磁场作用下Fe-Cr-Co合金调幅组织演变及磁性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对Fe-25Cr-12Co-1Si合金在磁场作用下调幅组织演化以及磁场处理对合金磁性能影响进行了试验研究。采用透射电子显微镜(TEM)和穆斯堡尔谱仪对合金调幅分解前期、后期的显微组织和局域结构进行了观察和分析。研究了合金在无外磁场条件、低磁场和强磁场中647oC等温处理后调幅组织的粗化行为,以及合金在不同等温处理条件下调幅组织的变化。采用相场模拟的方法对二元合金在低磁场和强磁场作用下的调幅分解以及组织的演化进行了模拟。
     组织观察结果表明,强磁场加快了合金调幅分解的进行。合金在12T磁场中得到了界面清晰的α1相粒子,其分布并没沿外磁场方向明显取向;合金在无外磁场条件和低磁场中相应条件下未得到明显的α1相粒子形貌。在647oC保温1h时,随着外磁场强度的升高,α1相粒子体积份数随之增加,在12T磁场中获得α1相粒子体积份数最高。合金调幅组织α1相粒子在无外磁场条件和低磁场中粗化规律基本一致。合金调幅组织形貌受等温处理条件的影响,不同等温处理条件下获得的α1相粒子形貌有着显著的差异。通过控制磁场处理条件可实现合金微观组织的控制。
     穆斯堡尔谱分析结果表明,强磁场增强了Fe、Co原子间的交互作用,加速了原子的扩散过程,促进了合金调幅分解。强磁场导致了合金穆斯堡尔谱谱线1、6峰间距的宽化,提高了合金平均超精细场强度。合金在无外磁场条件、0.8T低磁场和12T强磁场中得到的平均超精细场强度在调幅分解前期和后期基本保持不变,其值分别为256kOe、256kOe和293kOe左右。
     二元合金相场模拟结果发现,在外磁场下调幅分解组织沿外场方向伸长,并有着非常复杂的粗化过程。强磁场可以促进调幅分解但却阻碍后期粗化的进行,它能改变分解两相成分,并使强磁性相体积分数增加。强磁场加速了调幅分解,减小了调幅波长,细化了调幅组织。
     合金磁性能与平均超精细场强度在回火过程中不断增加,α1相粒子体积份数也不断提高。在不同强度磁场中经647oC等温处理1h获得的磁性能随着磁场强度的增强而增大。在不同强度磁场中于647oC进行1~21h等温处理后,相应条件下在12T磁场中合金获得的磁性能最佳,在低磁场和无外磁场条件下合金的磁性能随着时间的延长显著下降。
     合金磁性能的变化主要是由α1和α2两相成分变化所引起的。强磁场处理改变了合金局域结构,包括原子的占位排布、原子间以及电子间的交互作用,因而改变了两相的成分以及磁矩结构。以单畴粒子理论为基础,讨论了α1相形貌因素对磁性能的影响,指出α1相粒子的体积分数、长径比等均为造成磁性能变化的因素。
In this paper the modulated microstructure and magnetic properties of the Fe-25Cr-12Co-1Si alloy were studied by experiments. The modulated microstructure were investigated by transmission electron microscopy (TEM) and M?ssbauer spectrometry in early and late stage of spinodal decomposition, microstructures of the alloy isothermally treated at 647oC without magnetic field, with low magnetic field and high magnetic field, and under different isothermal treatment conditions were observed by TEM. And the evolution of modulated microstructure in binary alloy treated with magnetic field was simulated using phase-field method.
     Microstructure observation shows that high magnetic field accelerates the spinodal decomposition. The interphases ofα1 phase particles of the alloy treated with a 12T magnetic field are clear, and the orientation of particles is not along the direction of the external magnetic field (Hext). Theα1 phase particles in the alloy treated without magnetic field and with low magnetic fields have no obvious shape. When the alloy was treated at 647oC for 1h with different magnetic field intensities (Hint), the uniformity of theα1 phase particles orientation is increased with increasing Hint, the volume fraction ofα1 phase particles are the highest for the alloy treated with a 12T magnetic field.
