铁电薄膜生长及器件制备工艺的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文探讨了钛酸锶钡(BST)、铌酸锶钡(SBN)和锆钛酸铅(PZT)三种重要铁电材料的薄膜生长和器件制备工作。对于钛酸锶钡(BST)材料,我们研究了成份为Ba0.7Sr0.3Ti03(BST30)的薄膜溶胶-凝胶(Sol-Gel)生长工艺及其原理。通过对其晶相,截面微结构和表面形貌的测试,重点研究了MgO缓冲层取向和厚度对BST30薄膜结构的影响,同时结合薄膜光学性能(拟合薄膜折射率和厚度)和电学性能测试(Ⅰ-Ⅴ曲线测量),分析了MgO缓冲层对BST30薄膜性能的影响;对于铌酸锶钡(SBN)材料,我们研究了成份为Sr0.75Ba0.25Ti03(SBN75)的薄膜在TiN和MgO缓冲层上的磁控溅射制备工艺。通过引入低温自缓冲层,在MgO(001)缓冲层上得到了高择优c轴取向生长的SBN75薄膜,并结合X射线衍射,扫描电子显微镜,原子力显微镜等方法研究了其生长机理。实验中还通过组分分析,研究了SBN75溅射靶材和膜层之间的成分差异以及TiN(001)缓冲层在制备SBN75薄膜过程中产生的氧化现象及其影响。SBN/MgO/Si膜系构成波导结构的应用条件则通过计算各层薄膜折射率和MgO层肌肤深度来加以确定;对于锆钛酸铅(PZT)材料,我们研究了成份为Pb(Zr52Ti48)O3(PZT52)的薄膜Sol-Gel生长工艺及其原理,并在此基础上,利用其良好的d31和d33压电特性,设计并制备了具有平行平板(d31模式)和环形叉值(IDT模式)两种电极结构的单压电片型鼓膜驱动器阵列。通过动态和静态性能分析表明,两种模式的压电鼓膜在低电压下(0~15V)具有良好的驱动能力(最大形变量>2gm)。文中还利用有限元方法(FEM)拟合了压电鼓膜的表面面形并分析了形变成因,同时在夹持状态下,分析了热效应对无鼓膜结构阵列单元形变量的影响。
     通过上述研究工作,我们初步掌握了制备高质量铁电薄膜及其MEMS器件的工艺方法,为后期开展铁电-硅微电子集成系统(FSMIS)的研究奠定了良好的基础。
In this paper, growth of the important ferroelectric films, including strontium barium titanate (BST), strontium barium niobate (SBN) and lead zirconate titanate (PZT), and fabrication of the relevant devices were reviewed. For BST material, the Sol-Gel growth mechanism of Ba0.7Sr0.3TiO3 (BST30) thin film was studied. The crystal phase, cross-sectional micro structure and surface morphology results indicated that the orientation and thickness of MgO buffer layer can mainly affect the microstructure of BST30 film. By measuring the optical (the refractive index and thickness fitting process) and electrical properties (measurement ofⅠ-Ⅴcurve), the action of MgO buffer layer on the character of BST30 film was also estimated. For SBN material, the Sr0.75Ba0.25Nb2O6 (SBN75) thin films were deposited on silicon substrate with MgO (100) and TiN (100) buffer layer by radio-frequency magnetron sputtering technique. By introducing a 900℃annealed SBN self-buffer layer before SBN75 deposition, the highly c-axis orientation of SBN75 thin film can be obtained on MgO buffer layer. The mechanism was studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The composition analysis showed that the SBN75 films had target-film composition transfer and the TiN buffer layer was partially oxidized during SBN growth. Moreover, the conditions for SBN/MgO/Si treated as waveguide structure were also determined by calculating the refractive index of each layer and penetration depth of MgO buffer layer. For PZT material, two types of unimorph actuator arrays were fabricated based on the excellent d31 and d33 piezoelectric properties of Sol-Gel derived Pb(Zr0.52Ti0.48)O3 (PZT52) thin film. The actuator arrays utilized diaphragm structures, in which the PZT52 layers were driven by interdigitated electrodes (IDT-mode) and parallel plate electrodes (d31-mode), respectively. Test results showed that both piezoelectric diaphragms had good dynamic and static performance, which can generate considerable deflections (>2μm) at low voltage (0~15V). Moreover, the intrinsic strain conditions shaping the deflection profiles for the diaphragm actuators were evaluated with finite element method (FEM). The clamped parallel plate configuration without a diaphragm was also characterized to estimate the thermal effects in actuators under DC applied voltage.
     Through the above studies, we have mastered the process of fabricating high-quality ferroelectric thin films and MEMS devices, which lays a good foundation of further research in the filed of Ferroelectric-Silicon Microelectronics Integrated Systems (FSMIS).
