922
    [29]Scott J. F., Araujo C. A. Ferroelectric Memories. Science,1989(246):1400-1405
    [30]Alkur T S, Kulkami J, Lu Y C. Metal-Ferroelectric-Semiconductor characteristics of bismuth titanate films on silicon. Ferroelectrics,1991,116:135-146
    [31]Moazzami R, Hu C, Shepherd W. H. A ferroelctric DRAM cell for high-density NVRAM's. IEEE Elect. Dev. Lett.,1990,11:454-456
    [32]S. Hayashi, M. Huffman, M. Azuma, et al. Gigabit-Scale DRAM Capacitor Technology With High Dielectric Constant Thin Films By a Novel Conformal Deposition Technique. VLSI Symp. Tech. Dig. Hawaii:Honolulu.1994:153-154
    [33]S. Gevorgian, E. Carlsson, E. Wikborg. Tunable microwave devices based on bulk and thin film ferroelectrics. Integrated Ferroelectric,1998,22:765-777
    [34]A. B. Ustinov, G. Srinivasana, Kalinikos, B. A. Ferrite-ferroelectric hybrid wave phase shifters. Applied Physics Letters,2007,90:031913
    [35]Spartak S. Gevorgian, Erik Ludvig Kollberg. Do We Really Need Ferroelectrics in Paraelectric Phase Only in Electrically Controlled Microwave Devices? IEEE Transactions On Microwave Theory And Techniques,2001,49(11):2117-2124
    [36]Hargsoon Yoon, Taeksoo Ji, Abraham, J. K. Development of compact phase shifters on silicon for monolithic integration of voltage controllers. Proceedings of SPIE. Bellingham, WA:Vijay K. Varadan,2004:34-39
    [37]S. E. Moon, E. K. Kim, M. H. Kark. Orientation dependent microwave dielectric Properties of ferroelectric Ba1-xSrxTIO3 thin films. Apply Physics Letter,2003,83: 2166-2168
    [38]C. L. Chen, H. H. Feng, Z. Zhang. Epitaxial ferroelectric Ba0.5Sr0.5TiO3 thin films for room-temperature tunable element applications. Applied Physics Letters,1999, 75(3)
    [39]H. Li, J. Finder, Y. Liang. Dielectric properties of epitaxial Ba0.5Sr0.5TiO3 films on amorphous SiO2 on sapphire. Applied Physics Letters,2005,87:072905
    [40]X. H. Zhu, Q. D. Meng, L. P. Yong. Influence of oxygen pressure on the structural and dielectric properties of laser-ablated Ba0.5Sr0.5TiO3 thin films epitaxially grown on(001) MgO for microwave phase shifters Journal of Physics D:Applied Physics, 2006,39(10):2282
    [41]D. Y. Wang, J. Wang, H. L. W. Chan, et al. Structural and electro-optic properties of Ba0.7Sr0.3TiO3 thin films grown on various substrates using pulsed laser deposition. Journal of Applied Physics 2007,101:043515-043517
    [42]J. T. Dawle, P. G Clem. Dielectric properties of random and(100) oriented SrTiO3 and(Ba, Sr)TiO3 thin films fabricated on(100) nickel tapes. Applied Physics Letters, 2002,81(16):3028-3030
    [43]Y. Lin, J. S. Lee, H. Wang, et al. Structural and dielectric properties of epitaxial Ba1-xSrxTiO3 films grown on LaAlO3 substrates by polymer-assisted deposition. Applied Physics Letters,2004,85:5007-5009
    [44]X. Y. Zhou, T. Heindl, G. K. H. Pang, et al. Microstructure and enhanced in-plane ferroelectricity of Ba0.7Sr0.3TiO3 thin films grown on MgAl2O4(001) single-crystal substrate. Applied Physics Letter,2006,89:232906
    [45]I. D. Kim, H. L. Tuller. High tunability(Ba, Sr)TiO3 thin films grown on atomic layer deposited TiO2 and Ta2O5 buffer layers. Applied Physics Letters,2004, 85(20):4705-4707
    [46]T. Yamada, P. M., V. O. Sherman, et al. Epitaxial growth of Ba0.3Sr0.7TiO3 thin films on Al2O3(0001) using ultrathin TiN layer as sacrificial template. Applied Physics Letters,2007,90:142911
    [47]J. S. Horwitz, W. Chang, W. Kim, et al. The effect of stress on the microwave dielectric properties of Ba0.5Sr0.5TiO3 thin films. Journal of Electroceramics,2000, 4:357-363