     Microstructure observation shows that the coarsening trend ofα1 phase particles is the same when the alloy was treated without magnetic field and with low magnetic field. After the alloy was isothermally treated at 647oC for more than 15h in a 12T magnetic field, theα1 phase particles about 12nm in diameters are observed. The modulated structure in the alloy is greatly affected by isothermal treatment conditions, and the morphology ofα1 phase particles is much different in different treatment conditions. Microstructure of the alloy could be controlled by the thermo-magnetic treatment conditions.
     The results of M?ssbauer spectrum analyses show that high magnetic field enhances the interaction between the atoms of iron and cobalt, accelerate the spinodal decomposition of the alloy, broadens the magnetic sextet, increases the average hyperfine field intensity () of the alloy. When the alloy was treated with 0, 0.8T and 12T magnetic fields, the average hyperfine field intensity () of the alloy keeps the same in the early and late stage of spinodal decomposition, which are about 256kOe, 256kOe and 293kOe, respectively.
     The simulation results of a binary alloy show that the modulated structure elongates along the direction of external magnetic field, and the coarsening process is very complex. High magnetic field was found to accelerate the decomposition at early stage but hinder the coarsening process. The compositions in the modulated two phases were modified under ultra-high magnetic field, leading to the increase of volume fraction of ferromagnetic phase. The high magnetic field accelerates the spinodal decomposition, decreases the spinodal wave length, and refines the spinodal microstructure.
     The magnetic properties and of the alloy all increase during ageing progress, and the volume fraction ofα1 phase particles increases. The magnetic properties of the alloy treated with high magnetic field obviously increase. When the alloy was treated at 647oC for 1h, the magnetic properties increase with increasing Hint. When the alloy was treated at 647oC for 1h to 21h in external magnetic field with different intensities, the alloy treated with a 12T magnetic field gets the best magnetic properties. The magnetic properties of the alloy treated without and with low magnetic fields decrease obviously with increasing isothermal time.
     The magnetic properties of the alloy are mainly decided by the composition ofα1 andα2 phases. The high magnetic field changes the local structure of the alloy, including the atoms arrangement, the exchange of atoms and electrons, which leads to the change of compositions and magnetic moment ofα1 andα2 phases. Based on the single-domain particle theory, the effect ofα1 phase morphology on magnetic properties was discussed, including volume fraction and aspect ratio.
引文
1 王 可, 张沪生, 郑从义等. 超低频脉冲梯度磁场治疗肿瘤及其机理的探讨. 武汉大学学报.2001, 47(2):220-224
    2 朱重光. 横向非均匀磁场对原子的作用.淮北煤师院报. 1996, 17(1):30-32
