锂离子电池尖晶石型5V正极材料LiNi_(0.5)Mn_(1.5)O_4的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
经过20多年的发展,锂离子电池由于其能量密度、循环寿命等方面的优势,在小型电子产品上获得了广泛的应用。然而,随着电动汽车的发展需求,人们对锂离子电池的性能尤其是能量密度和功率密度提出了更高的要求。目前锂离子电池的研究重点也在于提升其能量密度。正极材料是锂离子电池中最关键的材料,对电池的性能包括能量密度起着决定性的影响。本论文针对5V尖晶石型正极材料LiNi0.5Mn1.5O4,通过掺杂改性提高其循环性能、倍率性能、高温性能以及热稳定性。
     论文的第一章中简要地介绍了锂离子电池的结构和工作原理,对锂离子电池的应用前景进行了展望。从能量密度和功率密度的角度对锂离子电池的几种主要正极材料进行概述,并重点论述了LiNi0.5MN1.5O4的结构和反应机理、合成和改性研究的现状。
     论文的第二章介绍了本论文中使用的实验试剂、实验方法和实验仪器。重点介绍了2032型扣式电池的制备方法,以及常用的材料结构、形貌和电化学性能测试方法。
     论文的第三章中,以丙烯酸热聚合法制备了LiNi0.5Mn1.5O4及三种Al掺杂的样品:Li0.95Ni0.45Mn1.5Al0.05O4、LiNi0.475Mn1.475Al0.05O4和Li1.05Ni0.5Mn1.45Al0.05O4。从掺杂方式的角度考察了Al掺杂对LiNi0.5Mn1.5O4的结构、电化学性能的影响。发现Al掺杂能显著地提高LiNi0.5Mn1.5O4的循环性能和倍率性能,将100次循环的容量保持率提高到99%以上。但是不同的掺杂方式效果有所不同:Li0.95Ni0.45Mn1.5Al0.05O4在高温下容量衰减较快,Li1.05Ni0.5Mn1.45Al0.05O4比容量较低,但是在55℃具有更好的容量保持性,100次循环容量保持率也高达98%。因此综合来看,LiNi0.475Mn1.475Al0.05O4具有最佳的电化学性能, Al同时取代Ni和Mn是最佳的掺杂方式。
     论文的第四章中,通过考察一系列不同A1含量的LiNi0.5-xAl2xMn1.5-xO4(0≤2x茎1.0)尖晶石的结构、电化学性能以及热稳定性,对Al的掺杂量进行优化。发现Al的引入会降低LiNi0.5Mn1.5O4晶格中B位离子的有序性,使得晶体结构从P4332逐渐向Fd3m转变。Al掺杂能够明显地提高LiNi0.5Mn1.5O4的循环稳定性和倍率性能,优化的掺杂量为0.05≤2x≤0.10。其中LiNi0.45Al0.10Mn1.45O4表现最佳:在室温1C倍率500次循环后的容量保持率为95.4%,10C时的放电比容量为119mAh/g,约为0.5C时的93.7%。此外,C80测试发现Al掺杂可以显著地抑制LiNi0.5Mn1.5O4和电解液体系在220-C之前的放热反应,从而提高这种高电压正极材料的安全性能。
     论文的第五章中,合成了LiNi0.45M0.10Mn1.45O4(M=Fe、Co、Cr)粉末以比较Fe、Co、Cr的掺杂效果。测试发现,Fe和Cr掺杂能够提高LiNi0.5Mn1.5O4的可逆比容量,而Co掺杂会使比容量轻微下降。长循环测试表明Fe、Co、Cr掺杂的样品均具有很好的循环性能,室温下1C倍率500次循环后的容量保持率分别为93.1%,95.9%和81.75%。55℃下200次循环后的容量保持率分别为94.9%,94.3%和83.6%。另外,这些三价过渡元素掺杂也能有效地提高LiNi0.5Mn1.5O4的倍率性能,在10C倍率放电时,LiNi0.45Fe0.10Mn1.45O4和LiNi0.45Cr0.10Mn1.45O4保持了0.2C容量的90%以上。LiNi0.45Co0.10Mn1.45O4表现更佳,10C放电比容量为124mAh/g,为0.2C放电比容量的97.6%,放电中值电压为4.50V。通过对造成容量衰减的三种可能因素(结构转变、金属离子在电解液中的溶解、电解液的氧化分解)的分析,发现高电压下电解液的分解是造成电池容量衰减的主要原因。
     论文的第六章中,以第五章中优化的LiNi0.45Co0.10Mn1.45O4作为正极,与石墨、零应变材料(Li4Ti5O12和LiCrTiO4)、合金材料(Sn0.76Co0.24和Sn0.3Co0.3C0.4)这三类负极组装成全电池。对各种全电池的电化学性能进行考察,并比较了它们的质量能量密度和体积能量密度。发现LiNi0.45Co0.10Mn1.45O4/LiCrTiO4全电池具有很好的倍率性能和循环性能,是一种长寿命型电池。但是由于其工作电压仅为3.2V,所以能量密度仅为190Wh/kg。LiNi0.45Co0.10Mn1.45O4/石墨全电池工作电压超过4.5V,质量能量密度高达350Wh/kg,体积能量密度达520Wh/L,是一种高能量密度的电池。以Sn0.76Co0.24和Sn0.3Co0.3C0.4合金作为负极的电池工作电压约为4.3V,具有很高的能量密度,尤其是体积能量密度可达到700Wh/L,但是其循环稳定性有待提高。此外,在本章的工作中,我们还找到了一种普适性很强的制备无集流体的柔性电极膜的方法,组装成柔性的LiNi0.5Mn1.5O4/Li4Ti5O12, LiNi0.5Mn1.5O4/石墨和LiMn2O4/Li4Ti5O12全电池并对其电化学性能进行测试。虽然这些全电池的循环性能较差,但是这种柔性电池的制备方法在一些特殊的器件,以及原位光谱分析上会得到应用。
     论文的第七章中用乳液法合成了具有良好均匀性的Ni0.5Mn1.5(C2O4)2·4H2O,并以之为前驱物进一步合成了纳米级、亚微米级和微米级的LiNi0.5Mn1.5O4。发现800℃热处理得到的亚微米级的LiNi0.5Mn1.5O4具有高达136mAh/g的比容量,而850℃和900℃热处理的LiNi0.5Mn1.5O4具有良好的循环稳定性,室温100次循环容量保持率达到95%。对不同粒径大小的LiNi0.5Mn1.5O4的低温测试发现,LiNi0.5Mn1.5O4在低温下的容量保持率很大程度上受到其活性物质颗粒大小的影响。粒子越小,低温性能越好。
     最后,在论文的第八章,作者对论文的创新和不足之处进行了总结,并对未来的研究工作进行了展望。
In the last20years, lithium ion batteries have been widely used in small electronic devices for their advantages in energy density and cyclic life. However, with the development of electric vehicles, people have higher requirements on the performance of lithium ion batteries, especially on their energy density and power density. Recently, the focus of research on lithium ion batteries is to improve their energy density. The cathode material is the most important component in a lithium ion cell because it determines to a large extent the cell performances including energy density. This thesis focuses on improving the cycling stability, rate performance and thermal stability of5V spinel cathode material LiNio.5Mn1.5O4.