引文
[1]殷之文.电介质物理学,北京,科学出版社,2003,9-13
    [2]俞文海,刘皖育.晶体物理学,安徽,中国科学技术大学出版社,1998,77-78
    [3]张福学.现代压电学下册,北京,科学出版社,2002,序言iii-vi
    [4]R. A. McKee, F. J. Walker, and M. F. Chishlom. Crystalline Oxides on Silicon: The First Five Monolayers. Phys. Rev. Lett.1998,81(14):3014-3017
    [5]K. J. Hubbard, and D.G. Schlom, Reaction of SiO with hafnium oxide in low oxygen pressure. J. Mater. Res.1996,11:2757
    [6]M. Suzuki, and T. Ami, A proposal of epitaxial oxide thin film structures for future oxide electronics. Materials Science and Engineer B,1996,41(1):166-173
    [7]钟维烈.铁电物理学,北京,科学出版社,1996,7-8
    [8]S. C. Hwang, C. S.Lynch, and R. M. McMeeking, Ferroelectric/ferroelastic interactions and a polarization switching model. Acta Metall Mater,1995,43(5): 2073-2084
    [9]V. L. Ginzburg. Zh. Eksp. Teor. Fiz.,1945,15,739; 1949,19,36
    [10]A. F. Devonshire, Phil. Mag.,1949,40,1040; 1951,42:1065; 1954, Adv. Phys. 3:85
    [11]J. C. Slater, The Lorentz correction in barium titanate. Phy. Rev.,1950.78:748
    [12]J. C. Slater, Theory of the Transition in KH2PO4. J. Chem. Phys.1941.9:16
    [13]W. Cochran, Crystal stability and the theory of ferroelectricity. Phy. Rev..Lett., 1959,3:142
    [14]P. W. Anderson, Fizika Dielektrikov, ed. By G. I. Skanovi. Akad. Nauk. SSSR. Moscow,290(1960).
    [15]Jian Zhang, Zhen Yin, Ming-Sheng Zhang, James et al. Size-driven Phase Transition in Stress-induced Ferroelectric Thin Films. Solid State Commun.2001.118 (5):241-246.
    [16]K. Uchino, E. Sadanaga, T. Hrose, J. Am. Ceram. Soc.,1989,72:1555
    [17]Weilie zhong, Peilin Zhang,Yugao Wang, Tianling Ren. Ferroelectrics,1994.160: 55
    [18]W. G. Liu, L. B. Kong, L.Y.Zhang, X.Yao, Solid State Commun.,1995,93:653
    [19]J. F. Scott, H. M. Duiker, P. D. Beale, B. Pouligny, K. Dimmler, M. Parries. D. Butler, S. Eaton, Physica, B 1988,150:160
    [20]W. L. Zhong, Y. G. Wang, P. L. Zhang, Phys. Lett., A 1994,189:121.
    [21]Y. G. Wang, W. L. Zhong, P. L. Zhang, Solid State Commun.,1994,92:519
    [22]W. L. Zhong, B. D. Qu, P. L. Zhang, Phys. Rev.,B 50,12375 (1994).
    [23]C. L.Wang, S. R. P. Smith, D. R. Tilley, J. Phys.:Condens. Matter,1994,6:9633
    [24]B. D. Qu, W. L. Zhong, P. L. Zhang, Phys.Lett.,A 1994,189:419
    [25]R. B. Meyer, I. Liebert, L. Sterzelecki, P. Keller, J. Phys. (Paris) Lett.,1975.36: L69
    [26]C. A. Paz de Araujo, G.W.Taylor. Ferroelectrics,1991,116:215
    [27]M. Dawber. K. M. Rabe and J. F. Scott, Physics of thin-film ferroelectric oxides. Rev Mod. Phys.2005,77:1083-1130
    [28]Brucec W. Wessels, Ferroelectric Epitaxial Thin Films for Integrated Optics. Annu. Rev. Mater. Res.2007.37:659-79
    [29]Scott. J. F, The physics of ferroelectric ceramic thin films for memory applications. Ferroelectric Review,1998,1:1-129
    [30]Araujo P. D, Scott J. F, Taylor G. W. Ferroelectric thin films. Amsterdam:Gordon and Breach,1996
    [31]肖定全,集成铁电学与铁电集成薄膜,物理,1994,23:577-581
    [32]Yoon J. G,et.al. Growth of highly textured LiNbO3 thin film on Si with MgO buffer layer through the sol-gel process. Appl.Phys.Lett.,1996,68 (18):29-31
    [33]R. Maas, M. Koch, N. R.Harris et al.,Thick-film printing of PZT onto silicon. Mater. Lett.,1997,31 (1-2):109-112
    [1]吴自勤,王兵.薄膜生长,北京,科学出版社,2006,30-353
    [2]H. R. Kaufman, J. J. Cuomo and J. M. E. Harper, J. Vac. Sci. Tech.1982,21:725
    [3]叶志镇.磁控溅射技术在光学薄膜中的应用研究.浙江大学博士论文(1987)
    [4]顾培夫,薄膜技术,杭州,浙江大学出版社,1990,22-74.
    [5]H. Biederman. RF sputtering of Polymers and its potential application. Vacuum. 2000,59:594-599
    [6]G. Z. Tang, X. X. Ma, M. R. Sun, and X. D. Li. Mechanical characterization of ultra-thin fluorocarbon films deposited by RF sputtering. Carbon.2005,43:345-350
    [7]G. Rhodes. Crystallography made crystal clear. Academic Press. CA:2000. ISBN0125870728.
