Ba_(0.67)Sr_(0.33)TiO_3基陶瓷的组成变化对结构、性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多层陶瓷电容器(MLCC)是重要的电子元件,MLCC的微型化、集成化、低成本化和多功能化依赖于高性能陶瓷的制备,包括瓷料制备、瓷料的性能控制等。Ba1-xSrxTiO3是主要的体系之一。本论文选择Ba0.67Sr0.33TiO3(BST)基陶瓷体系作为研究对象,从粉体的制备方法、陶瓷的制备工艺、Ba0.67Sr0.33TiO3基陶瓷组成改变对介电常数及温度稳定性等性能的影响进行系统研究,探索影响性能的本征与非本征因素,为获取高质量的陶瓷提供论证。
     论文主要研究工作和结论如下:
     获得高活性粉体是BST高性能细晶陶瓷制备的基础。本文采用固相法研究了制备工艺对BST粉体、陶瓷结构和性能的影响,以及晶粒尺寸对BST陶瓷性能的影响。实验证明:950℃C合成的BST粉体纯度高、单分散性好、粒径小(约110nm)且分布均匀。1300-C烧结所得的BST陶瓷相对密度最高(98.6%),晶粒细小(约250nm),具有良好的介电性能和铁电性能。室温下具有较高的介电常数和较低的介电损耗εr=7676,tanS=0.01,较高的剩余极化Pr=9.21aC/cm2,较低的矫顽场Ec=1.58kV/cm。
     考虑CBT(CaBi4Ti4O15)低熔点以及包含具有弥散特性Ca, Bi离子,为有效降低BST陶瓷烧结温度以及改善介电温度稳定性,本文研究了CBT不同掺杂量对BST陶瓷结构与性能的影响。研究发现CBT使BST陶瓷烧结温度显著降为1100-C,且有效抑制了晶粒的生长。CBT掺杂明显改善了BST陶瓷温度稳定性,当CBT含量x≥6%时,介电常数温度稳定范围(△C/C<±15%)已无显著改善。掺杂CBT使BST陶瓷呈现显著的铁电弛豫行为,且随着掺杂量的增加,介电峰弥散程度和弛豫强度逐渐增强。
     添加稀土元素是提高BST陶瓷材料介电性能的一种最常用有效的方法。本文研究了La掺杂对BST陶瓷结构与性能的影响,分析掺杂造成的不同缺陷补偿机制对BST陶瓷电性能影响机理。研究表明,适量的稀土La掺杂(0.2     通过肖特基(Schottky)势垒模型及电学微观结构模型分析La掺杂诱发BST高介电常数以及介电弛豫现象机制。研究表明,表面或晶界势垒高度和耗尽层厚度是影响材料介电性能的主要因素;表面势垒对BST陶瓷高介电效应有很大的贡献。采用CuO对BST样品进行改性,使介电常数得到明显提高,损耗明显降低以及使破坏电压得到明显改善。BST陶瓷在测试频率范围内出现三种不同的介电弛豫现象。结合阻抗谱分析,进一步确定在半导化BST陶瓷中,存在表面势垒和晶界势垒。这些势垒的形成导致了样品的电学非线性特征,导致不同的界面极化使样品呈现出很高的表观介电常数。
Multilayer ceramic capacitors (MLCC) are important electric components, the micromation, the integration, the low cost and multifunctionality of MLCC depends on preparing ceramics with high properties, including the preparation of porcelain raw material, the properties control of ceramics and so on. The Ba1-xSrxTiO3is one of the main systems. In the thesis, Bao.67Sro.33Ti03-based ceramic was selected as candidate material, the preparation methods of powder, the preparation technology of ceramics, the effect of Bao.67Sro.33Ti03-based ceramic composition change on permittivity as well as temperature stability and so on were investigated systematically, and we explore the intrinsic or extrinsic factors impacting properties for offering proof of obtaining ceramics with high quality.
     The main works and conclusions are summarized as follows:
     For the preparation of BST ceramics with optimum properties, it is necessary to obtain highly active powder first. We study the effect of preparation processes on the structure and properties of BST powder as well as ceramics using the solid method. And we futher investigate the influence of grain size on the properties of BST ceramics. The experiments show that when calcined at950℃, the BST powder present high purity, the better single dispersivity, small particle diameter (about110nm) and homogeneous size distribution. High relative density(98.6%), fine grains (about250nm) of BST ceramic sintered at1300℃show better dielectric properties and ferroelectric properties. The high room dielectric constant and low dielectric loss: εr=7676, tanδ=0.01; the large remanent polarization and low coercive field are Pr=9.2μC/cm2, Ec=l.58kV/cm, respectively.
     Considering the low melting point of CBT(CaBi4Ti4O15) as well as containing Ca, Bi ions with diffusion, in order to decrease sintering temperature and improve the dielectric temperature stability of BST ceramics effectively, the structures and properties of BST ceramics doped with various CBT content were investigated. The results show that CBT doping decrease the sintering temperature of BST ceramics to 1100℃, moreover restrain grain growing significantly. In addition, CBT improve the temperature characteristics of BST ceramics obviously, and the range of dielectric temperature stability(ΔC/C≤±15%) cann't be broaden obviously when the CBT content x>6%. The BST ceramics exhibit obvious ferroelectric relaxation behaviors by doping CBT, and the BST ceramics show an increased diffuseness of the dielectric peak and an increased degree of relaxor characteristics with increasing CBT content.
     It is a common and effective method to enhance the dielectric properties of BST ceramics by adding rare-earth elements. The structure and dielectric properties of La-doped BST ceramics were investigated as well as the relation between the properties of BST ceramics and the different defect compensation mechanisms resulting from La doping. The results show that proper rare earth La dopant (0.2≤x≤0.7) may greatly increase the dielectric constant of BST ceramics, also flat the dielectric peak and improve the temperature stability evidently. According to the current-voltage I-V(J-V) characteristics, the proper La doped BST ceramics may reach the better semiconductivity at the optimal densification condition, when the less and more La doping, the ceramics are insulators. In addition, the current-voltage basically follows the ohm's law for insulating samples; while for the semiconductive samples, the conduction mechanism is different at different voltage range, and the current is mainly controlled by the Schottky emission at comparatively high voltage range.
