海洋遥感定标检验平台系统集成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着定量遥感技术的发展,遥感器的辐射定标与真实性检验的问题应运而生。海洋遥感技术作为定量遥感技术的重要组成部分同样面临这一问题,能否为其提供充足的现场海洋数据用于海洋卫星遥感器的定标检验对海洋遥感技术的发展具有重大意义。对此,本文设计了一种海洋遥感定标检验数据采集系统,介绍了系统的设计方案和关键技术的实现方法,开发了系统应用软件。
     考虑到平台的可靠性和开发周期,采用了系统集成的方法,结合成熟的计算机技术和通信技术,采用模块化设计,不仅提高了开发过程的清晰程度,而且增强了系统的通用性和可移植性。系统分为现场采集、现场控制、远程监控、电源管理四个部分。现场采集和现场控制部分依托海洋石油平台,保证了现场数据的真实性,采集部分由多个观测仪器构成,完成多种海洋要素的获取;利用多串口扩展卡,现场计算机与观测仪器进行连接,完成采集指令的发送和观测数据的接收、存储;在岸基实现远程监控,通过Inmarsat海事卫星连接现场和远程部分,实现数据的传输;采用市电为主,UPS电源为辅的供电方式,保证系统的供电安全。
     在windows环境下,采用VC++6.0开发系统应用软件,介绍了软件框架开发的主要过程和具体功能的实现方法,围绕单文档视图结构、软件框架各主要类的作用、窗口切分、不同视图之间的切换展开讨论。
     MFC编程实现了系统应用软件的三个主要功能:利用MSComm控件编程实现串口通信,通过通信协议,实现各观测仪器的操控;采用文件和数据库结合的数据存储方案,保存观测数据和系统工作日志;通过Windows Socket编程,完成现场向岸基的数据传输。定时器的应用使得系统能够完成自动采集;实时数据显示方便用户及时掌握系统的工作状态;通过软件的查询功能,用户可以随时查询历史数据和设备工作日志,方便对数据做进一步处理和系统的维护。
     实验室模拟调试实验结果表明,系统工作稳定,数据采集正常,能够为海洋遥感定标检验提供准确、多样的科研数据。
With the development of quantitative remote sensing, validation and calibration emerge. Ocean remote sensing as an important part of quantitative remote sensing technology also faces this problem. It is of great significance to the development of quantitative ocean remote sensing that we can provide adequate on-site marine data to apply to ocean satellite remote sensor. In this regard, the paper designs a marine data acquisition system. The key technologies of design and implementation are described and system application software is developed.
     Taking into account the reliability of the platform and the development cycle, combined with sophisticated computer technology and communication technology, system integration approach is used here. Using modular design not only improves the clarity of the development process and enhances system versatility and portability. The system is divided into site acquisition, site control, remote monitoring and power management. To ensure the authenticity of field data, site acquisition and site control are based on offshore oil platform. The part of site acquisition composed by the number of observation instruments, completes access to a variety of marine elements; using multi-serial port expansion card, on-site computer and observation instruments are connected and instructions sending and observation data reception, storage are completed; remote monitoring in the shore-based, through the Inmarsat maritime satellite, connects on-site part to transmit data; electricity-based and UPS power supply supplemented ensure the security of electricity supply.
     In the windows environment, the system software is developed using VC++6.0. Based on single document view architecture, the main process of software framework development and the specific implementation methods are discussed, such as the main class function of software, window segmentation and different views switching,
     The three main functions of the application software are programmed by MFC: MSComm control programming serial communication, with communication protocol, is used to achieve control of the observation instruments; combined use of file and database storage, preservation of observation data and system log is completed; the windows socket programming completes the on-site data transmission to shore. The application of timer allows the system to complete the automatic acquisition; real-time data display facilitates to user to grasp the system state; through software query capability, the user can always check historical data and work log, to facilitate further data processing and system maintenance.
     Laboratory simulation debugging result shows that the system is stable to get data and can provide accurate and diverse scientific datas for calibration and validation of ocean remote sensing.
引文
[1]杨香云.遥感技术在环境保护中的应用现状与展望[J].长江大学学报,2009,32(4):384-385.
    [2]陈清莲,唐军武,王项南.海洋光学遥感器的辐射定标与数据真实性检验综述[J].海洋技术,1998,17(3):13-26.