     Chapter1gives a brief introduction about the structure, working mechanism and applications of lithium ion batteries. A summarization about several common cathode materials is conducted from the viewpoint of energy density and power density. Moreover, the research statuses about the structure, reaction mechanism, synthesis methods, doping and coating of LiNio.5Mn1.5O4are mainly reviewed. The scope of this thesis is outlined at the end of this chapter.
     In chapter2, the author introduces the experimental reagents, processes and equipments used in the project of this thesis. A detailed procedure of2032coin cell assembling as well as general characterization methods of materials'structure, morphology and electrochemical properties has been elaborated,
     In chapter3, powders of LiNi0.5Mn1.5O4, Lio.95Ni0.45Mn1.5Al0.05O4, LiNi0.475Mn1.475Al0.05O4and Li1.05Ni0.5Mn1.45Al0.05O4are synthesized by a thermopolymerization method, to investigate the effects of Al substitution for Ni or (and) Mn in LiNi0.5Mn1.5O4spinel on the structures and electrochemical properties. It is found that Al-doping can significantly improve the cycling stability and rate capability of LiNi0.5Mn1.5O4. The capacity retentions of Al-doped spinels increase to over99%after100cycles at room temperature. However, the effects of Al substitutions for Ni and (or) Mn ions in the LiNi0.5Mn1.5O4are somewhat different:the Lio.95Ni0.45Mn1.5Al0.05O4shows faster capacity fading at an elevated temperature; the Li1.05Ni0.5Mn1.45AI0.05O4has lower capacity but displays higher capacity retention at55℃, its capacity retention after100cycles can reach98%. As a compromise, the Ni/Mn co-substituted sample LiNi0.475Mn1.475Al0.05O4shows the best electrochemical performance with a high specific capacity during cycling at room and elevated temperatures, and excellent rate capability.
     In chapter4, after a series of Al-doped LiNi0.5-xAl2xMn15-xO4(0<2x<1.0) spinel powders are synthesized. Their structures, electrochemical properties and thermal stabilities are investigated to optimize the content of doped Al. It is found that introductions of Al into LiNi0.5Mn1.5O4decreases the ordering degree of ions in B sites, and finally changes the space group of LiNi0.5Mn1.5O4from ordered P4332to disordered Fd3m gradually. The cycling stability and rate capability are significantly improved by Al-doping in the optimized Al concentration0.05<2x<0.10. The LiNi0.45Al0.10Mn1.45O4gives the best capacity retention (95.4%after500cycles at1C rate) and the best rate capability (119mAh/g at10C, about93.7%of its capacity at0.5C) at room temperature. Moreover, the thermal stability of the spinels is tested on a C80calorimeter and the results show that Al-doping can effectively suppress the exothermic reactions between LiNi0.5Mn1.5O4and electrolyte below220℃and thus improve the safety of this high voltage cathode material.
     In chapter5, LiNi0.45M0.10Mn1.45O4(M=Fe, Co,Cr) powders are prepared and systematically investigated to compare the effects of Fe, Co, Cr doping. It is found that the Fe-and Cr-doping increase the reversible capacity of LiNi0.5Mn1.5O4, while the Co-doping decreases the capacity slightly. Excellent cycle life is measured for the Fe-, Co-, Cr-doped LiNi0.5Mn1.5O4, about95.9%,93.1%and81.7%of their initial capacities can be retained after500cycles at room temperature. Their capacity retention after200cycles at55℃is94.9%,94.3%and83.6%respectively. Moreover, these three valence transition ions doping also significantly improves the rate performance of LiNi0.5Mn1.5O4. When discharged at10C, LiNi0.45Fe0.10Mn1.45O4and LiNi0.45Cr0.10Mn1.45O4can maintain>90%of their capacity at0.2C. LiNi0.45Co0.10Mn1.45O4performs even better, since it displays a capacity of124mAh/g at10C (97.6%of its capacity at0.2C), with the average discharge voltage of4.50V. Three possible capacity fading mechanisms including structural transformation, the dissolution of the spinel into the electrolyte, and the oxidation of the electrolyte are discussed. The decomposition of the electrolyte is regarded as the most important mechanism.