     By the Schottky barrier model and electric microstructure model to analyze the cause of the high dielectric constant behavior and the dielectric relaxation of La doped BST ceramics. The results show that the surface or grain boundary potential barrier height and the width of depletion layer do play an important role in impacting dielectric properties; and the surface potential barrier have a great contribution to the high permittivity of BST ceramics. CuO has been used to modify the electrical properties of BST, and it can be observed that the permittivity was further increased and the dielectric loss was decreased obviously as well as the broken voltage is improved evidently. Three various dielectric relaxations of BST ceramics are observed in the measured frequency range. On the complex impedance spectroscopy analysis, the surface barriers and grain boundary barriers have been further confirmed in the semiconductive BST ceramic. The formation of such electrical potential barriers leads to the electrical nonlinearity in the I-V characteristics and different interface polarizations resulting in very large apparent dielectric constant.
引文
[1]小西良弘,俊郎.电子陶瓷基础和应用(王兴斌译).北京:机械工业出版社,1983
    [2]李世普.特种陶瓷工艺学,武汉:武汉工业大学出版社,1990
    [3]钟维列,铁电体物理学,科学出版社,2000
    [4]任凤章.材料物理基础,北京:机械工业出版社,2006
    [5]李翰如.电介质物理导论.成都:成都科技大学出版社,1990
    [6]殷之文.电介质物理学.北京:科学出版社,2003
    [7]H. Kishi, Y. Mizuno, and H. Chazono. Base-Metal Electrode-Multilayer Ceramic Capacitors: Past, Present and Future Perspectives. Jpn. J. Appl. Phys.,2003,42:1-15
    [8]Y.C Chen, P.C Chen, S.C Wang, et al. Curve Fitting of Dielectric Constant and Loss Factor of ZrO2-Doped Barium Strontium Titanate for Application in Phased Array Antennas. Jpn. J. Appl. Phys.,2007,46:5889-5893
    [9]Chunlin Fu, Chuanren Yang, Hongwei Chen, Yinxin Wang, Liye Hu. Microstructure and dielectric properties of BaxSr1-xTiO3 ceramics. Mater. Sci. Eng. B,2005,119:185-188
    [10]Helmi Abdelkefi, Hamadi Khemakhema, Gabriel Velub, Jean Claude Carrub, Regnault Vonder Muhll. Dielectric properties and ferroelectric phase transitions in BaxSr1-xTiO3 solid solution. J. Alloy. Compd.,2005,399:1-6
    [11]D.R. Patil, S.A. Lokare, R.S. Devan, S.S. Chougule,C.M. Kanamadi, Y.D. Kolekar, B.K. Chougule, Studies on electrical and dielectric properties of Ba1-xSrxTiO3. Mat. Chem. Phys., 2007,104:254-257
    [12]L. Zhou, P. M. Vilarinho, and J. L. Baptista. Dependence of the Structural and Dielectric Properties of Ba1-xSrxTiO3 Ceramic Solid Solutions on Raw Material Processing. J. Eur. Ceram. Soc.,1999,19:2015-2020
    [13]B. Su, J. E. Holmes, B. L. Cheng, and T. W. Button. Processing Effects on the Microstructure and Dielectric Properties of Barium Strontium Titanate (BST) Ceramics. J. Electroceram., 2002,9:111-116
    [14]S. M. Rhim, S. Hong, H. Bak, and O. K. Kim. Effects of B2O3 Addition on the Dielectric and Ferroelectric Properties of Ba0.7Sr0.3TiO3 Ceramics. J. Am. Ceram.Soc.,2000,83 [5]: 1145-1148
    [15]YX.Wei and X.Yao, Nonlinear Dielectric Properties of Barium StrontiumTitanate Ceramics. Mater. Sci. Eng., B,2003,99:74-78
    [16]曲远方.功能陶瓷的物理性能.北京:化学工业出版社,2006
    [17]殷景华,王雅珍,鞠刚.功能材料概论.哈尔滨:哈尔滨工业大学出版,1999.
    [18]赵连城,国凤云.信息功能材料学.哈尔滨:哈尔滨工业大学出版社,2004
    [19]郭卫红,汪济奎.现代功能材料及其应用.北京:化学工业出版社,2002
    [20](法)R.科埃略,B.阿拉德尼兹.电介质材料及其介电性能(张治文,陈玲译).北京:科学出版社,2000
    [21]A.J.Moulson, J.M.Herbert电子陶瓷(李世普等译).武汉:武汉工业大学出版社,1993
    [22]徐廷献等.电子陶瓷材料.天津:天津大学出版社,1993.
    [23]Spearing S M. Materials Issues in MEMS. Acta Mater.,2000,48:179-196
    [24]Setter N and Waser R. Electroceramic materials. Acta Mater.,2000,48:151-178
    [25]S.M. Sze. Semiconductor Devices:Physics and Technology 2nd ed. Wiley, New York,2002
    [26]I Boscolo, S Cialdi. High dielectric constant ceramics for ion-electron sources. Nucl. Instrum. Meth.,2002,489:32-37
    [27]Haertling G H. Ferroelectric ceramics:History and technology. J. Am. Ceram. Soc.,1999, 82:797-818
    [28]Pecharroman C, Fatima E-B and Jose S M. Adv. Mater.,2001,13:1541
    [29]Yang C F. Improvement of the sintering and dielectric characteristics of surface barrier layer capacitors by CuO addition. Japan. J. Appl. Phys.,1996,35:1806-1813
    [30]Hennings D F K. Dielectric materials for sintering in reducing atmospheres. J. Eur. Ceram. Soc.,2001,21:1637-1642
    [31]Jianding Yu,a Takehiko Ishikawa, Yasutomo Arai, and Shinichi Yoda, Extrinsic origin of giant permittivity in hexagonal BaTiO3 single crystals:Contributions of interfacial layer and depletion layer. Appl. Phys. Lett.,2005,87:252904-1-3
    [32]G. Mohan Rao and S.B. Krupanidhi. Pulsed Excimer Laser Ablation of (Pb,La)TiO3 Thin Films for Dynamic Random Access Memory Devices. Appl. Phys. Lett.,1993,64:1591-1593