    [3]潘德炉,李淑菁,何贤强.利用交叉定标法对CMODIS进行在轨定标的研究[C].成像光谱技术与应用研讨会论文集,2004:35-43.
    [4]童进军.遥感卫星传感器综合辐射定标方法研究[D].北京师范大学,2004.
    [5] SeaWiFS项目信息[EB/OL].http://oceancolor.gsfc.nasa.gov/SeaWiFS/BACKGROUND/.
    [6]海洋遥感专题研讨会通告[EB/OL].http://www.acca21.org.cn/ocean/ly/news090722_3.html.
    [7] Slater P N,Biggar S F,Holm R G,et al.Reflectance- and radiance-based methods for the in-flight absolute calibration of multispectral sensors[J].Remote Sensing of Environment,1987,22(1):11-37.
    [8] Teillet P M,Thome K J,Fox N,et al.Earth observation sensor calibration using a global instrumented and automated network of test sites(GIANTS)[J].SPIE,2001,4540:246-254.
    [9] Henry P,Meygret A.Calibration of HRVIR and Vegetation cameras on SPOT4[J]. Advances in Space Research,2001,28(1):49-58.
    [10] Biggar S F,Thome K J,Wisniewski W T.Vicarious radiometric calibration of EO-1 sensors by reference to high-reflectance ground targets[J].IEEE T Geosci Remote,2003,41(6):1174-1179.
    [11] Markham B L,Barker J L,Barsi J A,et al.Landsat-7 ETM+ radiometric stability and absolute calibration[J].SPIE,2003,4881:308-318.
    [12] Thome K,Biggar S,Choi H J.Vicarious calibration of Terra ASTER,MISR,and MODIS[J].SPIE,2004,5542:290-299.
    [13] Chander G,Helder D L,Markham B L,et al.Landsat-5 TM reflective-band absolute radiometric calibration[J].IEEE T Geosci Remote,2004,42(12):2747-2760.
    [14] Markham B L,Thome K J,Barsi J A,et al.Landsat-7 ETM+ on-orbit reflective-band radiometric stability and absolute calibration[J].IEEE T Geosci Remote,2004,42(12):2810-2820.
    [15] Thome K J,Arai K,Tsuchida S,et al.Vicarious calibration of ASTER via the reflectance-based Approach[J].IEEE T Geosci Remote,2008,46(10):3285-3295.
    [16]高海亮,顾行发,余涛等.环境卫星HJ-1A超光谱成像仪在轨辐射定标及真实性检验[J].中国科学,2010,40(11):1312-1321.
    [17]靳熙芳,王硕.海洋环境数据智能化监控的现状与关键技术[J].海洋预报,2009,26(2):95-102.
    [18] Thomas C. Malone*.The coastal module of the Global Ocean Observing System (GOOS):anassessment of current capabilities to detect change[J].Marine Policy,2003,27(4):295-302.
    [19] NOAA integrated ocean observing system(IOOS) program[R].The united states national oceanic and atmospheric administration,2007.
    [20]邱康睦.中国遥感卫星辐射校正场建设成果及其应用前景[C].第十三届全国遥感技术学术交流会论文摘要集,2001年.
    [21]张玉香,张广顺,黄意玢等.FY-1C遥感器可见-近红外各通道在轨辐射定标[J].气象学报,2002,60(6):740-747.
    [22]胡秀清,张玉香,邱康睦.采用辐照度基法对FY-1C气象卫星可见近红外通道进行绝对辐射定标[J].遥感学报,2003,7(6):458-464.
    [23]傅俏燕,闵祥军,李杏朝等.敦煌场地CBERS-02 CCD传感器在轨绝对辐射定标研究[J].遥感学报,2006,10(4):433-439.
    [24]海洋一号B卫星报道[EB/OL].http://www.ngicc.gov.cn/guojia/guojia_guojia_080522_1.htm.
    [25]东海浒苔遥感与卫星定标检验工作报道[EB/OL]. http://www.soa.gov.cn/soa/news/organizationnews/webinfo/2008/08/1271382669964299.htm.
    [26]中澳遥感定标与真实性检验联合实验[EB/OL]. http://www.irsa.ac.cn/hzjl/gjjl/hzxm/200905/t20090514_1028645.html.
    [27]中国遥感辐射校正场[EB/OL].http://baike.baidu.com/view/1142386.htm.
    [28]陈清莲,李铜基,任洪启.HY-1卫星水色扫描仪的辐射定标与真实性检验[J].海洋技术,2003,22(1):1-9.