    [48]T. H. Fang, W. J. Chang, C. M. Lin, et al. Effect of annealing on the structural and mechanical properties of Ba0.7Sr0.3TiO3 thin films. Materials Science and Engineering A,2006,426:157-161
    [49]B. Malic, I. Boerasu, M. Mandeljc, et al. Processing and dielectric characterization of Ba0.3Sr0.7TiO3 thin films on alumina substrates. Journal of the European Ceramic Society,2007,27:2945-2948
    [50]L. Z. Cao, Q. D. Meng, Fu, W. Y. Effect of annealing on the crystal structure and dielectric properties of Ba0.6Sr0.4TiO3 thick films. Physica B.,2007,393:175-178
    [51]Dong-Young Kim, Soon-Gul Lee, Yong Ki Park, et al. Tailoring of the preferred orientation and microstructure in the deposition of BaTiO3 thin films using pulsed laser deposition. Materials Letters,1999,40:146-150
    [52]W. J. Kim, W. Chang, S. B. Qadri. Microwave properties of tetragonally distorted. Ba0.5Sr0.5TiO3 thin films. Applied Physics Letters,2000,76(9):1185-1187
    [53]L. A. Knauss, J. M. Pond, J. S. Horwitz, et al. The effect of annealing on the structure and dielectric properties of BaxSr1-xTiO3 ferroelectric thin films, appl. Phys. Lett.,1996,69(1):25-27
    [54]N. Cramera, Ali Mahmud, T. S. Kalkur, et al. Effect of annealing on leakage current in Ba0.5Sr0.5TiO3 and Ba0.96Ca0.04Ti0.84Zr0.16O3 thin films with Pt electrodes. APPLIED PHYSICS LETTERS,2005,87(3):032903-032903-4
    [55]Yidong Xia, Jinbo Cheng, Bai Pan, et al. Effects of applied electric field during postannealing on the tunableproperties of(Ba, Sr)TiO3 thin films. Applied Physics Letters,2005,87:052902
    [56]S. Halder, U. Boettger, T. Schneller, et al. Laser annealing of BST thin films with reduced cracking at an elevated temperature. Materials Science and Engineering B, 2006,133:235-240
    [57]T. Matsumoto, H. Saito, K. Numata, et al. Effect of millimeter-wave annealing on(Ba, Sr)TiO3 films prepared by chemical solution deposition. Thin Solid Films, 2005,485:101-107
    [58]W. C. Zhu, J. R. Cheng, S. W. Yu, et al. Enhanced tunable properties of Ba0.6Sr0.4TiO3 thin films grown on Pt/Ti/SiO2/Si substrates using MgO buffer layers. Applied Physics Letters,2007,90(3)
    [59]M. W. Cole, P. C. Joshi, M. H. Ervin. La doped Ba1-xSrxTiO3 thin films for tunable device applications. Journal of Applied Physics,2001,89(11):6336-6340
    [60]M. W. Cole, P. C. Joshi, M. H. Ervin, et al. The influence of Mg doping on the materials properties of Ba1-xSrxTiO3 thin films for tunable device applications. Thin Solid Films,2000,374(1):34-41
    [61]P. C. Joshi, M. W. Cole. Mg-doped Ba0.6Sr0.4TiO3 thin films for tunable microwave applications Applied Physics Letters,2000,77(2):289-291
    [62]Kyoung-Tae Kim, Chang-Il Kim. The effect of Cr doping on the microstructural and dielectric properties of(Bao.6Sro.4)Ti03 thin films. Thin Solid Films,2005,472: 26-30
    [63]J. K. Kim, S. S. Kim, W. J. Kim, et al. Improved ferroelectric properties of Cr-doped Bao.7Sro.3Ti03 thin films prepared by wet chemical deposition. Materials Letters,2006,30:2322-2325
    [64]陈宏伟.铁电薄膜材料及在介质移相器中的应用研究:[博士学位论文].电子科技大学,2007
    [65]Mi-Hwa Lim, Hyun-Suk Kim, Nan-Young Kim, et al. Frequency and Voltage Dependent Dielectric Properties of Ni-doped Bao.6Sro.4Ti03 Thin Films. Journal of Electroceramics,2004,13:239-243
    [66]A. I. Kingon, K. T. Kim, Kim., C. I. Structure and dielectric properties of Bi-doped Bao.6Sro.4Ti03 thin films fabricated by sol-gel method. Microelectronic Engineering, 2003,66:835-841
    [67]S. Y. Wang, B. L. Cheng, C. Wang, et al. Raman spectroscopy studies of Ce-doped effects on Ba0.5Sr0.5TiO3 thin films. Journal of Applied Physics,2006,99:013504