    [33]F.D. Morrison, D.C. Sinclair, J.M. Skakle et al. Novel doping mechanism for very-high-permittivity barium titanate ceramics. J. Am. Ceram. Soc.,1998,81(7): 1957-1960
    [34]F.D. Morrison, D.C. Sinclair, A.R. West. Electrical and structural characteristics of lanthanum-doped barium titanate ceramics. J. Appl. Phys.,1999,86(11):6355-6366
    [35]F.D. Morrison, D.C. Sinclair, A.R. West. Doping mechanisms and electrical properties of La-doped BaTiO3 ceramics. Int. J. Inorg. Mater.,2001,3:1205-1210
    [36]F.D. Morrison, D.C. Sinclair, A.R. West. Characterization of lanthanum-doped barium titanate ceramics using impedance spectroscopy. J. Am. Ceram. Soc.,2001,84(3):531-538
    [37]A.R. West, T.B.Adams, F.D. Morrison et al. Novel high capacitance materials:BaTiO3:La and CaCu3Ti4O12. J. Eur. Ceram. Soc.,2004,24:1439-1448
    [38]C.S. Hwang. (Ba,Sr)TiO3 Thin Films for Ultra Large Scale Dynamic Random Access Memory.:A Review on the Process Integration. Mater. Sci. Eng. B.,1998,56:178-190
    [39]G. Trini, A.D.Hilton, B.W.Ricketts. Dielectric energy storage in PbxSr1-xTiO3 ceramics. J. Mater. Sci:Materials in electronics,2001,12:17-20
    [40]K.M. Hung, W.D. Yang. X-ray photoelectron spectroscopy and electrical properties studies of nonstoichiometric Nb2O5-doped strontium titanate ceramics prepared by sol-precipitation process. Mater. Sci. Eng. A.,2003,351:70-80
    [41]H. Min, Z.W. Zhong. Dielectric Properties and Defect Structure of Bi-doped SrTiO3 Ceramics. Semiconductor Photonics and Technology.2001,7(1):576-581
    [42]A. Chen, Z. Yu, L.E. Cross. Oxygen-vacancy-related low-frequency dielectric relaxation and electrical conduction in Bi:SrTiO3. Phys. Rev. B,2000,62(1):228-236
    [43]H. Shen, Y.W. Song, H. Gu, P.C. Wang, Y.M. Xi. A High Permittivity SrTiO3-based Grain Boundary Barrier Layer Capacitor Material Single-fired under Low Temperature. Mater. Lett.,2002,56:802-805
    [44]Subraminian M A, Li D, Duan D, Reisner B A and Sleight A W, High Dielectric Constant in ACu3Ti4O12 and ACu3Ti3FeO12 Phases. J. Solid State Chem.,2000,151:323-325
    [45]A.P. Ramirez, M.A. Subramanian, M. Gardel, et al. Giant Dielectric Constant Responses in a Copper-Titanate. Solid State Commun.,2000,115:217-220
    [46]N. Biskup, A. de Andres, and J. L. Martinez. Origin of the colossal dielectric response of Pr0.6Cao.4Mn03. Phys. Rev. B,2005,72,:024115-1-7
    [47]K. R. S. Preethi Meher and K. B. R. Varma. Colossal dielectric behavior of semiconducting Sr2TiMnO6 ceramics. J. Appl. Phys.,2009,105:034113-1-8
    [48]T. G. Reynold III. Application Space Influences Electronic Ceramic Materials. Am. Ceram. Soc. Bull.,2001,80:29-33
    [49]C. A. Randall. Scientific and Engineering Issues of the State-of-Art and Future Multilayer Ceramic Capacitors. J. Ceram. Soc. Jpn.,2001,109:S2-6
    [50]Li W, Qi J Q, Li L T,el. al. Doping behavior of Nb2O5 and Co2O3 in temperature stable BaTiO3-based ceramics. Mater. Lett.,2002,57:1-5
    [51]祝炳和,姚尧,赵梅瑜等.PTC陶瓷制造工艺与性质[M].上海:上海大学出版社,2001
    [52]P.Bowen, C.Carry. From powders to sintered pieces:forming, transformations and sintering of nanostructured ceramic oxides. Powder Technology,2002,128:248-255
    [53]P.L.Chen, L.W.Chen. Reactive cerium (IV) oxide powders by the homogeneous precipitation method. J. Am. Ceram. Soc.,1993,76(12):1577-1583
    [54]N. J. Welham. Mechanically Induced Reaction Between Alkaline Earth Metal Oxides and TiO2. J. Mater. Res.,1998,13:1607-1613
    [55]J. Xue, J. Wang, D. Wan. "Nanosized Barium Titanate Powder by Mechanical Activation," J. Am. Ceram. Soc.,2000,83(1):232-234
    [56]L. B. Kong, J. Ma, H. Huang et al. Barium titanate derived from mechanochemically activated powders. J. Alloy. Compd.,2002,337:226-230
    [57]R. Yanagawa, M. Senna, C. Ando et al. Preparation of 200 nm BaTiO3 Particles with their Tetragonality 1.010 Via a Solid-State Reaction Preceded by Agglomeration-Free Mechanical Activation. J. Am. Ceram. Soc.,2007,90(3):809-814
    [58]D. Hennings. Review of Chemical Preparation Routes for Barium Titanate. Br. Ceram. Proc., 1989,41:1-10
    [59]P. Nanni, M. Viviani, and V. Buscaglia. Synthesis of Dielectric Ceramic Materials. in Handbook of Low and High Dielectric Constant Materials and Their Applications, Edited by H. S. Nalwa (Academic Press, San Diego, CA),1999,429-455
    [60]周海牛,庄志强,王歆.BaTiO3粉体的水热法合成.中国陶瓷,2001,37(3):44-47
    [61]A.N. Christensen. Hydrothermal preparation of barium titanate by transporting reactions. Acta Chem Scand.,1970,24:244-259
    [62]E.M.Ciftci, N. Rahaman, M.Shumsky. Hydrothermal precipitation and characterization of nano-crystalline BaTiO3 particles. J. Mater Sci.,2001,36:4875-4882
    [63]付兴华,侯宪钦等Sr1-xBaxTiO3超细微粉的溶胶一凝胶制备与表征[D].硅酸盐通报,2003,L:3-7.
    [64]王应民,陈志坚.溶胶凝胶法制备PTCR材料用(Ba,Sr)TiO3粉末[J].江西科学,2003,21(1):34-36.