     In chapter6, full cells are assembled with the LiNi0.45Co0.10Mn1.45O4optimized in chapter5as the positive electrode, and graphite, zero-strain materials (Li4TisO12and LiCrTiO4) or alloy materials (Sn0.76Co0.24and Sn0.3Co0.3C0.4) as the negative electrodes. The electrochemical properties of these full cells are investigated and their mass energy density and volume energy density are compared. It is found that LiNi0.45Co0.10Mn1.45O4/LiCrTiO4displays excellent rate capability and cycle stability and is a long life battery. But its energy density is only190Wh/kg because of its low working voltage of3.2V. The working voltage of LiNi0.45Co0.10Mn1.45O4/graphite is about4.5V, so it has high mass energy density (350Wh/kg) and volume energy density (520Wh/L). When the alloy (Sn0.76Co0.24and Sn0.3Co0.3C0.4) materials are combined with LiNi0.45Co0.10Mn1.45O4, the discharge voltage of the full cells are about4.3V, and the volume energy density of the full cells can reach700Wh/L, although their cycling performance need to be improved. Moreover, the author has developed a versatile method to fabricate flexible electrodes without current collector. Flexible cells of LiNi0.5Mn1.5O4/Li4Ti5O12, LiNi0.5Mn1.5O4/graphite and LiMn2O4/Li4TisOi2are assemabled and tested. Although their cycling performance is not satisfactory, they may be applied in some special devices and in-situ spectroscopy analysis.
     In chapter7, Ni0.5Mni.5(C204)2·4H2O particles with high uniformity are synthesized by emulsion methods, nano-, submicron-and micron-size LiNi0.5Mn1.5O4powders are synthesized by using Ni0.5Mn1.5(C2O4)2·4H2O as the precursor. It is found that submicron-LiNi0.5Mn1.5O4heattreated at800℃has the capacity of136mAh/g, and the LiNi0.5Mn1.5O4calcinated at850and900℃exhibit good cycling performance, with a capacity retention over95%after100cycles at room temperature. The electrochemical performance of the LiNi0.5Mn1.5O4at low temperatures is measured. The results show that capacity retention of LiNi0.5Mn1.5O4at low temperatures is heavily influenced by the particle size of active materials. Smaller particles lead to better performance.
     Finally, in chapter8, the author gives an overview of the originalities and deficiencies of this thesis. Some prospects and suggestions of the possible future research are also given.
引文
[1]黄可龙,王兆翔,刘素琴,《锂离子电池原理与关键技术》,化学工业出版社,(2007).
    [2]R. Marom, S.F. Amalraj, N. Leifer, D. Jacob, D. Aurbach, J. Mater. Chem.21 (2011) 9938.
    [3]郭炳煜,徐徽,王先友,肖立新,《锂离子电池》,中南大学出版社,(2002).
    [4]郭炳煜,李新海,杨松青,《化学电源——电池原理与制造技术》,中南大学出版社,(2009).
    [5]吴宇平,戴晓兵,马军旗,程预江,《锂离子电池——应用与实践》,化学工业出版社,(2004).
    [6]吴宇平,张汉平,吴锋,李朝晖,《聚合物锂离子电池》,化学工业出版社,(2006).
    [7]E.J. Cairns, P. Albertus, Annu. Rev. Chem. Biomol.1 (2010) 299.
    [8]Z.G. Yang, J.L. Zhang, M.C.W. Kintner-Meyer, X.C. Lu, D.W. Choi, J.P. Lemmon, J. Liu, Chem. Rev.111(2011)3577.
    [9]A123, http://www.al23systems.com/.
    [10]H. Liu, Y.P. Wu, E. Rahm, R. Holze, H.Q. Wu, J. Solid State Electr.8 (2004) 450.
    [11]J.W. Fergus, J. Power Sources 195 (2010) 939.
    [12]G.Q. Liu, L. Wen, Y.M. Liu, J. Solid State Electr.14 (2010) 2191.
    [13]J.M. Tarascon, E. Wang, F.K. Shokoohi, W.R. Mckinnon, S. Colson, J. Electrochem. Soc.138 (1991)2859.
    [14]K. Amine, J. Liu, I. Belharouak, Electrochem. Commun.7 (2005) 669.
    [15]G. Amatucci, A. Du Pasquier, A. Blyr, T. Zheng, J.M. Tarascon, Electrochim. Acta 45 (1999) 255.
    [16]G.G. Amatucci, C.N. Schmutz, A. Blyr, C. Sigala, A.S. Gozdz, D. Larcher, J.M. Tarascon, J. Power Sources 69 (1997) 11.
    [17]J.-M. Tarascon, Phil. Trans. R. Soc.368 (2011) 3227.
    [18]G.B. Zhong, Y.Y. Wang, Z.C. Zhang, C.H. Chen, Electrochim. Acta 56 (2011) 6554.
    [19]M.S. Islam, D.J. Driscoll, C.A.J. Fisher, P.R. Slater, Chem. Mater.17 (2005) 5085.
    [20]D. Morgan, A. Van der Ven, G Ceder, Electrochem. Solid St.7 (2004) A30.
    [21]Q.M. Zhong, A. Bonakdarpour, M.J. Zhang, Y. Gao, J.R. Dahn, J. Electrochem. Soc.144 (1997)205.
    [22]T. Ohzuku, S. Takeda, M. Iwanaga, J. Power Sources 82 (1999) 90.
    [23]D.Q. Liu, Y.H. Lu, J.B. Goodenough, J. Electrochem. Soc.157 (2010) A1269.
    [24]S.-H. Yang, R.L. Middaugh, Solid State Ion. Diffus. React.139 (2001) 13.
    [25]H. Kawai, M. Nagata, H. Tukamoto, A.R. West, J. Power Sources 81 (1999) 67.