    [8]T. E. Wood and H. Disclich, Sol-Gel Science and Technology, Academic Press, New York (1995)
    [9]C. J. Brinker and G. W. Scherer, The Physics and Chenistry of Sol-Gel Science, Academic Press, New York,1990 p. XI
    [10]J. D. Mackenzie, R. Xu, and Y. H. Xu, Chap.35 In:Chemical Processing of Advanced Materials, Ed. by L.L.Hench and J.K.West, John Wiley, New York (1992)
    [11]姚鸿年译,X射线衍射手册,理学电机株式会社,1987.12-13
    [12]裴光文,钟维烈,岳书彬.单晶、多晶和非晶物质的X射线衍射,山东大学出版社,1989.
    [13]白春礼,田芳.扫描力显微镜研究进展,物理,1997,26:617
    [14]朱杰,孙润广.原子力显微镜的基本原理及其方法学研究,生命科学仪器,2005,3:22-26
    [15]D. E. Newbury, D.C Joy, P. Echlin, C. E. Fiori, and J. I. Goldstein. Advanced scanning electron microscopy and X-ray microanalysis. New York:Plenum Press, 1986.
    [16]郭可信,叶恒强.高分辨电子显微学在固体科学中的应用.北京,科学出版社,1985,119-146
    [17]Oxiford Instruments Nanoanalysis. An Instroduction to Energy-Dispersive and Wavelength-Dispersive X-ray Microanalysis. Microscopy and Analysis.2006,52: 53-58
    [18]潘承璜,赵良仲.电子能谱基础.北京,科学出版社,1981,Chap 1-5
    [19]S. V. Sander. High-precision reflectivity measurement technique for low-loss laser mirrors. Appl. Opt.,1977,16(1):19-20
    [20]P. Y. Wu. Development of an automatic spectrophotometer. SPIE,1994:161-169
    [21]P. Y. Wu. Spectrophotometer for measuring spectral reflectance and transmittance Appl. Opt.,1975,33(10):131
    [22]C. Fleig, and A. Giesen. High precision reflectmeter. Proceedings of the 5th International Workshop of Laser Beam and optics Characterisation VDI-Verlag,2000: 319-332
    [23]曾亦可,陈刚,张洋洋,邓传益,俞丹.铁电材料Ⅰ-Ⅴ特性测试系统.仪器仪表学报.2006,27(11):1365-1368
    [24]王忆锋,毛京湘.根据Ⅳ曲线形态定性判断PN结性能的一种简易方法.红外.2008,29(3):20-23
    [1]李标荣,莫以豪,土筱珍,无机介电材料,上海科学技术出版社,1986,113-116
    [2]Smolenskii G A. Ferroelectrics and related materials, New York:Gordon & Breach,1984.555-560
    [3]B. Nagaraj, T. Sawhney, S. Perusse, and S. Aggarwal. (Ba, Sr)TiO3 thin films with conducting perovskite electrodes for dynamic random access memory applications Appl. Phys. Lett.1999,74:3194
    [4]S. W. Kirchoefer, E. J. Cukauskas, N. S. Barker, H. S. Newman, and W. Chang. Barium strontium titanate thin films for application in radio frequency microelectromechanical capacitive switches. Appl. Phys. Lett.2002,80:1255
    [5]Noren B.Thin film barium strontium titanate (BST) for a new class of tunable RF components. Microwave J,2004,47:210-220
    [6]Jona F, Shirane G. Ferroelectric Crystal. New York:Dover publications Inc.,1993. 248
    [7]S. B. Majumder, M. Jian, A. Martinez, et al. Sol-gel derived grain oriented barium strontium titanate thin films for phase shifter applications. Journal of Applied Physics, 2001,90 (2):896-903.
    [8]A. Tombak, J. P. Maria, F. Ayguavives, J. Zhang, G. T. Stauf, A. I. Kingon, A. Mortazawi. Tunable Barium Strontium Titanate Thin Film Capacitors for RF and Microwave Applications. IEEE Microw. Wirel. Compon. Lett.2002,12,1531-1533.
    [9]J. G. Cheng, J. Tang, A. J. Zhang, X. J. Meng, J. H. Chu. Sol-gel-derived pyroelectric barium strontium titanate thin films for infrared detector applications. Appl. Phys. A 2000,71:667
    [10]唐军,程建功,褚君浩.非致冷钛酸锶钡铁电薄膜红外探测器.红外技术, 2001,23(6):26-29.