    [29]杨跃忠,孙兆华,曹文熙等.海洋光学浮标的设计及应用试验[J].光谱学与光谱分析,2009,29(2):565-569.
    [30]姜静波,李思忍,龚德俊等.海洋要素多通道实时采集系统的设计[J].测控自动化,2009,25(4):91-92.
    [31]郭艳萍.基于ARM和CAN的海洋气象要素观测系统的设计与实现[D].中国海洋大学,2006.
    [32]孙桂鸿.GPRS及其短距离无线采集控制系统[J].中国水运,2009年4期.
    [33]冀本豪.海洋环境监测数据采集器研制及其数据处理方法设计[D].中国石油大学,2009.
    [34] smartdi uw-logger型海洋智能数据采集器[EB/OL]. http://www.pharmon.com.cn/company/product.asp?productid=178782.
    [35] RS-422[EB/OL].http://baike.baidu.com/view/1940451.htm.
    [36]龚建伟,熊光明.Visual C++/Turbo C串口通信编程实践[M].北京:电子工业出版社,2004,10.
    [37]黄成刚.监控组态软件中数据管理子系统的设计与实现[D].大连理工大学,2008.
    [38]徐振茹.多通道温度检测系统的设计与实现[D].大连海事大学,2010.
    [39]孙鑫,余安萍.VC++深入详解[M].北京:电子工业出版社,2006,6.
    [40]丁展,孙海英.Visual C++网络通信编程实用案例精选[M].北京:人民邮电出版社,2004,4.
    [41]系统方法[EB/OL].http://baike.baidu.com/view/66767.htm.
    [42]系统集成[EB/OL].http://baike.baidu.com/view/43762.htm.
    [43]微波辐射计[EB/OL].http://baike.baidu.com/view/3810668.htm.
    [44]韦伟.基于USB2.0的CCD相机系统的设计与实现[D].南京理工大学,2009.
    [45]陈大勇.基于CCD的光学图像采集处理研究[D].电子科技大学,2010.
    [46]李现勇.Visual C++串口通信技术与工程实践[M].北京:人民邮电出版社,2002,5.
    [47]给应用程序加装看门狗[EB/OL].http://www.moon-soft.com/doc/18370.htm.
    [48]叶帮利.用于工控监测系统的多进程软件看门狗[J].微计算机信息,2008,07.
    [49]张鹤.基于卫星通信的海上石油平台远程监控系统的研究与设计[D].浙江工业大学,2009.
    [50]钟健瑜.基于铱星数据通信的海洋数据采集与实时传输通用平台的研究[D].南昌大学,2008.
    [51]田雨,徐年乐,卢秀山.基于GPRS的海洋水文遥测系统关键技术研究[J].Natural Science,2009,28(2):80-83.
    [52]王传君.基于GPRS/IP通信技术的海洋环境实时监测系统[D].大连海事大学,2008.
    [53] EXPLORER 500[EB/OL].http://www.thrane.com/Land%20Mobile/Products/EXPLORER%20500.aspx.
    [54]吕锋,朱涛,徐勤.基于海事卫星C和BGAN的邮件系统设计[J].武汉理工大学学报,2009,31(13):104-107.
    [55]齐舒创作室.Visual C++ 6.0用户界面制作技术与应用实例[M].北京:中国水利水电出版社,1999,3.
    [56]界面设计规范细则[DB/OL].http://wenku.baidu.com/view/998c378002d276a200292ec5.html.
    [57] MSComm控件属性.微软MSDN帮助文档.
    [58]谭浩强.C++程序设计[M].北京:清华大学出版社,2004.
    [59]易用HC01温湿度传感器使用说明书.易用科技.
    [60]双缓冲绘图[EB/OL].http://blog.csdn.net/xsc2001/archive/2010/03/14/5378601.aspx.
    [61]彭伟,徐俊臣,杜玉杰等.基于北斗系统的海洋环境监测数据传输系统设计[J].海洋技术,2009,28(3):13-15.
    [62]孟凡勇,魏振钢,黄学辉.Huffman编码在环保实时监测系统中的研究及应用[R]. 2010国际信息技术与应用论坛,2010.
    [63] The NMEA0183 Protocol[EB/OL].NMEA0183 http://www.tronico.fi/OH6NT/docs/NMEA0183.pdf.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700