    [68]R. V. Wang, P. C. Mclntyre, J. D Baniecki, et al. Effect of Y doping and composition-dependent elastic strain on the electrical properties of(Ba, Sr)TiO3 thin films deposited at 520℃. Appl. Phys. Lett.,2005,87:192906
    [69]X. Zhu, S. Lu, H. L. W. Chan, et al. Microstructures and dielectric properties of compositionally graded(Ba1-xSrx)TiO3 thin films prepared by pulsed laser deposition. Applied Physics A,2003,76:225-229
    [70]X. Zhu, H. L. W. Chan, C. L. Choy, et al. Preparation of epitaxial compositionally graded(Ba1-xSrx)TiO3 thin films with enhanced dielectric properties. Applied Physics A,2003,77:499-505
    [71]S. Zhong, S. P. Alpay, M. W. Cole, et al. Highly tunable and temperature insensitive multilayer barium strontium titanate films. Applied Physics Letters, 2007,90:092901
    [72]Dong-Young Kim, Soon-Gul Lee, Yong Ki Park, et al. Tailoring of the preferred orientation and microstructure in the deposition of BaTiO3 thin films using pulsed laser deposition. Materials Letters,1999,40:146-150
    [73]D. Y. Kim, S. G. Lee, Y. K. Park, et al. Effect of ambient gas pressure on the preferred orientation of barium titanate thin films prepared by pulsed laser deposition. Jpn. J. Appl. Phys.,1995,34(11B):L1564-L1566
    [74]唐伟忠.薄膜材料制备原理、技术及应用.第二版.北京:冶金工业出版社,2005:140-194
    [75]Lihui Yang, Genshui Wang, Xianlin Dong, et al. Perfectly(001)-and(111)-Oriented(Ba, Sr)TiO3 Thin Films Sputtered on Pt/TiOx/SiO2/Si Without Buffer Layers. J. Am. Ceram. Soc.,2010,93(2):350-352
    [76]G. A. Smolensky. Physical Phenomena in Ferroelectrics with Diffused Phase Transitions. J. Phys. Soc. Jpn.,1970,28[Supplement]:26-37
    [77]Chaoliang Mao, Xianlin Dong, Genshui Wang. Microscopic Region Effect on the Dielectric Property of the Diffused Phase Transition Ferroelectrics:A Reasonable and Effective Diffuseness haracterizing Parameter. J. Am. Ceram. Soc.,2010, 93(12):4011-4014
    [78]K. Uchino, S. Nomura. Critical Exponents of the Dielectric Constants in Diffused-Phase-Transition Crystals Ferroelectr. Lett. Sect.,1982,44:55-61
    [79]X. G. Tang, K. H. Chew, H. L. W. Chan. Diffuse phase transition and dielectric tu nability of Ba(ZryTi1-y)O3 relaxor ferroelectric ceramics. Acta Materialia,2004,52: 5177-5183
    [80]C L Wang, W L Zhong, P L Zhang, et al. The Curie temperature of ultra-thin ferroelectric films Jounal of Physics.:Condensed Matter 1992,4:4743-4749
    [81]G. Saghi-Szabo, R. E. Cohen, H. Krakauer. First-Principles Study of Piezoelectricity in PbTiO3,. Physics Review Letters,1998,80:4321-4324
    [82]K. M. Rabe, E. Cockayne. First-principles calculation for ferroelectrics,. Fifth Williamsburg Workshop American Institute of Physics,1998,61-71
    [83]W. Kohn, L. J. Sham. Self-consistent equations Including exchange and correlation effects. Phys. Rev.,1965,140:A1133-A1138
    [84]J. P. Perdew, K. Burk, M. Ernzerhof. Generalized Gradient Approximation Made Simple. Physics Review Letters,1966,77:3865-3868
    [85]Kuo S Y, L iaoW Y, HsiehW F, et al. Structural ordering transition and repulsion of the giant LO-TO splitting in polycrystalline BaxSr1AxTiO3. Phys. Rev. B,2001, 64(224103)
    [86]Kong Xiang-Lin, Hou Qin-Ying, Su Xi-Yu, et al. First-principles study of the electronicstructure and optical properties of Ba0.5Sr0.5TiO3. Acta Physica Sinica, 2009,58(6):4128-4131
    [87]Wang Yuan, Xu Zhong Wei, Lie Wang Chun, et al. First principles study on tetragonal ferroelectric structure of PbFeo.s Nbo.503. Acta Phycal Sinica,2002, 51(1):171-173