    [65]A. Testino, M. T. Buscaglia, V. Buscaglia et al. Kinetics and Mechanism of Aqueous Chemical Synthesis of BaTiO3 Particles. Chem. Mater.,2004,16:1536-1543
    [66]A. Testino, M. T. Buscaglia, M.Viviani et al. Synthesis of BaTiO3 Particles with Tailored Size by Precipitation from Aqueous Solutions. J. Am. Ceram. Soc.,2004,87:79-83
    [67]D. F. K. Hennings, C. Metzmacher, and B. S. Schreinemacher. Defect Chemistry and Microstructure of Hydrothermal Barium Titanate. J. Am. Ceram. Soc.,2001,84:179-182
    [68]L. K. Templeton and J. A. Pask. Formation of BaTiO3 from BaCO3 and TiO2 in Air and CO2. J. Am. Ceram. Soc,1959,42:212-216
    [69]M. Cournil, M. Soustelle, and G. Thomas. Solid-State Reactions, I:Experimental Study of Barium Metatitanate Synthesis. Oxid. Met.,1979,13:77-88
    [70]A. Beauger, J. C. Mutin, and J. C. Niepce. Synthesis Reaction of Metatitanate BaTiO3. Part 1 Effect of Gaseous Atmosphere Upon the Thermal Evolution of the System BaCO3-TiO2. J. Mater. Sci.,1983,18:3041-3046
    [71]A. Amin,M. A. Spears, and B.M. Kulwicki. Reaction of Anatase and Rutile with Barium Carbonate. J. Am. Ceram. Soc.,1983,66:733-738
    [72]M. Rossel, H.-R. Hoche, H. S. Leipner, D. Voltzke, H.-P. Abicht, O. Hollricher, J. Muller, and S. Gablenz. Raman Microscopic Investigations of BaTiO3 Precursors with Core-Shell Structure. Anal. Bioanal. Chem.,2004,380:157-162
    [73]Maria Teresa Buscaglia, Marta Bassoli, and Vincenzo Buscaglia. Solid-State Synthesis of Ultrafine BaTiO3 Powders from Nanocrystalline BaCO3 and TiO2. J. Am. Ceram. Soc., 2005,88 [9]:2374-2379
    [74]D. F. K. Hennings, B. S. Schreinemacher, and H. Schreinemacher. Solid-State Preparation of BaTiO3-Based Dielectrics Using Ultrafine Raw Materials. J Am. Ceram. Soc.,2001,84: 2777-2782
    [75]H.I. Won, H.H. Nersisyan, C.W. Won. Low temperature solid-phase synthesis of tetragonal BaTiO3 powders and its characterization. Mater. Lett.,2007,61:1492-1496
    [76]W. Zhong, D Vanderbilt, K M Rabe. Phase transitions in BaTiO3 from first principles. Phys Rev Lett,1994,73:1861-1864
    [77]Httibregtse E J, Young D&Triple. Hysteresis Loops and the Free-Energy Function in the Vicinity of the 50℃ Transition in BaTiO3. Physical Review,1956,103:1705-1711
    [78]Yah M E. Microstruetural control in the processing of electronic ceramics. Mater. Sci. Eng., 1981,48(1):53-72
    [79]Bell A J, Moulson A J, Cross L E. Effect of grain size On the permittivity of BaTiO3. Ferro., 1983,54(1-4):487-490
    [80]Leonard M R Safari A. Crystallite and grain size effects in BaTiO3. Ferroelectrics, ISAF'96., Proceedings of the Tenth IEEE International Symposium,1996,1003-1005
    [81]A.S. Shaikh, R.W. Vest, G. M. Vest. Dielectric properties of ultrafine grained BaTiO3. IEEE Trans. Ultra. Ferro. and Freq. Contrl.,1989,36:407-412
    [82]Martirena H T, Burfoot J C. Grain-size effects On properties of some ferroelectriec ceramics. J. Phy.:Sol. Sta. Phy.,1974,7(17):3182-3192
    [83]Buessem W R, Cross L E, Goswami A K. Effect of two-dimensional pressure on permittivity of fineand coarse-grained barium titanate. J. Am. Ceram. Soc.,1966,49(1): 33-36
    [84]Bell A J, Moulson A J, Cross L E. The effect of grin size on the permittivity of BaTiO3. Ferro.,1984,54(1):147-150
    [85]Little E A. Dynamic Behavior of Domain Walls in Barium Titanate. Phy. Rev.,1955, 98(4):978-984
    [86]Arlt G Hennings D, With G D. Dielectric properties of fine-grained barium titanate ceramics. J. Appl. Phys.,1985,58(4):1619-1625
    [87]Yamaji A, Enomoto Y, Kinoshita K, et al. Preparation, characterization, and properties of Dy-doped small-grained BaTiO3 ceramics. J. Am. Ceram. Soc.,1977,60(34):97-101
    [88]Enomoto Y, Yamaji A. Preparation of uniformly small-grained BaTiO3. Am. Ceram. Soc. Bull.,1981,60(5):566-570
    [89]Heanings D, Rosenstein G. Temperature-Stable Dielectrics Based On Chemically Inhomogeneous BaTiO3. J. Am. Ceram. Soc.,1984,67(4):249-254
    [90]Kahn M. Influence of Grain Growth on Dielectric Properties of Nb-Doped BaTiO3. J. Am. Ceram. Soc.,1971,54(9):455-457
    [91]Subbarao E c, Shirane G. Dielectric and Structural Studies in the Systems Ba(Ti, Nb)O3 and Ba(Ti, Ta)O3. J. Am. Ceram. Soc.,1959,42(6):279-284
    [92]Hideki Ogihara,w Clive A. Randall, and Susan Trolier-McKinstry. Weakly Coupled Relaxor Behavior of BaTiO3-BiScO3 Ceramics. J. Am. Ceram. Soc.,2009,92[1]:110-118
    [93]M. Kuwabara and H. Matsuda. Shift of the Curie Point of Barium Titanate Ceramics with Sintering Temperature. J. Am. Ceram. Soc.,1997,80 [10]:2590-2596
    [94]Kurata N, Kuwabara M. Semiconducting-Insulating Transition for Highly Donor-Dopod Barium Titanate Ceramics. J. Am. Ceram. Soc.,1993,76(6):1605-1608
    [95]Heanings D, Rosenstein G. Temperature-Stable Dielectrics Based On Chemically Inhomogeneous BaTiO3. J. Am. Ceram. Soc.,1984,67(4):249-254