    [11]M. Gaidi. Microstructural and optical properties of Ba0.5Sr0.5TiO3 thin film deposited by pulsed laser deposition for low loss waveguide applications.J. Appl. Phys.2007,101:063107
    [12]D. Y. Wang, J. Wang, H. L. W. Chan, and C. L. Choy. Structural and electro-optic properties of Ba0.7Sr0.3TiO3 thin films grown on various substrates using pulsed laser deposition. J. Appl. Phys.2007,101:043515
    [13]Knauss L A, Pond J M, Horwitz J S, Chrisey D B, Mueller C H, and Randolph Treece. Appl. Phys. Lett.1996,69:25
    [14]T. J. Zhang, S. Z. Li, B. S. Zhang, R. K. Pan, W. H. Huang, and J. Jiang. Ceramics International.2007,33:723
    [15]Y. Gim, T. Hudson, Y. Fan, C. Kwon, A. T. Findikoglu, B. J. Gibbons, B. H. Park, and Q. X. Jia. Microstructure and dielectric properties of Ba1-xSrxTiO3 films grown on LaAlO3 substrates. Appl. Phys. Lett.2000,77:1200
    [16]B. H. Park, E. J. Peterson, and Q. X. Jia. Effects of very thin strain layers on dielectric properties of epitaxial Bao.6Sro.4Ti03 films. Appl. Phys. Lett.2001,78:533
    [17]G. S. Wang, Y. Y Zhang, C. L. Mao, and X. L. Dong. Composition dependence of structural and optical properties for sol-gel derived (100)-oriented Ba1-xSrxTiO3 thin films. Appl. Phys. Lett.2007,91:061104
    [18]W. F. Qin, J. Xiong, J. Zhu, J. L. Tang, W. J. Jie, X. H. Wei, Y. Zhang, and Y. R. Li. Enhanced electrical properties of multilayer Ba(Zr0.2Ti0.8)O3/Ba0.6Sr0.4TiO3/ Ba(Zr0.2Ti0.8)03 thin films for tunable microwave applications. J Mater Sci:Mater Electron.2008,19:429
    [19]S. X. Wang, J. H. Hao, Z. P. Wu, D. Y. Wang, Y. Zhuo, and X. Z. Zhao. Dielectric properties of Ba0.6Sr0.4Ti03 thin films using Pb0.3Sr0.7TiO3 buffer layers. Appl. Phys. Lett.2007,91:252908
    [20]W. C. Zhu, J. R. Cheng, S. W. Yu, J. Gong, and Z. Y. Meng. Enhanced tunable properties of Ba0.6Sr0.4TiO3 thin films grown on Pt/Ti/SiO2Si substrates using MgO buffer layers. Appl. Phys. Lett.2007.90:032907-1
    [21]N. A. Basit, H. K. Kim, J. Blachere. Growth of highly oriented Pb(Zr, Ti)O3 films on MgO-buffered oxidized Si substrates and its application to ferroelectric nonvolatile memory field-effect transistors. Appl. Phys. Lett.1998,73:3941
    [22]S. H. Wemple. Optical oscillator strengths and excitation energies in solids, liquids, and molecules. J.Chem.Phys.1977,67:2151
    [23]X. Y. Chen, K.H. Wong, C. L. Mak, X. B. Yin, M. Wang, J. M. Liu, Z. G. Liu. Selective growth of (100)-, (110)-, and (111)-oriented MgO films on Si(100) by pulsed laser deposition. J. Appl. Phys.2002,91(9):5728-5234
    [24]J. Yoon, K. Kim. Growth of (111) oriented MgO film on Si substrate by the sol-gel method. Appl. Phys. Lett.1995,66:2661
    [25]S. Hoffmann, and R. Waser. Control of the morphology of CSD-prepared (Ba, Sr) TiO3 thin films. J. Eur. Ceram. Soc.1999,19:1339
    [26]W. X. Zhang, Z. Y. Xu, C. A. Wang, and B. F. Zhao. Self-buffered BaxSr1-xTiO3 films by sol-gel and RF magnetron sputtering method. Mater. Res. Bull.2003,38:133
    [27]R. A. Mckee, F. J. Walker, E. D. Specht, and J.H. Harding. Interface stability and the growth of optical quality perovskites on MgO. Phys. Rev. Lett.1994,72:2741
    [28]唐晋发,顾培夫,刘旭,李海峰.现代光学薄膜技术.杭州,浙江大学出版社,2006,403-412
    [29]沈伟东,刘旭,叶辉,顾培夫.确定薄膜厚度和光学常数的一种新方法.光学学报,2004,24(7):885-889
    [30]R. Thielsch, K. Kaemmer, B. Holzapfel, and L. Schultz. Structure-related optical properties of laser-deposited BaxSr1-xTiO3 thin films grown on MgO (001) substrates. Thin Solid Films.1997,301:203
    [31]F. M. Pontes, E. R. Leite, D. S. L. Pontes, and E. Longo. Ferroelectric and optical properties of Ba0.8Sr0.2TiO3 thin film. J. Appl. Phys.2002,91:5972
    [32]S. Baba, I. Mori, and T. Nakano. Precise determination of the refractive index of sputtered MgO thin films in the visible light range. Vaccum.2000,59:531
    [33]李跃甫,叶辉,傅兴海.高择优取向铌酸锶钡薄膜的射频磁控溅射制备.物理学报,2008,57(2):1229-1235
    [34]J. Jia, K. Huang, Q. Pan, and D. He. Significant suppression of leakage current in (Bax, Sr1-x)TiO3/MgO heterostructured thin films by thin MgO layers insertion. J. Sol-Gel Sci. Technol.2007,42:9
    [1]Y. H. Xu. Ferroelectric Materials and Their Applications. Amsterdam:Elsevier Science Publishers,1991.82-84
    [2]钟维烈.铁电物理学,北京,科学出版社,1996,7-8
    [3]J. R.Carruthers, and M. Grasso. Phase Equilibria Relations in the Ternary System BaO-SrO-NbO. J Electrochem. Soc.1970,117:1426
    [4]S. Nomura, H. Kojima, Y. Hattori, H. kotsuka, Low Voltage Light Modulation with SrxBa1-xNb2O6 at Video Frequency. Jpn. J. Appl. Phys.1974,13:1185
    [5]A. M. Glass. Investigation of the electrical properties of SBN with special reference to pyroelectric detection. J. Appl. Phys.,1969,40 (12):4699-4713.