    [88]Jianjun Li, Weiming Yang, Meng Wang, et al. Characterization and first principle studies on Pb-substituted(Ba, Sr)TiO3 ceramics,. Integrated Ferroelectrics,2009, 113:75-82
    [89]Peng Y P, Wang Y X, Zhang L, et al. First-principles study of tetragonal ferroelectric structuer of K(Ta0.56Nb0.44)O3. Acta Phycal Sinica,2000,49(6): 1140-1142
    [90]Y. X. Wang, W. L. Zhong, P. L. Zhang, et al. Theoretical study on the fine structure of PbFe0.5Nb0.5O3. Physics Letters A,2001,288(45-48)
    [91]Wang Meng, He jian-Long, Wu Yun-Yi. Synthesis and temperature dependence of permittivity of Ba1-xSrxTiO3 and Ba0.6-xPbxSr0.4TiO3 ceramics. Acta Phycal Sinica, 2010,59(9):6606-6613
    [92]G. Fabricius. Electronic structure of cubic SrHfO3:Ferroelectric stability and detailed comparison with SrTiO3. Physical Review B,1997,55(11):164-168
    [93]H. Abdelkefi, H. Khemakhem, Gabriel Velu, et al. Dielectric properties and ferroelectric phase transitions in BaxSr1-xTiO3 solid Journal of Alloys and Compounds,2005,399:1-6
    [94]T. Tsurumi, H. Adachi, H. Kakemoto, et al. Dielectric Properties of BaTiO3-Based Ceramics under High Electric Field. Japanese Journal of Applied Physics,2002,41: 6929-6933
    [95]Sining Yuna, Xiaoli Wangb, Bo Lib, et al. Dielectric properties Ca-substituted barium strontium titanate ferroelectric ceramics. Solid State Communications, 2007,143:461-465
    [96]J. L. Zhou, P. M. Vilarinho, J. L. Baptista, et al. Dielectric properties of bismuth doped Ba1-xSrxTiO3 ceramics. Journal of European Ceramic Society,2001,21: 531-534
    [97]Liqin Zhou, P. M. Vilarinho, J. L. Baptista, et al. Dependence of the structural and dielectric properties of Ba1-xSrxTiO3 ceramic solid solutions on raw material processing. Journal of the European Ceramic Society,1999,19:2015-2020
    [98]Sining Yuna, Xiaoli Wang, Bo Li, et al. Dielectric properties Ca-substituted barium strontium titanate ferroelectric ceramics. Solid State Communications,2007,143: 461-465
    [99]吕文中,汪小红.电子材料物理.北京:电子工业出版社,2002:114-127
    [100]钟维烈.铁电体物理学.第1版.北京:科学出版社,2000:155-180
    [101]C. Y. Yau, R. Palan, K. Tran, et al. Raman study of Bi site-occupancy effect on orientation and polarization in Bi4Ti3O12 thin films. Applied Physics Letters, 2004,85(20):4714-4716
    [102]U. M. Pasha, H. Zheng, O. P. Thakur, et al. In situ Raman spectroscopy of A-site doped barium titanate. Applied Phisics Letters,2007,91:062908
    [103]Burns Gand Scott B A. Raman scattering in the ferroelectric system Pb(1-x)BaxTiO3. Solid State Commun.,1971,9(11):813-817
    [104]Pinczuk A, Taylor W T, El, B., et al. The Raman spectrum of BaTiO3. Solid State Commun.,1967,5:429
    [105]Didomenico. M, Wemple. S. H, Porto. S. P, et al. Raman spectrum of single-domain BaTiO3. Physics Review,1968,174:522-530
    [106]Zhu Jun, Mao Xiang-Yu, Chen Xiao-Bing. Study on Raman spectra of Bi4-xLaxTi3O12-SrBi4-yLayTi4O15 intergrowth ferroelectrics. Acta. Phy. Sin.,2004, 53(11):3929-3933
    [107]Naoki Sugita, Eisuke Tokumitsu, Minoru Osada, et al. In Situ Raman Spectroscopy Observation of Crystallization Process of Sol-Gel Derived Bi4-xLaxTi3O12 Films. Jpn. J. Appl. Phys.,2003,42:L944-L945
    [108]Tenne D A, Soukiassian A, Xi X X, et al. Lattice dynamics in BaxSr1-xTiO3 single crystals:A Raman study. Physical Review B,2004,70:174302
    [109]Jingji Zhang, Jiwei Zhai, Xiujian Chou, et al. Microwave and infrared dielectric response of tunable Ba1-xSrxTiO3 ceramics. Acta Materialia,2009,57:4491
    [110]薛增泉,吴全德,李浩.薄膜物理.北京:电子工业出版社,1991:51-58
    [111]T. M. Shaw, Z. Suoa, M. Huang, et al. The effect of stress on the dielectric properties of barium strontium titanate thin films. Applied Physics Letters,1999, 75(14):2129-2131