    [96]T. R. Armstrong and R. C. Buchanan. Influence of Core-Shell Grains on the Internal Stress State and Permittivity Response of Zirconia-Modified Titanate. J. Am. Ceram. Soc.,1990,73 [5]:1268-1273
    [97]H. Y. Lu, J. S. Bow, and W. H. Deng. Core-Shell Structures in ZrO2-Modified BaTiO3 Ceramics. J. Am. Ceram. Soc.,1990,73 [12]:3562-3568
    [98]Y. Park and S. A. Song. Influence of Core-Shell Structure Grain on Dielectric Properties of Cerium-Modified Barium Titanate. J. Mater. Sci.:Mater. Electron.,1995,6:380-388
    [99]Y. Park and H-G. Kim. Dielectric Temperature Characteristics of Cerium-Modified Barium Titanate Based Ceramics with Core-Shell Grain Structure. J. Am. Ceram. Soc.,1997,80 [1]:106-112
    [100]H. Chazono and H. Kishi. Sintering Characteristics in the BaTiO3-Nb2O5-Co3O4 Ternary System: II. Stability of So-called "Core-Shell" Structure. J. Am.Ceram. Soc., 2000,83 [1]: 101-106
    [101]Q. Feng and C. J. McConville. Weak-Beam Dark-Field Microscopy of Complex Stress State in X7R-Type BaTiO3 Dielectric Core-Shell Structures. J. Am.Ceram. Soc, 2004, 87 [10]: 1945-1951
    [102]Paunovic, V., Zivkovic, Lj. Influence of Rare-Earth Additives (La, Sm and Dy) on the Microstructure and Dielectric Properties of Doped BaTiO3 Ceramics, Sci. Sinter., 2010, 42(1): 69-79
    [103]Yao GF, Wang XH, Yang Y, Li LT. Effects of Bi2O3 and Yb2O3 on the Curie Temperature in BaTiO3-Based Ceramics. J. Am. Ceram. Soc, 2010, 93(6): 1697-1701
    [104]Park Y, Kim H-G. Internal stress effect on the temperature dependence of the dielectric and lattice constant in Sm-doped BaTiO3 ceramics. Jpn. J. Appl. Phys., 1997, 36(6A): 3558-3563
    [105]Park Y, Kim H-G. Pressure and temperature dependence of the dielectric properties in the perovskite solution of Gd-doped barium titanate. J. Mater. Sci. Lett., 1998, 17(2): 157-158
    [106]杨永旺.制程对於X7R陶瓷电容器的介电性质及显微结构的影响:[硕士学位论文].台湾:成功大学,2000
    [107]Mizuno Y Y, Hagiwara T T, Chazono H H, et al. Effect of milling process on core-shell microstructure and electrical properties for BaTiO3-based Ni-MLCC. J. Eur. Ceram. Soc, 2001,21: 1649-1652
    [108]Tian Wang, Xiao-hui Wang, Hai Wen and Long-tu Li. Effect of milling process on the core-shell structures and dielectric properties of fine-grained BaTiO3-based X7R ceramic materials. International Journal of Minerals, Metallurgy and Materials, 2009, 16(3): 345-348
    [109]Miztmo Y, Okino Y, Kohzu N, et al. Influence of the microstructure evolution on electrical properties of multilayer capacitor with Ni electrode. Jpn. J. Appl. Phys., 1998, 37(9B): 5227-5231.
    [110]Park Y , Kim Y H, Kim H G . The effect of grain size on dielectric behavior of BaTiO3 based X7R materials. Mater. Lett., 1996, 280: 101-106
    [111]Rawal. B.S., M. Kahn and W.R. Buessem. Grain boundary phenomena in electronic ceramics. Am. Ceram. Soc. Colum., OH, 1981
    [112]Armstrong T.R, L.E. Morgens, A.K.Maurice, and R.C. Buchanan. Effects on zirconia on microstructure and dielectric properties of barium titanate ceramics. J. Am. Ceram. Soc, 1989,72 [4]: 605-611
    [113]Yamashita. K., S.Yamazaki, K.Koumoto and H.Yangida. Numerical estimation of the dependence of dielectric constant of BaTiO3. Jap. J. Appl. Phys.,1981,20[10]:1833-1840
    [114]Arlt G. Review:Twinning in ferroelectric and ferroelastic ceramics:stress relief. J. Mate. Sci.,1990,25:2655-2666
    [115]Arlt G. The influence of microstructure on the properties of ferroelectric ceramics. Ferro., 1990,104:217-227
    [116]Rolov. B.N. Effect of composition fluctuations on unsharp ferroelectric phase transitions. Sov.Phys.Solid.St,1965,6[7]:1676-1678
    [117]E. K. Akdogan, M. R. Leonard, and A. Safari. in Handbook of Low and High Dielectric Constant Materials and Their Applications. edited by H. S. Nalwa (Academic Press, San Diego) 1999,2:61-112
    [118]K. Uchino, E. Sadanaga, and T Hirose. Dependence of the Crystal Structure on Particle Size in Barium Titanate. J. Am. Ceram. Soc.,1989,72:1555-1558
    [119]W. L. Zhong, B. Jiang, P. L. Zhang, J. M. Ma, H.M. Cheng, Z. H. Yang, and L. X. Li. Phase transition in PbTiO3 ultrafine particles of different sizes. J. Phys.:Condens. Mater,1993,5: 2619-2624
    [120]K. Ishikawa, K. Yoshikawa, and N. Okada. Size effect on the ferroelectric phase transition in PbTiO3 ultrafine particles. Phys. Rev. B,1988,37:5852-5855
    [121]K. Ishikawa, and T. Uemori. Surface relaxation in ferroelectric perovskites. Phys. RevB, 1999,60:11841-11845
    [122]S. Tsunekawa, S. Ito, T. Mori, K. Ishikawa, Z.-Q. Li, and Y. Kawazoe. Critical size and anomalous lattice expansion in nanocrystalline BaTiO3 particles. Phys. RevB,2000,62: 3065-3070