    [6]J. D. Zook, and S. T. Liu. Pyroelectric effects in thin film. J. Appl. Phys.,1978,49 (8):4604
    [7]S. Sakamoto, and T. Yazaki. Anomalous electro-optic properties of ferroelectric strontium barium niobate and their device applications. Appl.Phys.Lett.,1973,22(9): 429-431
    [8]F. Micheron, and G. Bismuth, Field and time thresholds for the electrical fixation of holograms recorded in (Sr0.75Ba0.25)Nb2O6 crystals. Appl.Phys.Lett.,1973,23(2), 71-72
    [9]F. Micheron, and J. C. Trotier. Photoinduced phase transitions in (Sr, Ba) Nb2O6 crystals and applications. Ferroelectrics.1974,8:441-442
    [10]E. L.Venturin,E. G. Spencer, P. V. Lenzo, and A. A. Ballman. Refractive Indices of Strontium Barium Niobate. J. Appl. Phys.,1968,39(1):343-344
    [11]A. M. Glass. Investigation of the Electrical Properties of Sr1-xBaxNb2O6 with Special Reference to Pyroelectric Detection. J.Appl.Phys.,1969,40 (12):4699-4713
    [12]S. Ducharme, J. Feinbrg, and R. R. Neurgaonkar, Electrooptic and piezoelectric measurements in photorefractive barium titanate and strontium barium niobate. IEEE, J.Quantum Electronics.,1987,23:2116-2121
    [13]J. B. Thaxter. Electrical Control of Holographic Storage in Strontium-Barium Niobate. Appl.Phys.Lett.,1969,15 (7):210-212
    [14]A. A. Ballman, H. Brown, The growth and properties of strontium barium metaniobate, Sr1-xBaxNb2O6, a tungsten bronze ferroelectric. J. Cryst. Growth,1967, 1(5):311-314
    [15]S. Kuroda, and K. Kubota. Diffuse phase transition in rare earth ion doped SBN. J.Phys.Chem.Solids,1981,42(7):573-577
    [16]G. Zhdanov, E. G. Spencer, V. K. Malinovsky, et al, Characteristic features of dielectric nonlinearity of strontium barium niobate films, Ferroelectrics,1980,29: 219-220.
    [17]Yuhuan Xu, Ferroelectric Sr0.6OBa0.4Nb2O6 thin films by the sol-gel process: electrical and optical properties. Physical Review B,1991,44(1):35-41
    [18]G. Salamn, M. J. Miller, W. W. Clark, et al. Strontium barium niobate as a self-pumped conjugator. Optics. comm.,1986,59:417
    [19]J. Sharp, G. L. Wood, W. W. Clark, et al. Incoherent-to-coherent conversion using a photorefractive self-pumped conjugator. Optics Letters,1992,17:207
    [20]J. E. Ford, J. Ma, Y. Fainman, et al. Multiplex holography in strontium barium niobate with applied field. J.Opt. Soc. Am. A.,1992.9:1183
    [21]J.Koo, J.H. Jang, B.S. Bae. Crystallization behavior of sol-gel-derived strontium barium niobate thin films, J. Am. Ceram. Soc,2001,84 (1):193-199
    [22]H. F. Cheng, G. S. Chjou, et.al, Ferroelectric properties of (Sr0.5Ba0.5) Nb2O6 thin films synthesized by pulsed laser deposition, Applied Surface Science,1997,113/114: 217-221
    [23]H. Ye, H. Melanie, et al., Relationship of microstructure and thickness in ferroelectric Strontium Barium Niobate thin film. Optical Instruments.,2001,23(5-6): 193-197
    [24]叶辉,Melanie M T Ho, C L Mak铌酸锶钡薄膜的微结构与电光性能的研究.光学学报.2002,22(10):1170-1175
    [25]S. Schwyn Thony, K. E. Youden, J. S. Harris, Jr., L. Hesselink. Growth of epitaxial strontium barium niobate thin films by pulsed laser deposition. Appl.Phys.Lett.,1994,65 (16):2018-2010
    [26]C. M. Rouleaua, G. E. Jellison, Jr., D. B. Beach. Influence of MgO substrate miscut on domain structure of pulsed laser deposited SrxBa1-xNb2O6 as characterized by x-ray diffraction and spectroscopic ellipsometry. Appl.Phys.Lett.,2003,82 (18): 2990-2992
    [27]Wu Y Z et al, Effects of long-range interactions on the ferroelectric film. Chinese Phys.2001,10(11):1058-1061
    [28]T. W. Chiu, N. Wakiya, et al, Growth of highly (001)-textured strontium barium niobate thin films on epitaxial LaNiO3/CeO2/YSZ/Si(100), Thin Solid Films.2003, 426:62-67