    [26]J.H. Kim, S.T. Myung, C.S. Yoon, S.G Kang, Y.K. Sun, Chem. Mater.16 (2004) 906.
    [27]K. Ariyoshi, Y. Iwakoshi, N. Nakayama, T. Ohzuku, J. Electrochem. Soc.151 (2004) A296.
    [28]N. Amdouni, K. Zaghib, F. Gendron, A. Mauger, C.M. Julien, J. Magn. Magn. Mater.309 (2007)100.
    [29]M. Kunduraci, G.G. Amatucci, J. Electrochem. Soc.153 (2006) A1345.
    [30]M. Kunduraci, J.F. Al-Sharab, G.G Amatucci, Chem. Mater.18 (2006) 3585.
    [31]S.H. Oh, K.Y Chung, S.H. Jeon, C.S. Kim, W.I. Cho, B.W. Cho, J. Alloy Compd.469 (2009) 244.
    [32]C.M. Julien, M. Massot, Mat. Sci. Eng. B-Solid 97 (2003) 217.
    [33]Y. Idemoto, H. Narai, N. Koura, J. Power Sources 119 (2003) 125.
    [34]H.S. Fang, Z.X. Wang, X.H. Li, H.J. Guo, W.J. Peng, J. Power Sources 153 (2006) 174.
    [35]H.S. Fang, Z.X. Wang, X.H. Li, H.J. Guo, W.J. Peng, Mater. Lett.60 (2006) 1273.
    [36]Z.Y. Chen, H.L. Zhu, S. Ji, V. Linkov, J.L. Zhang, W. Zhu, J. Power Sources 189 (2009) 507.
    [37]GQ. Liu, L. Qi, L. Wen, Rare Metal Mat. Eng.35 (2006) 299.
    [38]Y. Ji, Z.X. Wang, Z.L. Yin, H.J. Guo, W.J. Peng, X.H. Li, Chinese J. Inorg. Chem.23 (2007) 597.
    [39]Y. Takahashi, H. Sasaoka, R. Kuzuo, N. Kijima, J. Akimoto, Electrochem. Solid St.9 (2006) A203.
    [40]B.J. Hwang, Y.W. Wu, M. Venkateswarlu, M.Y. Cheng, R. Santhanam, J. Power Sources 193 (2009)828.
    [41]G.D. Du, Y.N. Nuli, J. Yang, J.L. Wang, Mater. Res. Bull.43 (2008) 3607.
    [42]T.F. Yi, C.Y. Li, Y.R. Zhu, J. Shu, R.S. Zhu, J. Solid State Electr.13 (2009) 913.
    [43]X.X. Xu, J. Yang, Y.Q. Wang, Y.N. Nuli, J.L. Wang, J. Power Sources 174 (2007) 1113.
    [44]Y.S. Lee, Y.K. Sun, S. Ota, T. Miyashita, M. Yoshi, Electrochem. Commun.4 (2002) 989.
    [45]Y.K. Fan, J.M. Wang, X.B. Ye, J.Q. Zhang, Mater. Chem. Phys.103 (2007) 19.
    [46]Y.K. Sun, S.W. Oh, C.S. Yoon, H.J. Bang, J. Prakash, J. Power Sources 161 (2006) 19.
    [47]X. Fang, N. Ding, X.Y. Feng, Y. Lu, C.H. Chen, Electrochim. Acta,54 (2009) 7471.
    [48]L. Zhou, D.Y. Zhao, X.W. Lou, Angew. Chem. Int. Edit.51 (2012) 239.
    [49]L. Wen, Q. Lu, G.X. Xu, Electrochim. Acta 51 (2006) 4388.
    [50]J.H. Kim, S.T. Myung, Y.K. Sun, Electrochim. Acta 49 (2004) 219.
    [51]T.F. Yi, X.G. Hu, J. Power Sources 167 (2007) 185.
    [52]T.F. Yi, Y.R. Zhu, Electrochim. Acta 53 (2008) 3120.
    [53]H.Y. Xu, S. Xie, N. Ding, B.L. Liu, Y. Shang, C.H. Chen, Electrochim. Acta 51 (2006) 4352.
    [54]L. Zhang, X.Y. Lv, YX. Wen, F. Wang, H.F. Su, J. Alloy Compd.480 (2009) 802.
    [55]J.C. Arrebola, A. Caballero, L. Hernan, J. Morales, Eur. J. Inorg. Chem. (2008) 3295.
    [56]M. Kunduraci, G.G Amatucci, Electrochim. Acta 53 (2008) 4193.
    [57]D. Kovacheva, B. Markovsky, G. Salitra, Y. Talyosef, M. Gorova, E. Levi, M. Riboch, HJ. Kim, D. Aurbach, Electrochim. Acta 50 (2005) 5553.
    [58]Y.K. Sun, D.W. Kim, Y.M. Choi, J. Power Sources 79 (1999) 231.
    [59]B. Markovsky, Y. Talyossef, G. Salitra, D. Aurbach, H.J. Kim, S. Choi, Electrochem. Commun.6(2004)821.
    [60]H. Yamane, T. Inoue, M. Fujita, M. Sano, J. Power Sources 99 (2001) 60.
    [61]J.C. Arrebola, A. Caballero, L. Hernan, J. Morales, J. Power Sources 195 (2010) 4278.
    [62]Y.K. Sun, K.J. Hong, J. Prakash, K. Amine, Electrochem. Commun.4 (2002) 344.
    [63]G.T.K. Fey, C.Z. Lu, T.P. Kumar, J. Power Sources 115 (2003) 332.
    [64]R. Stoyanova, R. Alcantara, M. Jaraba, P. Lavela, J.L. Tirado, E. Zhecheva, Chem. Mater.16 (2004) 1573.