    [123]D. Hennings and S. Schreinemacher. Characterization of Hydrothermal Barium Titanate. J. Eur. Ceram. Soc.,1992,9:41-46
    [124]M. H. Frey and D. A. Payne. Grain-size effect on structure and phase transformations for barium titanate. Phys. Rev. B,1996,54:3158-3168
    [125]X. Li and W.-H. Shih. Size Effects in BaTiO3 Particles and Clusters. J. Am. Ceram. Soc., 1997,80:2844-2852
    [126]Wang X-H, Chen R-Z, Gui Z-L, et al. The grin size effect on dielectric properties of BaTiO3 based ceramics. Mater. Sci. Eng. B.,2003,99(1-3):199-202
    [127]Zhu W, Akbar S A, Asiaie R, et al. Sintering and dielectric properties of hydrothermally synthesized cubic and tctragonal BaTiO3 powders. Jpn. J. Appl. Phys.,1997,36(1A): 214-221
    [128]Liu S-F, Abothu I R, Komameni S. Barium titanate oerainics prepared from conventional and microwave hydrothermal powders. Mater. Lett.,1999,38(5):344-350
    [129]Demartin M, Herard C, Carry C, et al. Dedensification and anomalous grain growth during sintering of undoped barium titanate. J. Am. Ceram. Soc.,1997,80(5):1079-1084
    [130]N.C. Sharma, E.R. McCartney. The dielectric properties of pure barium titanate as a function of grain size. J. Aus. Ceram. Soc.,1974,10:16-20
    [131]G. Arlt, H. Peusens. The dielectric constant of coarse grained BaTiO3 ceramics. Ferro.,1983, 48:213-224
    [132]W. L. Zhong, Y. G. Wang, P. L. Zhang, and B. D. Qu. Phenomenological study of the size effect on phase transitions in ferroelectric particles. Phys. Rev.B,1994,50:698-703
    [133]C. L. Wang, and S. R.P. Smith. Landau theory of the size-driven phase transition in ferroelectrics. J. Phys.:Condens. Matter,1995,7163-7171
    [134]S. Li, J. A. Eastman, Z. Li, C.M. Foster, R. E. Newnham, and L. E. Cross. Size Effects In Nanostructured Ferroelectrics. Phys. LettA.1996,212:341-346
    [135]B. Jiang, and L. A. Bursill. Phenomenological theory of size effects in ultrafine ferroelectric particles of lead titanate. Phys. Rev. B,1999,60:9978-9982
    [136]H. Huang, C. Q. Sun, and P. Hing. Surface bond contraction and its effect on the nanometric sized lead zirconate titanate. J. Phys.:Condens.Matter,2000,12:L127-L132
    [137]L.Egerton, S.E.Koonce. Effect of Firing Cycle of Structure and Some Dielectric and Piezoelectric Propertis of Barium Titanate Ceramics. J.Am.Ceram.Soc.,1955,38(11): 412-418
    [138]E.P.Hyatt, S.A.Long, R.E.Rose. Sintering High Purity BaTiO3. Am.Ceram. Soc.Bull.,1967, 46(8):732-736
    [139]J.B.MacChesney, P.K.Gallagher, F.V. DiMarcello. Stabilized Barium Titanate Ceramics for Capacitor. Dielectrics. ibid.,1963,46(5):197-202
    [140]Cheng X, Shen M. Different microstructure and dielectric properties of Ba1-xCaxTiO3 ceramics and pulsed-laser-ablated films. Mater. Res. Bull.,2007,42:1662-1668
    [141]P. Hansen, D. Henning, H. Schreinemacher. High-K dielectric ceramics from donor/acceptor-codoped (Ba1-xCax) (Ti1-yZry)O3 (BCTZ). J. Am. Ceram. Soc.,1998,81: 1369-1373.
    [142]Mitsui T, Westphal W B. Dielectric and X-Ray Studies of CaxBa1-xTiO3 and CaxSr1-xTiO3. Phys. Rev.,1961,124(5):1354-1359
    [143]Krishnamoorthy P R, Ramaswamy P, Narayana B H. CaZrO3 additives to enhance capacitance properties in BaTiO3 ceramic capacitors. J. Mater. Sci:Materials in Electronics,1992,3(3):176-180
    [144]L. Zhou, P. M. Vilarinbo, J. L. Baptista. Solubility of bismuth oxide in barium titanate. J. Am. Ceram. Soc.,1999,82:744-746
    [145]L. Zhou, P. M. Vilarinho, J. L. Baptista, Relaxor behavior of Ba0.2Sr0.8TiO3 ceramic solid solution doped with bismuth. J. Am. Ceram. Soc,2000,5:191-199
    [146]李卫,周科朝.氧化铋的应用研究进展.材料科学与工程学报,2004,22(1):154-156
    [147]高春华,黄新友,陈志刚.Bi4Ti3O12掺杂中温烧结(Ba,Sr)TiO3基电容器陶瓷.2006,35(2):213-215
    [148]谢磊,吴霞宛等.工艺对中温烧结高温高介MLCC介质电性能的影响.1999,1:9-13
    [149]S.Kojima, R.Imaizumi, S.Hamazakj.M.Takashige. Raman study of ferroelectric bismuth layer-oxides ABi4Ti4O15, J. Mol.Struc.,1995,348:37-40
    [150]Fumihto Arai, Kohei Motoo, Toshio Fukuda. Piezoelectric properties of lead-free CaBi4Ti4Oi5 thin films[J]. Appl. Phys. Lett.,2004,85(18):4217-4218
    [151]Suhua Fan, Jing Xu, Guangda Hu et.al. Study on ferroelectric and dielectric properties of Sr-substituted CaBi4Ti4O15 thin films. Key Eng. Mater.,2008,368-372:100-102
    [152]范素华,徐静,王培吉等。铋过量对CaBi4Ti4O15铁电薄膜性能的影响.功能材料,2007,9(38):1427-1430.
    [153]范素华,徐静,胡广达等.溶胶-凝胶法制备掺钙钛酸锶铋铁电薄膜.硅酸盐学报,2008,36(2):237-241
    [154]R.D. Shannon. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta. Crystallogr. Sec. A,1976,32[A]:751-767
    [155]O. Bidault, P. Goux, M. Kehikech, M. Belkaoumi and M. Maglione. Phys. RevB,1994,49:7868.
    [156]Chen Ang, Zhi Jing, and Zhi Yu. Ferroelectric Relaxor Ba(Ti,Ce)O3, J. Phys. Condens. Mater.,2002,14:8901-8912
    [157]G.A. Smolensky. Physical phenomena in ferroelectrics diffuse phase transition. J. Phys. Soc. Jpn.,1970,28:26-28.