    3 M. Kasuga, T. Takano, S. Akiyama, et al. Growth of ZnO films by MOCVD in high magnetic field. J. Crys. Growth. 2005, 275: e1545-e1550
    4 Noriyuki Hirota, Soma Hara, Hiromichi Uetake, et al. In situ microscopic observations of an electroless silver deposition process under high magnetic fields. J. Crys. Growth. 2006, 286: 465-469
    5 Qiuyuan Feng, Tingju Li, Zhongtao Zhang, et al. Preparation of nanostructured Ni/Al2O3 composite coatings in high magnetic field. Surf. Coat. Tech. 2007, 201: 6247-6252
    6 Xi Li, Zhongming Ren, Yves Fautrelle. Effect of a high axial magnetic field on the microstructure in a directionally solidified Al-Al2Cu eutectic alloy. Acta Mater.2006, 54: 5349-5360
    7 Michio Shimotomai, Kei-ichi Maruta. Aligned two-phase structures in Fe-C alloys. Scripta Mater. 2000, 42: 499-503
    8 Yi Han, Chunyan Ban, Shijie Guo, et al. Alignment behavior of primary Al3Fe phase in Al-Fe alloy under a high magnetic field. Materials Letters. 2007, 61: 983-986
    9 田民波. 磁性材料. 清华大学出版社. 2001, (1): 11-23
    10 O. Heczko, L. Straka, N. Lanska, et al. Temperature dependence of magnetic anisotropy in Ni-Mn-Ga alloys exhibiting giant field-induced strain. J. Appl. Phys. 2002, 91(10): 8228-8230
    11 K. Ullakko, J. K. Huang, C. Kantner, R. C. O'Handley, et al. Large magnetic-field-induced strains in Ni-Mn-Ga single crystals. Appl. Phys. Lett. 1996, 69(13): 1966-1968
    12 M. N. Baibich, J. M. Broto, A. Fert, et al. Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices. Phys. Rev. Lett. 1988, 61(21): 2472-2475
    13 R. A. de Goot, F. M. Mueller, P.G van Engen, et al. New Class of Materials: Half-Metallic Ferromagnets. Phys. Rev. Lett. 1983, 50(25): 2024-2027
    14 R. Fledering, M. Keim, G. Reuscher, et al. Injection and detection of spin-polarized current in a light-emitting diode. Nature (London). 1999, 402(6763): 787-790
    15 T. Died, H. Ohno, F. Matsukura, et al. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science. 2000, 287(5455): 1019-1022
    16 S. Pearton. Magnetic semiconductors: Silicon-based spintronics. Nature Materials. 2004, 3(4): 203-204
    17 晋芳伟, 任忠鸣, 任维丽等. 梯度强磁场下 Al-18%Si 合金中初晶硅的细化. 金属学. 2007, 43(5): 521-528
    18 王晖, 任忠鸣, 蒋国昌. 均恒强磁场在材料科学中的应用. 材料科学与工程. 2001, 19: 119-123
    19 傅小明, 钟云波, 任忠鸣等. 10T 超导强磁场下低温中和法制备有序亚微米MnxOy 的研究. 功能材料. 2007, 38(1): 59-62
    20 王强, 王春江, 庞雪君等. 利用强磁场控制过共晶铝硅合金的凝固组织. 材料研究学报. 2004, 18(6): 568-576
    21 G. Hinds, J. M. D. Coey, M. E. G. Lyons. Influence of magnetic forces on electrochemical mass transport. Electrochemistry Communications. 2001(3): 215-218
    22 K. Watanabe, S. Awaji, M. Motokawa, et al. 15 T cryocooler Nb3Sn superconducting magnet with a 52m m room temperature bore. Jpn. J. Appl. Phys. 1998, 37-38: L1148-L1150
    23 K. Watanabe, S. Awaji, J. Sakuraba, et al. 11 T liquid helium-free superconducting magnet. Cryogenics. 1996, 36(12): 1019-1025
    24 A. E. Mikelson, Y. K. Karklin. Control of crystallization processes by means of magnetic fields. J. Cryst. Growth. 1981, 52: 524-529