    [65]M. Wagemaker, F.G.B. Ooms, E.M. Kelder, J. Schoonman, G.J. Kearley, F.M. Mulder, J. Am. Chem. Soc.126 (2004) 13526.
    [66]C. Locati, U. Lafont, L. Simonin, F. Ooms, E.M. Kelder, J. Power Sources 174 (2007) 847.
    [67]U. Lafont, C. Locati, WJ.H. Borghols, A. Lasinska, J. Dygas, A.V. Chadwick, E.M. Kelder, J. Power Sources 189 (2009) 179.
    [68]R. Alcantara, M. Jaraba, P. Lavela, J.M. Lloris, C.P. Vicente, J.L. Tirado, J. Electrochem. Soc. 152 (2005) A13.
    [69]B. Leon, J.M. Lloris, C.P. Vicente, J.L. Tirado, Electrochem. Solid St.9 (2006) A96.
    [70]J. Liu, A. Manthiram, J. Phys. Chem. C 113 (2009) 15073.
    [71]Y. Ein-Eli, J.T. Vaughey, M.M. Thackeray, S. Mukerjee, X.Q. Yang, J. McBreen, J. Electrochem. Soc.146 (1999) 908.
    [72]Y.S. Meng, M.C. Yang, B. Xu, J.H. Cheng, C.J. Pan, B.J. Hwang, Chem. Mater.23 (2011) 2832.
    [73]J. Liu, A. Manthiram, J. Electrochem. Soc.156 (2009) A66.
    [74]A. Ito, D. Li, Y. Lee, K. Kobayakawa, Y. Sato, J. Power Sources 185 (2008) 1429.
    [75]J. Liu, A. Manthiram, Chem. Mater.21 (2009) 1695.
    [76]S.W. Oh, S.T. Myung, H.B. Kang, Y.K. Sun, J. Power Sources 189 (2009) 752.
    [77]J.H. Kim, S.T. Myung, C.S. Yoon, I.H. Oh, Y.K. Sun, J. Electrochem. Soc.151 (2004) A1911.
    [78]GQ. Liu, W.S. Yuan, G.Y. Liu, Y.W. Tian, J. Alloy Compd.484 (2009) 567.
    [79]R. Alcantara, M. Jaraba, P. Lavela, J.L. Tirado, P. Biensan, A. de Guibert, C. Jordy, J.P. Peres, Chem. Mater.15(2003)2376.
    [80]S.B. Park, W.S. Eom, W.I. Cho, H. Jang, J. Power Sources 159 (2006) 679.
    [81]G.Q. Liu, H.W. Xie, L.Y. Liu, X.X. Kang, Y.W. Tian, Y.C. Zhai, Mater. Res. Bull.42 (2007) 1955.
    [82]M. Aklalouch, R.M. Rojas, J.M. Rojo, I. Saadoune, J.M. Amarilla, Electrochim. Acta 54 (2009)7542.
    [83]H.L. Wang, H. Xia, M.O. Lai, L. Lu, Electrochem. Commun.11 (2009) 1539.
    [84]F.G.B. Ooms, E.M. Kelder, J. Schoonman, M. Wagemaker, F.M. Mulder, Solid State Ionics 152 (2002)143.
    [85]D.C. Li, A. Ito, K. Kobayakawa, H. Noguchi, Y. Sato, J. Power Sources 161 (2006) 1241.
    [86]T.A. Arunkumar, A. Manthiram, Electrochim. Acta 50 (2005) 5568.
    [87]M. Aklalouch, J.M. Amarilla, R.M. Rojas, I. Saadoune, J.M. Rojo, Electrochem. Commun.12 (2010)548.
    [88]S.W. Oh, S.H. Park, J.H. Kim, Y.C. Bae, Y.K. Sun, J. Power Sources 157 (2006) 464.
    [89]Y.K. Sun, Y.S. Lee, M. Yoshio, K. Amine, Electrochem. Solid St.5 (2002) A99.
    [90]Y.K. Sun, C.S. Yoon, I.H. Oh, Electrochim. Acta 48 (2003) 503.
    [91]J.S. Kim, C.S. Johnson, J.T. Vaughey, S.A. Hackney, K.A. Walz, W.A. Zeltner, M.A. Anderson, M.M. Thackeray, J. Electrochem. Soc.151 (2004) A1755.
    [92]J. Liu, A. Manthiram, J. Electrochem. Soc.156 (2009) S13.
    [93]J. Liu, A. Manthiram, J. Electrochem. Soc.156 (2009) A833.
    [94]J. Liu, A. Manthiram, Chem. Mater.21 (2009) 1695.
    [95]Y. Kobayashi, H. Miyashiro, K. Takei, H. Shigemura, M. Tabuchi, H. Kageyama, T. Iwahori, J. Electrochem. Soc.150 (2003) A1577.
    [96]Y.K. Fan, J.M. Wang, Z. Tang, W.C. He, J.Q. Zhang, Electrochim. Acta 52 (2007) 3870.
    [97]R. Alcantara, M. Jaraba, P. Lavela, J.L. Tirado, J. Electroanal. Chem.566 (2004) 187.
    [98]J. Arrebola, A. Caballero, L. Hernan, J. Morales, E.R. Castellon, J.R.R. Barrado, J. Electrochem. Soc.154 (2007) A178.
    [99]J. Arrebola, A. Caballero, L. Hernan, J. Morales, E.R. Castellon, Electrochem. Solid St.8 (2005) A303.
    [100]H.M. Wu, I. Belharouak, A. Abouimrane, Y.K. Sun, K. Amine, J. Power Sources 195 (2010) 2909.
    [101]T. Ohzuku, K. Ariyoshi, S. Yamamoto, Y. Makimura, Chem. Lett. (2001) 1270.