    [29]曹晓燕,叶辉,邓年辉,郭冰,顾培夫.高择优取向硅基含钾铌酸锶钡(K:SBN)薄膜的制备与性能.物理学报,2008,53(7):2363-2367
    [30]Z. R. Shen, H. Ye, C. L. Mak, T. Y. Yum, K. H. Wong. Fabrication of c-axis oriented potassium-doped Sr0.6Ba0.4Nb206 thin films on Si substrates by pulsed laser deposition method. Thin Solid Films.2007,515:3475-3479
    [31]Z. R. Shen, H. Ye, C. L. Mak, K. H. Wong, T.Y. Yum, W.C. Liu, T. Zou. Preparation of highly c-axis oriented Sr0.6Ba0.4Nb2O6 thin films grown on Silicon substrate by the sol-gel process. Materials Chemistry and Physics.2006,99:10-14
    [32]X.Y. Cao, H. Ye, Z. R. Shen, N.H. Deng, B. Guo, G. Pepost. Growth of highly c-axis oriented SBN thin films on Si(100) with_without MgO buffer layer by the sol-gel method. Journal of Materials Science.2004,39:6871-6873
    [33]康祥喆,叶辉.铁电钾钠铌酸锶钡薄膜电光性能的研究.物理学报,2006,55(9):4928-4933
    [34]Parviz Tayebati, Dhrupad Trivedi, Martin Tabat, et al. Pulsed laser deposition of SBN:75 thin films with electro-optic coefficient of 844 pm/V. Appl.Phys.Lett.,69(8), 1023-1025
    [35]李跃甫,叶辉,傅兴海.高择优取向铌酸锶钡薄膜的射频磁控溅射制备.物理学报,2008,57(2):1229-1235
    [36]B. W. Karr, et al, Morphology of epitaxial TiN(001) grown by magnetron sputtering, Appl.Phys.Lett.1997,70(13):1703-1705
    [37]J. Natayan, et al, epitaxial growth of TiN thin films on (100) silicon substrates by laser physical vapor deposition, Appl.Phys.Lett.,1992,61(11):1290-1292.
    [38]S. Veprek, et al, Plasma -induced and plasma-assisted chemical vapor deposition. Thin Solid films.1985,130:135-150.
    [39]M. B. Lee, H. Koinuma. Structural and dielectric properties of epitaxial SrTiO3 films grown on Si(100) substrate with TiN buffer layer. J. Appl. Phys.,1997,81(5): 23582363.
    [40]T. Zheleva, et al, epitaxial growth in large-lattice mismatch system, J. Appl. Phys.1994,75(2):860-871.
    [41]U. C. Oh, J. H. Je. Effects of strain energy on the preferred orientations of TiN thin films, J. Appl. Phys,1993,74(3):1692-1696.
    [42]X. Q. Xu, H. Ye, T. Zou, Characterization of DC magnetron sputtering deposited thin films of TiN for SBN-MgO-TiN-Si structural waveguide. J. Zhejiang Univ SCIENCE. A.2006,7:472
    [43]X. Y. Chen, K.H. Wong, C. L. Mak, X. B. Yin, M. Wang, J. M. Liu, Z. G. Liu. Selective growth of (100)-, (110)-, and (111)-oriented MgO films on Si(100) by pulsed laser deposition. J. Appl. Phys.2002,91(9):5728-5234
    [44]M. Cuniot-Ponsard, J. M. Desvignes, B. Ea-Kim, E. Leroy. Radio frequency magnetron sputtering deposition of hetero-epitaxial strontium barium niobate thin films (SrxBa1-xNb206). J. Appl. Phys.2003,93(3):1718-1723
    [45]J. G. Zhu, D. Q. Xiao, and S. B. Palmer, Preparation of SBN/LSCO/MgO multilayer thin films by pulsed laser deposition. Ferroelectrics.2001.260:545
    [46]S. B. Xiong, Z. M. Ye, X. Y. Chen, X. L. Guo, S. N. Zhu, Z. G. Liu, C. Y. Lin, and Y. S. Jin, Ferroelectric SrxBa1-xNb2O6 optical waveguiding thin films on SiO2-coated Si (100) substrates. Appl. Phys, A.1998,67:313
    [47]R. A. Mckee, F. J. Walker, E. D. Specht, and J.H. Harding. Interface stability and the growth of optical quality perovskites on MgO. Phys. Rev. Lett.1994,72:2741
    [48]X. T. Li, P. Y. Du, H. Ye, C. L. Mak, and K. H. Wong. Electro-optic properties of epitaxial Sro.6Ba0.4Nb2O6 films grown on MgO substrates using LixNi2-xO buffer layer. Appl. Phys. A.2008,92:397
    [49]A. Lousa, J. Esteve, J. P. Mejia, and A. Devia, Influence of deposition pressure on the structural mechanical and decorative properties of TiN thin films deposited by cathodic arc evaporation. Vacuum.2007,81:1507
    [50]沈伟东,刘旭,叶辉,顾培夫.确定薄膜厚度和光学常数的一种新方法.光学学报,2004,24(7):885-889
    [51]顾培夫,薄膜技术,杭州,浙江大学出版社,1990,22-74.