    25 P. D. Rango, M. Lee, P. Lejay, et al. Texturing of magnetic materials at high temperature by solidification in a magnetic field. Nature. 1991, 349: 770-775
    26 D. E. Farrel, B. S. Chandrasekhar, et al. Superconducting properties of aligned crystalline grain of Y1Ba2Cu3O7 -δ. Physical Review B. 1987, 36(7): 4025-4027
    27 H. Yasuda, I. Ohnaka, Y. Yamamoto. Alignment of BiMn crystal orientation inBi-20at %Mn alloys by laser melting under a magnetic field. Materials Transactions. 2003, 44(1): 2207-2214
    28 T. Kimura. Study on the effect of magnetic fields on polymet ric materials and it s application. Polymer Journal. 2003, 35(11): 823-828
    29 B. Legrand. Orientation by solidification in a magnetic field a new process to texture SmCo compounds used as permanent magnets. J. Magn. Magn. Mater.1997, 173: 20-26
    30 R. Tournier. Method for Preparing a Very High Quality Magnetic Material. US 5366566, 1994
    31 王晖, 任忠鸣, 邓康等. 强磁场 Bi-Mn 合金两相区中 MnBi 相凝固组织的影响. 金属学报. 2002, 38(1): 41-46
    32 李喜, 任忠鸣, 王晖. 强磁场下 Bi-Mn 合金中形成的 MnBi 相凝固组织. 金属学报. 2004. 40(1): 40-45
    33 E. Beaugnon, R. Tournier. Levitation of organic materials steady shine. Nature. 1991, 349(7): 470
    34 S. Kensuke, W. Norihisa, S. Asai. Elimination of in clusions in a molten metal by using a high magnetic field. Second International Conference on Processing Materials for Properties, San Francisco. TMS. 2000: 565
    35 M. Tahashi, K. Sassa, S. Asai. The effect of a high magnetic field on surface aspect of vapor-deposited films of bismuth and zinc. Materials Transactions. 2002, 43(11) : 2813
    36 任忠鸣, 苏辉, 金俊泽. 合金在磁场中凝固时生成的特殊表面. 金属学报. 1990, 26: B374-B376
    37 A. Katsuki, R. Tokunaga, S. I. Watanabe. The effect of high magnetic field on the crystal growth of benzophenone. Chem. Lett. 1996(8): 607-608
    38 T. Sato, Y. Yamada, S. Saijo, et al. Improvement in diffraction maxima in orthorhombic HEWL crystal grown under high magnetic field. J. Cryst. Growth. 2001, 232: 229- 236
    39 M. R. Lees, D. Bourgault, P. D. Rango, et al. A study of the use of a magnetic field to control the microstructure of the high-temperature superconducting oxide YBa2 Cu3O7-δ. Philosophical Magazine B. 1992, 65( 6): 1395-1404
    40 S. Asai. Application of high magnetic fields in inorganic material processing. Modelling Simul Mater Sci Eng. 2004, 12: R1-R12
    41 王晖. 强磁场对合金中析出相凝固行为的影响. 上海: 上海大学. 2003, 35-119
    42 P. Gillon. Uses of intense D. C. magnetic fields in materials processing. Materials Science and Engineering A. 2000, 287: 146-152
    43 H. Yasuda, I. Ohnaka, Y. Yamamoto, et al. Alignment of BiMn crystal orientation in Bi-20% Mn alloys by laser melting under a magnetic field. Mater Trans. 2003, 44(12): 2550-2554
    44 F. Gaucherand, E. Beaugnon. Magnetic texturing in ferromagnetic cobalt alloys. Physica B. 2004, 346-347: 262-266