    [102]K. Ariyoshi, S. Yamamoto, T. Ohzuku, J. Power Sources 119 (2003) 959.
    [103]H.F. Xiang, X. Zhang, Q.Y. Jin, C.P. Zhang, C.H. Chen, X.W. Ge, J. Power Sources 183 (2008) 355.
    [104]H.M. Wu, I. Belharouak, H. Deng, A. Abouimrane, Y.K. Sun, K. Amine, J. Electrochem. Soc. 156 (2009) A1047.
    [105]J.C. Arrebola, A. Caballero, L. Hernan, J. Morales, J. Nanomater. (2008) 659397.
    [106]D. Aurbach, B. Markovsky, Y. Talyossef, G. Salitra, H.J. Kim, S. Choi, J. Power Sources 162 (2006) 780.
    [107]H. Lee, S. Choi, S. Choi, H.J. Kim, Y. Choi, S. Yoon, J.J. Cho, Electrochem. Commun.9 (2007)801.
    [108]J.C. Arrebola, A. Caballero, L. Hernan, J. Morales, J. Power Sources.183 (2008) 310.
    [109]G. Armstrong, A.R. Armstrong, P.G. Bruce, P. Reale, B. Scrosati, Adv. Mater.18 (2006) 2597.
    [110]J.C. Arrebola, A. Caballero, J.L. Gomez-Camer, L. Hernan, J. Morales, L. Sanchez, Electrochem. Commun.11 (2009) 1061.
    [111]J.T. Han, J.B. Goodenough, Chem. Mater.23 (2011) 3404.
    [112]Y.Y. Xia, T. Sakai, T. Fujieda, M. Wada, H. Yoshinaga, Electrochem. Solid St.4 (2001) A9.
    [1]R. Marom, S.F. Amalraj, N. Leifer, D. Jacob, D. Aurbach, J. Mater. Chem.21 (2011) 9938.
    [2]J.H. Kim, S.T. Myung, C.S. Yoon, S.G. Kang, Y.K. Sun, Chem. Mater.16 (2004) 906.
    [3]K. Ariyoshi, Y. Iwakoshi, N. Nakayama, T. Ohzuku, J. Electrochem. Soc.151 (2004) A296.
    [4]D.Q. Liu, Y.H. Lu, J.B. Goodenough, J. Electrochem. Soc.157 (2010) A1269.
    [5]T.F. Yi, Y. Xie, M.F. Ye, L.J. Jiang, R.S. Zhu, Y.R. Zhu, Ionics 17 (2011) 383.
    [6]B. Rambabu, R. Santhanam, J. Power Sources 195 (2010) 5442.
    [7]J.H. Kim, S.T. Myung, Y.K. Sun, Electrochim. Acta 49 (2004) 219.
    [8]R. Alcantara, M. Jaraba, P. Lavela, J.L. Tirado, Electrochim. Acta 47 (2002) 1829.
    [9]C. Locati, U. Lafont, L. Simonin, F. Ooms, E.M. Kelder, J. Power Sources 174 (2007) 847.
    [10]G.Q. Liu, W.S. Yuan, G.Y. Liu, Y.W. Tian, J. Alloy Compd.484 (2009) 567.
    [11]S.B. Park, W.S. Eom, W.I. Cho, H. Jang, J. Power Sources 159 (2006) 679.
    [12]T.F. Yi, C.Y. Li, Y.R. Zhu, J. Shu, R.S. Zhu, J. Solid State Electr.13 (2009) 913.
    [13]M. Aklalouch, J.M. Amarilla, R.M. Rojas, I. Saadoune, J.M. Rojo, Electrochem. Commun.12 (2010)548.
    [14]J. Liu, A. Manthiram, J. Phys. Chem. C 113 (2009) 15073.
    [15]D.C. Li, A. Ito, K. Kobayakawa, H. Noguchi, Y. Sato, J. Power Sources 161 (2006) 1241.
    [16]A. Ito, D. Li, Y. Lee, K. Kobayakawa, Y. Sato, J. Power Sources 185 (2008) 1429.
    [17]S.W. Oh, S.T. Myung, H.B. Kang, Y.K. Sun, J. Power Sources 189 (2009) 752.
    [18]G.T.K. Fey, C.Z. Lu, T.P. Kumar, J. Power Sources 115 (2003) 332.
    [19]J. Liu, A. Manthiram, J. Electrochem. Soc.156 (2009) A66.
    [20]M. Aklalouch, J.M. Amarilla, R.M. Rojas, I. Saadoune, J.M. Rojo, J. Power Sources 185 (2008)501.
    [21]S.H. Oh, K.Y. Chung, S.H. Jeon, C.S. Kim, W.I. Cho, B.W. Cho, J. Alloy Compd.469 (2009) 244.
    [22]M. Kunduraci, J.F. Al-Sharab, G.G. Amatucci, Chem. Mater.18 (2006) 3585.
    [23]R.L. David (Ed.), Handbook of Chemistry and Physics, CRC Press, Boca Raton, FL,2005 http://www.hbcpnetbase.com.
    [24]S.T. Myung, S. Komaba,N. Kumagai, J. Electrochem. Soc.148 (2001) A482.
    [25]J. Liu, A. Manthiram, Chem. Mater.21 (2009) 1695.
    [26]Y.K. Sun, Y.S. Lee, M. Yoshio, K. Amine, Electrochem. Solid St.5 (2002) A99.
    [27]Y.S. Lee, Y.K. Sun, S. Ota, T. Miyashita, M. Yoshi, Electrochem. Commun.4 (2002) 989.
    [28]J. Liu, A. Manthiram, J. Electrochem. Soc.156 (2009) A833.
    [1]M. Armand, J.M. Tarascon, Nature 451 (2008) 652.