    [112]Y. Gim, T. Hudson, Y. Fan, et al. Microstructure and dielectric properties of Ba1-xSrxTiO3 films grown on LaAlO3 substrates. Applied Physics Letters,2000, 77(8):1200-1202
    [113]Chunlin Fu, Chuanren Yang, Hongwei Chen, et al. Domain configuration and dielectric properties of Bao.6Sro.4Ti03 thin films. Applied Surface Science 2005, 252:461-465
    [114]X.-H. zhu, H. L.-W. Chan, C.-1. choy, et al. Influence of ambient oxygen pressure on the preferred orientation, microstructures, and dielectric properties of(Ba1-xSrx)TiO3 thin films with compositionally graded structures. Appl. Phys. A, 2005,80:591-595
    [115]Songzhan Li, Yanqin Yang, L. Liu, et al. Influence of deposition parameters on preferred orientation of RF magnetron sputtered BST thin films. J Mater Sci: Mater Electron,2008,19::223-226
    [116]X. G. Tang, H. F. Xiong, L. L. Jiang, et al. Dielectric properties and high tunability of(100)- and(110)-Oriented(Ba0.5Sr0.5)TiO3 thin films prepared by pulsed laser deposition. J. Crys. Growth,2005,285:613-622
    [117]W. Y. Hsu, J. D. Luttmer, R. Tsu, et al. Direct current conduction properties of sputtered Pt/(Ba0.7Sr0.3)TiO3/Pt thin films capacitors. Appl. Phys. Lett.,1995, 66(22):2975-2977
    [118]Franco De Flaviis, N. G. Alexopoulos, Oscar M. Stafsudd. Planar Microwave Integrated Phase-Shifter Design with High Purity Ferroelectric Material. IEEE Transactions on Microwave Theory and Techniques,1997,45(6):963-969
    [119]P. M. Suherman, T. J. Jackson, Y. Y. Tse, et al. Microwave properties of Ba0.5Sr0.5TiO3 thin film coplanar phaseshifters,. Journal of Applied Physics,2006 99:104101
    [120]Y. Liu, S. Nagra, E. Erker, et al. BaSrTiO3 interdigitated capacitors for distributed phaseshifter applications IEEE Microw. Guided Wave Lett.,2000,10(11):448-450
    [121]G. Velu, K. Blary, L. Burgnies, et al. A 310°/3.6-dB K-Band phaseshifter using paraelectric BST thin films. IEEE Microwave and WirelessComponents Letters 2006,16(2):87-89
    [122]C P Wen. Coplanar waveguide:A surface strip transmission line suitable for non-reciprocal gyromagnetic device application. IEEE Transactions on Microwave Theory and Techniques,1969,17:1087-1090
    [123]Amit. S. Nagar, York., R. A. Distrihuted Analog Phase Shifters with Low Insertion Loss. IEEE Transactions on Microwave Theory and Techniques,1999,47(9): 1705-11711
    [124]Erik Carlsson, Spartak Gevorgian. Conformal Mapping of the Field and Charge Distributions in Multilayered Substrate CPW's. IEEE Transactions On Microwave Theory and Techniques,1999,47(8):1544-1552
    [125]C. Veyresa, V. Fouad Hanna. Extension of the application of conformal mapping techniques to coplanar lines with finite imensions. International Journal of Electronics,1980,48(1):47-56
    [126]Spartak Gevorgian, L. J. Peter., E. L. Kollberg. CAD Models for Shielded Multilayered CPW. IEEE Transaction on Microwave Theory and Techniques,1995, 43(4):772-779
    [127]Ki-Byoung Kim, Tae-Soon Yun, Jong-Chul Lee, et al. Integration of Coplanar(Ba, Sr)TiO3 Microwave Phase Shifters onto Si Wafers Using TiO2 Buffer Layers. IEEE Transactions on ultrasonics, ferroelectrics, and frequency control,2006, 53(3):518-524
    [128]闫润卿,李英惠.微波技术基础.第三版.北京:北京理工大学出版社,155-156,2004
    [129]马洪.微波技术.武汉:华中科技大学出版社,2009:5-28
    [130]Y. Fukuoka. Analysis of slow-wave copanar waveguide for monolithic integrated circuit. IEEE Transaction on Microwave Theory and Techniques,1983,31(7): 567-573

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700