    45 S. Awaji, K. Watanabe, M. Motokawa, et al. Melt textured process for YBCO in high magnetic fields. IEEE Trans Appl Supercond. 1999, 9( 2 ): 2014-2017
    46 王晖, 任忠鸣, 李喜等. 磁场中 Bi-Mn 合金中 MnBi 相定向排列组织的形成规律和机制. 材料工程. 2002, 11: 17-21
    47 李喜, 任忠鸣, 邓康等. 纵向强磁场对 MnBi/Bi 共晶定向凝固组织的影响. 金属学报. 2005, 41(6): 588-592
    48 C. Y. Wu, K. S. Sassa, K. Iwai, et al. Unidirectionally oriented hydroxyapatite/collagen composite fabricated by using a high magnetic field. Materials Letters. 2007, 61: 1567-1571
    49 F. Q. Tang, T. Uchikoshi, T. S. Suzuki, et al. Alignment of TiO2 particles by electrophoretic deposition in a high magnetic field. Mater. Res. Bull. 2004, 39: 2155-2161
    50 S. Q. Li, C. Y. Wu, K. S. Sassa, et al. The control of crystal orientation in ceramics by imposition of a high magnetic field. Mat. Sci. Eng. A. 2006, 422: 227-231
    51 S. Q. Li, K. S. Sassa, S. Asai. Textured crystal growth of Si3N4 ceramics in high magnetic field. Materials Letters. 2005, 59: 153-157
    52 S. Q. Li, K. S. Sassa, S. Asai. Preferred orientation of Si3N4 ceramics by slip casting in a high magnetic field. Ceram. Int. 2006, 32: 701-705
    53 T. S. Suzuki, Y. Sakka. Preparation of oriented bulk 5 wt% Y2O3–AlN ceramics by slip casting in a high magnetic field and sintering. Scripta Mater.. 2005, 52: 583-586
    54 T. S. Suzuki, T. Uchikoshi, H. Okuyama, et al. Mechanical properties of textured, multilayered alumina produced using electrophoretic deposition in a strongmagnetic field. J. Eur. Ceram. Soc. 2006, 26: 661-665
    55 C. C. Koch. Experimental evidence for magnetic or electric field effects on phase transformations. Mater. Sci. Eng A. 2000(287): 213-218
    56 王西宁, 陈静, 刘兵. 磁场对材料固态相变影响的研究进展. 材料导报. 2002, 16(2): 25-27
    57 H. D. Joo, S. U. Kin, N. S. Shin, Y. M. Koo. An effect of high magnetic field on phase transformation in Fe-C system. Mater. Let. 2000, 43: 225-229
    58 J-K. Choi, H. Ohtsuka, Y. Xu, W-Y. Choo. Effects of a strong magnetic field on the phase stability of plain carbon steels. Scripta.Mater.2000(43): 221-226
    59 G.M. Ludtka, R.A. Jaramillo, R.A. Kisner, et al. In situ evidence of enhanced transformation kinetics in a medium carbon steel due to a high magnetic field. Scripta Mater. 2004, 51: 171-174
    60 R.A. Jaramillo, S.S. Babu, G.M. Ludtka, et al. Effect of 30 T magnetic field on transformations in a novel bainitic steel. Scripta. Mater. 2005, 52: 461-466
    61 M. Shimotomai, K.Maruta. Aligned two-phase structures in Fe-C alloys. Scripta Mater. 2000, 42: 499-503
    62 Http://www.magnet.fsu.edu. Final Technical Report(ORNL). 2005
    63 D. M. C. Nicholson, R. A. Kisner, G. M. Ludtka, et al. The effect of high magnetic field on phase stability in Fe-Ni. J. Appl. Phys. 2004, 95(11): 6580-6582
    64 J. W. Cahn. Spinodal decomposition. Trans. Metal. Soc. Aime. 1968, 242: 166-173
    65 I. Steinbach, F. Peaaolla, B. Nestler, et al. A phase field concept for multiphase systems. Physica. D. 1996, 94: 135-147
    66 R. Kobayashi, J. A. Warren, W. C. Carter. A continuum model of grain boundaries. Physica. D. 2000, 140: 141-15