    [2]E.J. Cairns, P. Albertus, Annu. Rev. Chem. Biomol.1 (2010) 299.
    [3]J.-M. Tarascon, Phil. Trans. R. Soc.368 (2011) 3227.
    [4]Z.G. Yang, J.L. Zhang, M.C.W. Kintner-Meyer, X.C. Lu, D.W. Choi, J.P. Lemmon, J. Liu, Chem. Rev.111(2011)3577.
    [5]其鲁,《电动汽车用锂离子二次电池》,科学出版社,(2010).
    [6]G.B. Zhong, Y.Y. Wang, Z.C. Zhang, C.H. Chen, Electrochim. Acta 56 (2011) 6554.
    [7]G.Q. Liu, L. Wen, Y.M. Liu, J. Solid State Elector.14 (2010) 2191.
    [8]B. Rambabu, R. Santhanam, J. Power Sources 195 (2010) 5442.
    [9]T.F. Yi, Y. Xie, M.F. Ye, L.J. Jiang, R.S. Zhu, Y.R. Zhu, Ionics 17 (2011) 383.
    [10]R. Marom, S.F. Amalraj, N. Leifer, D. Jacob, D. Aurbach, J. Mater. Chem.21 (2011) 9938.
    [11]H.F. Xiang, H. Wang, C.H. Chen, X.W. Ge, S. Guo, J.H. Sun, W.Q. Hu, J. Power Sources 191 (2009) 575.
    [12]YE. Hyung, D.R. Vissers, K. Amine, J. Power Sources 119 (2003) 383.
    [13]K. Xu, S.S. Zhang, J.L. Allen, T.R. Jow, J. Electrochem. Soc.149 (2002) A1079.
    [14]H.F. Xiang, H.Y. Xu, Z.Z. Wang, C.H. Chen, J. Power Sources 173 (2007) 562.
    [15]H.F. Xiang, Q.Y. Jin, C.H. Chen, X.W. Ge, S. Guo, J.H. Sun, J. Power Sources 174 (2007) 335.
    [16]S.S. Zhang, J. Power Sources 162 (2006) 1379.
    [17]J.-A. Choi, Y.-K. Sun, E.-G. Shim, B. Scrosati, D.-W. Kim, Electrochim. Acta 56 (2011) 10179.
    [18]H. Sakaebe, H. Matsumoto, K. Tatsumi, Electrochim. Acta 53 (2007) 1048.
    [19]M. Armand, F. Endres, D.R. MacFarlane, H. Ohno, B. Scrosati, Nat. Mater.8 (2009) 621.
    [20]A. Lewandowski, A. Swiderska-Mocek, J. Power Sources 194 (2009) 601.
    [21]A. Balducci, S.S. Jeong, G.T. Kim, S. Passerini, M. Winter, M. Schmuck, G.B. Appetecchi, R. Marcilla, D. Mecerreyes, V. Barsukov, V. Khomenko, I. Cantero, I. De Meatza, M. Holzapfel, N. Tran, J. Power Sources 196 (2011) 9719.
    [22]H.L. Wang, H. Xia, M.O. Lai, L. Lu, Electrochem. Commun.11 (2009) 1539.
    [23]T.A. Arunkumar, A. Manthiram, Electrochim. Acta 50 (2005) 5568.
    [24]D.Q. Liu, Y.H. Lu, J.B. Goodenough, J. Electrochem. Soc.157 (2010) A1269.
    [25]J. Liu, A. Manthiram, J. Electrochem. Soc.156 (2009) A66.
    [26]J. Liu.. A. Manthiram, J. Phys. Chem. C 113 (2009) 15073.
    [27]Y.K. Sun, K.J. Hong, J. Prakash, K. Amine, Electrochem. Commun.4 (2002) 344.
    [28]Y.K. Sun, C.S. Yoon, I.H. Oh, Electrochim. Acta 48 (2003) 503.
    [29]J.S. Kim, C.S. Johnson, J.T. Vaughey, S.A. Hackney, K.A. Walz, W.A. Zeltner, M.A. Anderson, M.M. Thackeray, J. Electrochem. Soc.151 (2004) A1755.
    [30]J. Liu, A. Manthiram, Chem. Mater.21 (2009) 1695.
    [31]K.M. Shaju, P.G. Bruce, Dalton T (2008) 5471.
    [32]J.C. Arrebola, A. Caballero, L. Hernan, J. Morales, Eur. J. Inorg. Chem. (2008) 3295.
    [33]U. Lafont, C. Locati, W.J.H. Borghols, A. Lasinska, J. Dygas, A.V. Chadwick, E.M. Kelder, J. Power Sources 189 (2009) 179.
    [34]M. Kunduraci, GG Amatucci, J. Electrochem. Soc.153 (2006) Al345.
    [35]M. Kunduraci, J.F. Al-Sharab, G.G. Amatucci, Chem. Mater.18 (2006) 3585.
    [36]S.H. Oh, K.Y. Chung, S.H. Jeon, C.S. Kim, W.I. Cho, B.W. Cho, J. Alloy Compd.469 (2009) 244.
    [37]C.M. Julien, M. Massot, Mat. Sci. Eng. B-Solid 97 (2003) 217.
    [38]P. Strobel, A. Ibarra-Palos, M. Anne, C. Poinsignon, A. Crisci, Solid State Sci.5 (2003) 1009.
    [39]J.H. Kim, S.T. Myung, C.S. Yoon, S.G. Kang, Y.K. Sun, Chem. Mater.16 (2004) 906.
    [40]F. LeCras, D. Bloch, M. Anne, P. Strobel, Solid State Ionics 89 (1996) 203.
    [41]R.L. David (Ed.), Handbook of Chemistry and Physics, CRC Press, Boca Raton, FL,2005 http://www.hbcpnetbase.com.