    [158]A.E. Glazounov and A.K. Tagantsev. Direct Evidence for Vogel-Fulcher Freezing in Relaxor Ferroelectrics. Appl. Phys. Lett.,1998,73:856-858
    [159]D. Viehland, S. J. Jang, L. E. Cross, and M. Wuttig. Freezing of the polarization fluctuations in lead magnesium niobate relaxors. J. Appl. Phys.,1990,68:2916-2921
    [160]B.E. Vugmeistre and M.D. Glinchuk. Dipole Glass and Ferroelectricity in Random-site Electric Dipole Systems. Rev. Mod. Phys.,1990,62:993-1026
    [161]S. Wada, T. Hoshina, H. Yasuno, et al.. Size Dependence of Dielectric Properties for nm-Sized Barium Titanante Crystallites and Its Origin. J. Korean Phys. Soc.,2005,46: 303-307
    [162]S.K. Rout, E. Sinha, S. Panigrahi, J. Bera, T.P. Sinha. Phase formation mechanism of BaTiO3-SrTiO3 solid solutions. J. Phys. Chem. Solids.,2006,67:2257-2262
    [163]Y. Zhi, A. Chen, J. Zhi, P. M. Vilarinho, and J. L. Baptista. DielectricProperties of Ba(Ti, Ce)O3 from 102 to 105 Hz in the Temperature Range 85-700K. J. Phys.:Condens. Mater., 1997,9 [14]:3081-3088
    [164]A. Chen, Y. Zhi, J. Zhi, P. M. Vilarinho, and J. L. Baptista. Synthesis and Characterization of Ba(Ti1-xCex)O3 Ceramics. J. Eur. Ceram. Soc.,1997,17 [10]:1217-1221
    [165]J. Zhi, A. Chen, P. M. Vilarinho, Y. Zhi, and J. L. Baptista. DielectricProperties in Ce Doped BaTiO3 Solid Solutions. Key Eng. Mater.,1997,132-136:1187-1190
    [166]J. Zhi, P. M. Vilarinho, C. Ang, and J. L. Baptista. Dielectric Behavior of BaTiO3 Doped with Cerium at Ba and Ti Sites, in Ceramic Transactions, Electronic Ceramic Materials and Devices, Edited by K. M. Nair and A. S. Bhalla. American Ceramic Society, Westerville, OH,2002,106:115-121
    [167]A. S. Shaikh and R. W. Vest. Defect Structure and Dielectric Properties Nd2O3-Modified BaTiO3. J. Am. Ceram. Soc.,1986,69 [9]:689-694
    [168]T. R. N. Kutty and P. Murugaraj. Phase Relations and Dielectric Properties of BaTiO3 Ceramics Heavily Substituted with Neodymium. J. Mater. Sci.,1987,22 [10]:3652-3664
    [169]Y. Park and H. G. Kim. Effect of External Stress on the Dielectric Temperature Characteristics of Samarium-Modified Barium Titanate Ceramics. Ferro.,1997,198 [1-4]: 67-76
    [170]D.-Y. Lu, T. Koda, H. Suzuki, and M. Toda. Structure and Dielectric Properties of Eu-Doped Barium Titanate Ceramics. J. Ceram. Soc. Jpn.,2005,113 [11]:721-727
    [171]M. A. A. Issa, N. M. Molokhia, and S. A. Nasser. Factors Affecting the Permittivity of Gd-Doped BaTiO3. J. Phys. D:Appl. Phys.,1984,17 [3]:571-578
    [172]Y. Park, K. Cho, and H. G. Kim. Effect of Internal Stress on Physical Temperature Characteristics of Cerium-Doped and Gadolinium-Doped Barium Titanate Ceramics. J. Am. Ceram.Soc,1998,81 [7]:1893-1899
    [173]R. Naik, J. J. Nazarko, C. S. Flattery, U. D. Venkateswaran et.al. Temperature dependence of the Raman spectra of polycrystalline Ba1-xSrxTiO3. Phys. Rev.B,2000,61(17): 11367-11372
    [174]W. G. Nilsen and J. G. Skinner. Raman Spectrum of Strontium Titanate. J. Chem. Phys., 1968,48:2240-2248
    [175]D. A. Tenne, A. Soukiassian and X. X. Xi. Lattice dynamics in BaxSr1-xTiO3 thin films studied by Raman spectroscopy. J. Appl. Phys.,2004,96(11):6597-6605
    [176]M. D. Domenico, Jr., S. H. Wemple, S. P. S. Porto, and R. P. Buman. Phys. Rev.B,1968, 174:522
    [177]B. D. Begg, K. S. Finnie, and E. R. Vance. Raman Study of the Relationship between Room-Temperature Tetragonality and the Curie Point of Barium Titanate. J. Am. Ceram. Soc.,1996,79:2666-2672
    [178]G. A. Rossetti, Jr., L. E. Cross, and K. Kushida. Stress induced shift of the Curie point in epitaxial PbTiO3 thin films. Appl. Phys. Lett.,1991,59:2524-2526
    [179]P. S. Dobal, S. Bhaskar, S. B. Majumder, and R. S. Katiyar. Micro-Raman investigation of stress variations in lead titanate films on sapphire. J. Appl. Phys.,1999,86:828-834
    [180]H. Richter, Z. P. Wang, and L. Ley. The one phonon Raman spectrum in microcrystalline silicon. Solid State Commun.,1981,39:625-629
    [181]D. Barsani, P. P. Lottici, and X.-Z. Ding, Phonon confinement effects in the Raman scattering by TiO2 nanocrystals. Appl. Phys. Lett.1998,72:73-76
    [182]Xiujian Chou, Jiwei Zhai, Xi Yao. Relaxor behavior and dielectric properties of La2O3-doped barium zirconium titanate ceramics for tunable device applications. Mater. Chem. Phys.,2008,109:125-130
    [183]D.Y. Lu, M. Toda, M. Sugano. High-Permittivity Double Rare-Earth-Doped Barium Titanate Ceramics with Diffuse Phase Transition. J. Am. Ceram. Soc.,2006,89:3112-3123
    [184]A. Chen, Y. Zhi, J. Zhi, P. M. Vilarinho, and J. L. Baptista. Synthesis and Characterization of Ba(Ti1-xCex)O3 Ceramics. J. Eur. Ceram. Soc.,1997,17 [10]:1217-1221
    [185]Z.Y. Zhou, X.L. Dong, S.M. Huang, Dielectric Relaxation of La3+-modified Bi3TiNbO9 Aurivillius Phase Ceramics. J. Am. Ceram. Soc.,2006,89:2939-2942