    67 M. Homma, M. Okada and T. Minowa. Fe-Cr-Co permanent magnet alloys heat-treated in the ridge region of the miscibility gap. IEEE. Trans. Magn. 1981, 17(6): 3473-3478
    68 T. S. Chin, K. H. Wang and C. H. Lin. High coercivity Fe-Cr-Co thin films by vacuum evaporation. Jap. J. Appl. Phys. 1991, 30(8): 1692-1695
    69 陈子茂. 铸造 Fe-Cr-Co 永磁. 磁性材料及器件. 1984, 15(1): 26-32
    70 李国栋. 当代磁学. 中国科学技术大学出版社. 1999: 176-182
    71 F. Zhu, L. V. Alvensleben and P. Haasen. A study of Alnico magnets by atom probe. Scripta. Metal.1984, 18: 337-342
    72 T. L. Swan-Wood, O. Delaire and B. Fultz. Vibrational entropy of spinodal decomposition in FeCr. Phys. Rev B. 2005,72(024305): 1-7
    73 F. Z. Bentayeb, S. Alleg, B. Bouzabata, J. M. Grenèche. Study of alloying mechanisms of ball milled Fe-Cr and Fe-Cr-Co powders. J. Magn. Magn. Mater. 2005, 288: 282-296
    74 J. Olszewski and S. Szymura. Structure changes in a Fe-Cr-Co permanent magnet alloy during magnetic hardening. J. Magn. Magn. Mater. 1994, 132: 62-66
    75 T-S. Chin, T-S. Wu, C. Y. Chang. Spinodal decomposition and magnetic properties of Fe-Cr-12Co permanent magnet alloys. J. Appl. Phys. 1983, 54(8): 4502-4511
    76 N. L Kuta, M. Okada, M. Homma, T. Minowa. Single crystal magnets. J.Appl.Phys. 1983, 54(9): 5400-5403
    77 S. Alleg, B. Bouzabata, J.M. Grenèche. Study of the local environment during the phase decomposition of Fe-30.8Cr-12.2Co alloy by M?ssbauer spectrometry. J. Alloy. Compd.. 2000, 312: 265-272
    78 T. Ujihara, K. Osamura. Kinetic analysis of spinodal decomposition process in Fe-Cr alloys by small angle neutron scattering. Acta Mater. 2000, 48: 1629-1637
    79 王六定, 陈长乐, 卫英慧等. 面心立方合金调幅分解与有序化的 X 射线和透射电镜衍射研究. 航空材料学报. 1999, 19(3): 13-18
    80 任晓兵, 王笑天, 清水谦一等. Fe-C 马氏体室温时效转变的研究Ⅱ——调幅分解. 西安交通大学学报. 1994, 28(7): 21-25
    81 J. C. Zhao, M. R. Notis. Spinodal decomposition, ordering transformation, and discontinuous precipitation in a Cu-15Ni-8Sn alloy. Acta Mater.. 1998, 46(12): 4203-4218
    82 M. Okana, G. Thomas, M. Homma. Microstructure and mgnetic poperties of Fe-Cr-Co alloys. IEEE. Trans. Magn. 1978, 14(4): 245-252
    83 董学智. 高技术磁性材料的现状与展望. 金属功能材料. 1996, 3(4): 127-133
    84 张宝峰. 穆斯堡尔学.天津大学出版社.1991: 1-51
    85 王晶云. Fe-Cr-Co 系永磁合金的场离子显微镜及原子探针研究. 北京科技大学硕士学位论文. 1996: 7-14
    86 F. Zhu, P. Haasen and R. Wagner. An Atom Probe Study of The Decomposition ofFe-Cr-Co Permanent Magnet Alloys. Acta Metall. 1986, 34: 457-463
    87 M. K Miller, J. M. Hyde, M. G. Hetherington, et al. Spinodal decomposition in Fe-Cr alloys: Experimental study at the atomic level and comparison with computer models-I. Introduction and methodology. Acta. Metall. Mater. 1995, 43(9): 3385-3401
    88 J. M. Hyde, M. K Miller, M. G. Hetherington, et al. Spinodal decomposition in Fe-Cr alloys: Experimental study at the atomic level and comparison with computer models-II. Development of domain size and composition amplitude. Acta Metall Mater. 1995, 43(9): 3403-3413