    [52]S. Sainov, J. Dikova, and K. Beev, Evanescent wave holographic recording in nanosize thick chalcogenide glass films. Opt. Commun.2006,263:163
    [1]D. Gavel, MEMS development for astronomical instrumentation at the Lick Observatory for adaptive optics, in:Proceedings of SPIE. vol.6467, CA. USA,24 January 2007, pp.646702
    [2]D. A. Horsley, H. Park, S. P. Laut, and J. S. Werner, Characterization for vision science applications of a bimorph deformable mirror using phase-shifting interferometry, in:Proceedings of SPIE. vol.5688, CA, USA,2 May 2005, pp. 133-144
    [3]C. S. Long, P. W. Loveday, and A. Forbes, A piezoelectric deformable mirror for intra-cavity laser adaptive optics, in:Proceedings of SPIE. vol.6930, CA, USA,19 March 2008, pp.69300Y
    [4]J. Comtois, A. Michalicek, W. Cowan and J. Butler. Surface-micromachined polysilicon MOEMS for adaptive optics. Sens. Actuators. A,1999,78:54-62
    [5]王大珩,现代仪器仪表技术与设计,北京,科学出版社,2002,第一章
    [6]Tyson R K. Principles of Adaptive Optics. San Diego:Academic Press,1998.
    [7]J. A. Perreault, T. G. Bifano, B. M. Levine, and M. N. Horenstein. Adaptive optic correction using microelectromechanical deformable mirrors. Opt. Eng.,2002,41(3), 561-566
    [8]V. V. Sychev, and A. S. Pechenov. Adaptive optics of large astronomical telescopes. J. Opt. Technol.2001,68 (8):617-620
    [9]B. Rashidian, M. G. Allen. Electrothermal Microactuators Based on Dielectric Loss Heating. Proc.MEMS.1993:24-29
    [10]贺志荣.TiNi形状记忆合金的工程应用研究现状和展望.材料导报.2005,19(4):50-53
    [11]Y. Hishinuma, E. H. Yang, B. M. Levine, and E. E. Bloemhof. Piezoelectric unimorph MEMS deformable mirror for ultra-large telescopes. Proc. SPIE.2005, 5717:21-29
    [12]E. Dalimier, and C. Dainty. Comparative analysis of deformable mirrors for ocular adaptive optics. Optics Express.2005,13(11):4275-4285
    [13]杨昊宇,赵小林等.平面线圈型MEMS微电磁驱动器的理论分析与实验研究,传感技术学报,2006,19(5):1920-1923
    [14]石庚辰,微机电系统技术,北京,国防工业出版社,2002,47-54
    [15]崔铮.微纳米加工技术及其应用综述,物理,2006,35:34-39
    [16]张志伟.自适应在空间光学遥感器上的应用,航天返回与遥感,2000,21(3):23-29.
    [17]饶伏波,乔大勇,苑伟政.自适应光学系统MEMS微变形镜的研究.纳米技术与精密工程.2004,2(4):288-293
    [18]F. Xu, R. A. Wolf, T. Yoshimura, and S. Trolier-McKinstry. Piezoelectric films for MEMS applications. ISE:Proc.11th Int. Symp. on Electrets.2002,386-396,
    [19]R. Maeda, J. J. Tsaur, S. H. Lee, and M. Ichiki, Piezoelectric microactuator devices, J. Electroceramics.2004,12:89-100.
    [20]H. Kueppers, T. Leuerer, U. Schnakenberg. W. Mokwa, M. Hoffmann, T. Schneller, U. Boettger, and R. Waser, PZT thin films for piezoelectric microactuator applications, Sens. Actuators A,2002,97-98:680-684
    [21]Y. Hishinuma, and E. H. Yang, Piezoelectric unimorph microactuator arrays for single-crystal silicon continuous membrane deformable mirror, J. Microelectromech. Syst.2006,15:686-696.
    [22]A. J. Moulson, J. M. Herbert, Electroceramics, London:Chapman and Hall,1990
    [23]B. Xu, R. G. Polcawich, S. Trolier-McKinstry, Y. Ye, L. E. Cross, J. J. Bernstein, and R. Miller, Sensing characteristics of in-plane polarized lead zirconate titanate thin films, Appl. Phys. Lett.1999,75:4180-4182.
    [24]张福学.现代压电学中册,北京,科学出版社,2002,70-73
    [25]W. L. Zhong, P. L. Zhang, and S. D. Liu, Piezoelectric ceramics with high coupling and high temperature stability, Ferroelectrics.1990,101:173-177
    [26]M. J. Haun, Thermodynamic theory of the Lead Zirconate-Titanate solid solution system, Ph.D. thesis, the Pennsylvania State University.1988
    [27]H. Du, D. W. Johnson, Jr., W. Zhu, J. E. Graebner. G. W. Kammlott, S. Jin, J. Rogers, R. Willett, and R. M. Fleming, Growth and measurements of ferroelectric lead zirconate titanate on diamond by pulsed laser deposition, J. Appl. Phys.1999,86: 2220-2226.
    [28]N. A. Basit, H. K. Kima, and J. Blachere. Growth of highly oriented Pb(Zr, Ti)O3 films on MgO-buffered oxidized Si substrates and its application to ferroelectric nonvolatile memory field-effect transistors, Appl. Phys. Lett.1998,73:3941-3943.