    [186]C. C. Homes, T. Vogt, S. M. Shapiro, S. Wakimoto, and A. P. Ramirez. Optical Response of High-Dielectric-Constant Perovskite-Related Oxide. Science,2001,293 [5530]:673-676
    [187]Hongtao Yu, Hanxing Liu, Hua Hao, Liling Guo, Chengjun Jin, Zhiyong Yu, and Minghe Cao. Grain size dependence of relaxor behavior in CaCu3Ti4O12 ceramics. Appl. Phys. Lett., 2007,91:222911-222913
    [188]Zhonghua Yao, Hanxing Liu, Yan Liu, Zhaohui Wu, Zongyang Shen, Yang Liu, Minghe Cao. Structure and dielectric behavior of Nd-doped BaTiO3 perovskites. Mater. Chem. Phys.,2008,109:475-481
    [189]D. Hennings, A. Schnell, and G. Simon. Diffuse Ferroelectric Phase. Transitions in Ba(Ti1-yZry)O3 Ceramics. J. Am. Ceram. Soc.,1982,65:539-544
    [190]M.H. Frey, Z. Xu, P. Han, D.A. Payne, The role of interfaces on an apparent grain size effect on the dielectric properties for ferroelectric barium titanate ceramics. Ferro.,1998, 206:337-353
    [191]A.Yu. Emelyanov, N.A. Pertsev, S. Hoffmann-Eifert, U. Bottger, R.Waser. Grain-Boundary Effect on the Curie-Weiss Law of Ferroelectric Ceramics and Polycrystalline Thin Films:Calculation by the Method of Effective Medium. J. Electroceram.,2002,9:5-16
    [192]G. H. Jonker. Some Aspects of Semiconducting Barium Titanate. Solid-State Electron., 1964,7:895-903
    [193]O. Saburi. Properties of Semiconductive Barium Titanates. J. Phys. Soc. Jpn.,1959,14: 1159-1174
    [194]V. J. Tennery and R. L. Cook. Investigation of rare-earth doped barium titanate. J. Am. Ceram. Soc.,1961,44:187-190
    [195]J. Daniels, K. H. Hardtl, D. Hennings, and R. Wernicke. Philips Res. Rep.,1976,31:487-559
    [196]C. J. Peng and H.-Y. Lu. Compensation Effect in Semiconducting Barium Titanate. J. Am. Ceram. Soc.,1988,71:C-44-C-46
    [197]N.-H. Chan and D. M. Smyth. Defect Chemistry of Donor-Doped BaTiO3. J. Am. Ceram. Soc.,1984,67 [4]:285-288
    [198]T.-B. Wu and J.-N. Lin. Transition of Compensating Defect Mode in Niobium-Doped Barium Titanate. J. Am. Ceram. Soc.,1994,77 [3]:759-764
    [199]F.D.Morrison, D.C.Sinclair, A.R.West. An alternative explanation for the origin of the resistivity anomaly in La-doped BaTiO3. J. Am. Ceram. Soc.,2001,84(2):474-476
    [200]沈宗洋.稀土Nd掺杂SrTiO3基高储能介质陶瓷缺陷结构及介电性能研究:[工学博士学位论文].中国:武汉理工大学,2007
    [201]H.Y.Lu, M.H.Lin. Charge compensation mechanism in yttria-doped barium titanate. Ceram. Int.,2005,31(7):989-997
    [202]U.Balachandran, N.G.Eror. Electrical conductivity in lanthanum-doped strontium titanate. J. Electrochem. Soc.,1982,129(5):1021-1026
    [203]N.GEror, U.Balachandran. Self-compensation in lanthanum-doped strontium titanate. J. Solid State Chem.,1981,40:85-91
    [204]吴朝晖.Ba0.3Sr0.7TiO3基储能介质陶瓷的制备技术及介电性能研究:[工学博士学位论文].中国:武汉理工大学,2009
    [205]Lewis GV, Catlow CRA. J Phys Chem Solids,1986; 47:89
    [206]G. H. Jonker and E. E. Havinga. The Influence of Foreign Ions on the Crystal Lattice of Barium Titanate. Mater. Res. Bull.,1982,17:345-350
    [207]D. Makovec, Z. Samardzija U. Delalut, and D. Kolar. Defect Structure and Phase Relations of Highly Lanthanum-Doped Barium Titanate. J. Am. Ceram. Soc.,1995,78 [10]: 2193-2197
    [208]F.D.Morrison, A.M.Coats, D.C.Sinclair, A.R.West. Charge compensation mechanisms in La-doped BaTiO3. J. Electroceram.,2001,6:219-232
    [209]Morrison F.D. PhD Thesis, University of Aberdeen,1999.
    [210]叶志镇.氧化锌半导体材料掺杂技术与应用.杭州:浙江大学出版社,2009
    [211]M. A. Lampert. Simplified theory of space-charge-limited current in an insulator with traps. Phys.Rev.,1956,103(6):1648-1656
    [212]S. T. Chang and J. Y. M. Lee. Electrical conduction mechanism in high-dielectric-constant (Ba0.5Sr0.5)Ti03 thin films. Appl. Phys. Lett.,2002,80:655-657
    [213]C. J. Peng and S. B. Krupanidhi. Structures and electrical properties of barium strontium titanate thin films grown by multi-ion-beam reactive sputtering technique. J. Mater. Res., 1995,10:708-726
    [214]S. M. Sze. Physics of Semiconductor Device.2nd ed. New York:Wiley; 1981.
    [215]A. von Hippel. Dielectric and Waves. (Wiley, New York,1954)
    [216]G. I. Skanavi and E. N. Matveeva. Zh. Eksp. Teor. Fiz.,1956,30:1047 [Sov. Phys. JETP 3, 905 (1957)]
    [217]G. I. Skanavi, I. M.Ksendzov, V. A. Trigubenko, and V. G. Prokhvatilov. ibid.1957,33:320 [Sov. Phys. JETP 6,250 (1958)]
    [218]Lunkenheimer P, Fichtl R, Ebbinghaus S G,et al. Non-intrinsic origin of the colossal dielectric constants in CaCu3Ti4O12. Phys Rev B,2004,70:172102-172106.
    [219]S.H.Kim, H.T.Kim, J.H.Park, and Y.Kim. Mater.Res.Bull.,1999,34:415-423
    [220]S.Rodewald, J.Fleig, J.Maier. The distribution of grain boundary resistivities in SrTiO3 polycrystals:a comparison between spatially resolved and macroscopic measurements. J.Eur.Ceram.Soc.,2001,21:1749-1752
    [221]S.H.Kim, J.H.Sch, J.GPark, and Y.Kim. Jpn. J.Appl.Phys.,2000, part 1,39:1788-1791.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700