    89 J. M. Hyde, M. K Miller, M. G. Hetherington, et al. Spinodal decomposition in Fe-Cr alloys: Experimental study at the atomic level and comparison with computer models-III. Development of morphology. Acta. Metall. Mater. 1995, 43(9): 3415-3426
    90 D.J. Seol, S.Y. Hu, Y.L. Li, et al. Computer simulation of spinodal decomposition in constrained films. Acta Mater.. 2003, 51: 5173-5185
    91 H. Ramanarayan, T.A. Abinandanan. Phase field study of grain boundary effects on spinodal decomposition. Acta Mater.. 2003, 51: 4761-4772
    92 M. I. M. Copetti, C. M. Elllott. Kinetics of phase decomposition processes: numerical solutions to Cahn-Hilliard equation. Mater. Sci. Tech. 1990, 6: 273-283
    93 H. Garcke, B. Niethammer, Martin Rumpf, et al. Transient coarsening behaviour in the Cahn–Hilliard model. Acta. Mater. 2003, 51: 2823-2830
    94 刘俊明, 刘治国, 吴状春. CuCo 合金失稳分解动力学. 物理学报. 1995, 44: 319-327
    95 L. Q. Chen, A. G. Khachaturyan. Computer simulation of structural transformations during precipitation of an ordered intermetallic phase. Acta. Metall. 1991, 39: 2533-2551
    96 赵宇宏. 合金沉淀过程原子尺度模拟. 西北工业大学博士论文. 2003: 50-75
    97 任晓兵, 王笑天, 唯木次男等. 有序化与调幅分解共存现象的理论研究. 中国科学(E 辑). 1996, 26: 193-201
    98 J. Seol, S. Y. Hu, Y. L. Li, et al. Computer simulation of spinodal decomposition in constrained films. Acta. Mater. 2003, 51: 5173-5185
    99 T. Koyama. H. Onodera. Modeling of microstructure changes in FePtnano-granular thin films using the phase-field method. Mater. Trans. 2003, 44: 1523-1528
    100 S. Bastea, S. Pun, J. L. Lebowitz. Surface-directed spinodal decomposition in binary fluid mixtures. Phys. Rev. E. 2001, 63: 041513-1-7
    101 S. Puri, K. Binder. Power laws and crossovers in off-critical surface-directed spinodal decomposition. Phys. Rev. Lett. 2001, 86: 1797
    102 H. Ramanarayan, T. A. Abinandanan. Grain boundary effects on spinodal decomposition II discontinuous microstructures. Acta. Mater. 2004, 52: 921-930
    103 K. T. Moore, W. C. Johnson, J. M. Howe, et al. On the interaction between Ag-depleted zones surrounding γ plates and spinodal decomposition in an Al-22at.% Ag alloy. Acta. Mater. 2002, 50: 943-956
    104 L. Q. Chen. Computer simulation of spinodal decomposition in ternary systems. Acta. Metall. 1994, 42: 3503-3513
    105 T. Miyazaki, T. Koyama, T. Kozakai. Computer simulation of the phase transformation in real alloy systems based on the phase-field method. Mater. Sci. Eng. 2001, 312: 38-49
    106 T. Koyama, H. Onodera. Phase-field simulation of phase decomposition in Fe-Cr-Co alloy under an external magnetic field. Metal. Mater. Inter. 2004, 10(4): 321-326
    107 Q. Wang, T. Liu, A. Gao, et al. A novel method for in situ formation of bulk layered composites with compositional gradients by magnetic field gradient. Scripta Mater. 2007 (in press)
    108 L. Q. Chen, Jie Shen. Applications of semi-implicit fourier-spectral method to phase field equations. Compu. Phys. Comm. 1998, 108: 147-158