    [29]S. H. Yang, Y. L. Zhang, and D. Mo, A comparison of the optical properties of amorphous and polycrystalline PZT thin films deposited by the sol-gel method. Mater. Sci. Eng., B.2006,127:117-122.
    [30]J. S. Zhao, D.Y. Park, M. J. Seo, C. S. Hwang, Y. K. Han. C. H. Yang, and K. Y. Ohb, Metallorganic CVD of high-quality PZT thin films at low temperature with new Zr and Ti precursors having MMP ligands,J. Electrochem. Soc.2004.151: C283-C291.
    [31]P. Schwaller, M. Aeberhard, T. Nelis, A. Fischer, R. Thapliyal, and J. Michlerl. Rapid depth profiling of lead zirconate titanate (PZT) thin films by pulsed glow-discharge optical emission spectroscopy. Surf. Interface Anal.2006,38: 757-760,
    [32]H. S. Kang, and W. J. Lee, Effects of deposition temperature and seed layer on the optical properties of lead zirconate titanate films, J. Vac. Sci. Technol. A 2002,20: 1498-1504.
    [33]S. K. Pandeya, A. R. Jamesa, Chandra Prakasha, T. C. Goelb, and K. Zimikc, Electrical properties of PZT thin films grown by sol-gel and PLD using a seed layer, Mater. Sci. Eng., B 2004,112:96-100.
    [34]D. S. Paik, A. V. Prasada Rao, and S. Komarneni, Sol-gel fabrication of oriented PZT thin films:Effect of buffer layer in promoting epitaxial growth. Ferroelectrics. 1998,11:141-151.
    [35]S. H. Kim, Y. S. Choi, C. E. Kim, and D. Y. Yang, The effects of PbTiO3 thin template layer and Pt/RuO2 hybrid electrode on the ferroelectric properties of sol-gel derived PZT thin film. Thin Solid Films.1998,325:72-78.
    [36]K. R. Williams, and R. S. Muller, Etch rates for micromachining processing, J. Microelectromech. Syst.1996,5:256-269
    [37]H. Kikyuama, N. Miki, K. Saka, J. Takano, I. Kawanabe, M. Miyashita, and T. Ohmi, Principles of wet chemical processing in ULSI microfabrication, IEEE Transactions on Semiconductor Manufacturing,1991,4:26-35
    [38]K. L. Zheng. J. Lu, and J. R. Chu, A Novel Wet Etching Process of Pb(Zr,Ti)O3 Thin Films for Applications in Microelectromechanical System, Jpn. J. Appl. Phys. 2004.43:3934-3937.
    [39]张正元,徐世六,刘玉奎等.用于MEMS的硅湿法深槽刻蚀技术研究.微电子学.2004,34(5):519-521
    [40]R. A. Wolf, and S. Trolier-McKinstry, Temperature dependence of the piezoelectric response in lead zirconate titanate films. J. Appl. Phys.2004,95: 1397-1406.
    [41]C. Zinck, D. Pinceau, E. Defay, E. Delevoye, and D. Barbier, Development and characterization of membranes actuated by a PZT thin film for MEMS applications. Sens. Actuators. A 2004,115:483-489.
    [42]E. Hong, S. V. Krishnaswamy, C. B. Freidhoff, and S. Trolier-McKinstry, Micromachined piezoelectric diaphragms actuated by ring shaped interdigitated transducer electrodes. Sens. Actuators. A 2005.119:521-527.
    [43]N. R. Harris, M. Hill, R. Torah, R. Townsend, S. Beeby. N. M. White, and J. Ding. A multilayer thick-film PZT actuator for MEMs applications. Sensors and Actuators A.2006,132:311-316
    [44]E. Hong, S. Trolier-McKinstry, R. L. Smith, S. V. Krishnaswamy, and C. B. Freidhoff, Design of MEMS PZT Circular Diaphragm Actuators to Generate Large Deflections. J. Microelectromech. Syst.2006,15:832-839.
    [45]T. R. Chandrupatla,and A. D. BElegundu. Introduction to finite elements in engineering (Third Edition). New Jersey:Editorial Prentice Hall,1991
    [46](德)P. I. Kattan著,韩来彬译MATLAB有限元分析与应用.北京,清华大学出版社.
    [47]E. Dalimier, and C. Dainty, Comparative analysis of deformable mirrors for ocular adaptive optics, Opt. Expr.2005,13:4275-4285.
    [48]I. Kanno, H. Kotera, and K.Wasa, Measurement of transverse piezoelectric properties of PZT thin films, Sens. Actuators. A,2003,107:68-74.
    [49]薛晖,沈伟东,顾培夫,罗震岳,刘旭,章岳光.基于白光干涉的光学薄膜物理厚度测量方法.光学学报.2009,29(7):1877-1880
    [50]B. A. Tuttle, J. A. Voigt, D. C. Goodnow. D. L. Lamppa. T. J. Headley. M. O. Eatough, G. Zender, R. D. Nasby, and S. M. Rodgers. Highly Oriented, Chemically Prepared Pb(Zr, Ti)O3 Thin Films. J. Am. Ceram. Soc.1993,76:1537-1544

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700