    109 L. Morellon, P. A. Algarabel, M. R. Ibarra, et al. Magnetic-field-induced structural phase transition in Gd5(Si1.8Ge2.2). Phys. Rev. B. 1998, 58(22): R14721-R14724
    110 J. Szade and G. Skorek. Electronic structure and magnetism of Gd5(Si, Ge)4 compounds. J. Magn. Magn. Mater. 1999, 196-197: 699-700
    111 V. K. Pecharsky and K. A. Gschneidner. Effect of alloying on the giant magnetocaloric effect of Gd5(Si2Ge2), J. Mag. Mag. Mater. 1997, 167(3): L179-L184
    112 E. M. Levin, K. A. Gschneidner, V. K. Pecharsky. Magnetic correlations inducedby magnetic field and temperature in Gd5Ge4. Phys. Rev. B. 2002, 65(21): 214427(5)
    113 H. Mahfuz, S. Zainuddin, M. R. Parker, et al. Enhancement of strength and stiffness of epoxy-based composites using nanoparticle infusion and high magnetic fields. Materials letters. 2007, 61: 2535-2539
    114 S. Alleg, B. Bouzabata, J.M. Greneche. Kinetics study of the spinodal decomposition in the Fe-30.8Cr-12.2Co alloy by M?ssbauer spectrometry. J. Alloy. Compd. 1999, 282: 206-212
    115 刘伟, 邱晓明, 刘兵. FeCrCo 永磁合金 spinodal 分解两相成分分析方法研究. 大连理工大学学报.2002, 42(3): 265-268
    116 R. Tahara, Y. Nakamura, M. Inagaki, et al. M?ssbauer study of spinodal decomposition in Fe-Cr-Co alloy. Phys. Stat. Sol. 1977, 41: 451-458
    117 李士. 穆斯堡尔效应在磁性材料科学研究中的应用. 磁性材料及器件. 1986, 17(3): 51-55
    118 J. Olszewski, S. Szymura, J. Wójcik, et al. Structure changes in a Fe-Cr-Co permanent magnet alloy during magnetic hardening. J. Magn. Magn. Mater. 1994, 132:62-66
    119 马如璋, 徐英庭. 《穆斯堡尔谱学》. 科学出版社. 1998
    120 褚卫国, 费维栋, 杨德庄. 高温磁场热处理 Alnico8 永磁合金组织粗化过程的稳定性分叉. 金属学报, 1999, 35(12): 1253-1257
    121 李喜, 任忠鸣, 王立龙等. 强磁场对 Bi-6%Mn 合金中 MnBi 相形态和相变的影响. 金属学报. 2006, 42(1): 77-82
    122 W. F. Brown. Micromagnetic. Intersci. Pub, New York, 1963
    123 C. V. Berkov, K. Ramstock, A. Hubert. Solving micromagnetic problems. Phys. Stat. Sol. (a). 1993, 137: 207-225
    124 M. Okana, G. Thomas, M. Homma. Microstructure and Mgnetic Poperties of Fe-Cr-Co Alloys. IEEE. Trans. Magn. 1978, 14(4): 245-252
    125 H. Katoa, T. Akiya, M. Sagawa, et al. Effect of high magnetic field on the coercivity in sintered Nd-Fe-B magnets. J. Magn. Magn. Mater. 2007, 310: 2596-2598
    126 F. Zhu, P. Haasen and R. Wagner. An atom probe study of the decomposition of Fe-Cr-Co permanent magnet alloys. Acta Metall. 1986, 34: 457-463
    127 W. R. Jones. Mechanism of Coercive Force in An FeCrCo Alloys. Magnetism Letters. 1980, 1: 157-164
    128 S. Drápal. The origin of anisotropy in Fe-Cr-Co alloys. Czech. J. Phys. B. 1987, 37: 1174-1182
    129 W. Tang, Y. Zhang, G.C. Hadjipanayis. High-temperature magnetic properties of Sm(CobalFe0.1Cu0.088Zrx)8.5 magnets. J. Magn. Magn. Mater. 2000, 212: 138-144
    130 宛德福, 马兴隆. 磁性物理学. 电子科技出版社, 1994: 150-184
    131 姜寿亭, 李卫. 凝聚态磁性物理. 科学出版社, 2003: 376-381
    132 功能材料及其应用编辑组. 功能材料及其应用. 机械工业出版社, 1991: 11-20

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700