    [1]T. Ohzuku, S. Takeda, M. Iwanaga, J. Power Sources 82 (1999) 90.
    [2]Y.S. Lee, Y.K. Sun, S. Ota, T. Miyashita, M. Yoshi, Electrochem. Commun.4 (2002) 989.
    [3]M. Mohamedi, A. Makino, K. Dokko, T. Itoh, I. Uchida, Electrochim. Acta 48 (2002) 79.
    [4]Y. Idemoto, H. Narai, N. Koura, J. Power Sources 119 (2003) 125.
    [5]K. Ariyoshi, Y. Iwakoshi, N. Nakayama, T. Ohzuku, J. Electrochem. Soc.151 (2004) A296.
    [6]J.H. Kim, S.T. Myung, C.S. Yoon, S.G Kang, Y.K. Sun, Chem. Mater.16 (2004) 906.
    [7]B. Markovsky, Y. Talyossef, G. Salitra, D. Aurbach, H.J. Kim, S. Choi, Electrochem. Commun. 6(2004)821.
    [8]T.A. Arunkumar, A. Manthiram, Electrochim. Acta 50 (2005) 5568.
    [9]D. Kovacheva, B. Markovsky, G. Salitra, Y. Talyosef, M. Gorova, E. Levi, M. Riboch, H.J. Kim, D. Aurbach, Electrochim. Acta 50 (2005) 5553.
    [10]H.Y. Xu, S. Xie, N. Ding, B.L. Liu, Y. Shang, C.H. Chen, Electrochim. Acta 51 (2006) 4352.
    [11]M. Kunduraci, G.G. Amatucci, J. Power Sources 165 (2007) 359.
    [12]J.C. Arrebola, A. Caballero, L. Hernan, J. Morales, J. Power Sources 180 (2008) 852.
    [13]H.F. Xiang, X. Zhang, Q.Y. Jin, C.P. Zhang, C.H. Chen, X.W. Ge, J. Power Sources 183 (2008) 355.
    [14]M. Aklalouch, R.M. Rojas, J.M. Rojo, I. Saadoune, J.M. Amarilla, Electrochim. Acta,54 (2009) 7542.
    [15]J. Liu, A. Manthiram, Chem. Mater.21 (2009) 1695.
    [16]H.L. Wang, H. Xia, M.O. Lai, L. Lu, Electrochem. Commun.11 (2009) 1539.
    [17]D.Q. Liu, Y.H. Lu, J.B. Goodenough, J. Electrochem. Soc.157 (2010)A1269.
    [18]B. Rambabu, R. Santhanam, J. Power Sources 195 (2010) 5442.
    [19]N. Amdouni, K. Zaghib, F. Gendron, A. Mauger, C.M. Julien, Ionics 12 (2006) 117.
    [20]N. Amdouni, K. Zaghib, F. Gendron, A. Mauger, C.M. Julien, J. Magn. Magn. Mater.309 (2007) 100.
    [21]L.P. Wang, H. Li, X.J. Huang, E. Baudrin, Solid State Ionics 193 (2011) 32.
    [22]Q.M. Zhong, A. Bonakdarpour, M.J. Zhang, Y. Gao, J.R. Dahn, J. Electrochem. Soc.144 (1997) 205.
    [23]R. Alcantara, M. Jaraba, P. Lavela, J.L. Tirado, Electrochim. Acta,47 (2002) 1829.
    [24]Y.K. Sun, Y.S. Lee, M. Yoshio, K. Amine, Electrochem. Solid St.5 (2002) A99.
    [25]H.M. Wu, J.P. Tu, Y.F. Yuan, Y. Li, X.B. Zhao and G.S. Cao, Electrochim. Acta 50 (2005) 4104.
    [26]Y.K. Sun, K.J. Hong, J. Prakash, K. Amine, Electrochem. Commun.4 (2002) 344.
    [27]Y.K. Sun, C.S. Yoon, I.H. Oh, Electrochim. Acta 48 (2003) 503.
    [28]J.S. Kim, C.S. Johnson, J.T. Vaughey, S.A. Hackney, K.A. Walz, W.A. Zeltner, M.A. Anderson, M.M. Thackeray, J. Electrochem. Soc.151 (2004) A1755.
    [29]S.H. Oh, K.Y. Chung, S.H. Jeon, C.S. Kim, W.I. Cho, B.W. Cho, J. Alloy Compd.469 (2009) 244.
    [30]M. Wagemaker, F.G.B. Ooms, E.M. Kelder, J. Schoonman, G.J. Kearley, F.M. Mulder, J. Am. Chem. Soc.126 (2004) 13526.
    [31]C. Locati, U. Lafont, L. Simonin, F. Ooms, E.M. Kelder, J. Power Sources 174 (2007) 847.
    [32]R. Alcantara, M. Jaraba, P. Lavela, J.L. Tirado, P. Biensan, A. de Guibert, C. Jordy, J.P. Peres, Chem. Mater.15 (2003) 2376.
    [33]M. Aklalouch, J.M. Amarilla, R.M. Rojas, I. Saadoune, J.M. Rojo, J. Power Sources 185 (2008)501.
    [34]J. Liu, A. Manthiram, J. Phys. Chem. C 113 (2009) 15073.
    [35]A. Ito, D. Li, Y. Lee, K. Kobayakawa, Y. Sato, J. Power Sources 185 (2008) 1429.
    [36]S.W. Oh, S.T. Myung, H.B. Kang, Y.K. Sun, J. Power Sources 189 (2009) 752.
    [37]G.T.K. Fey, C.Z. Lu, T.P. Kumar, J. Power Sources 115 (2003) 332.
    [38]J. Liu, A. Manthiram, J. Electrochem. Soc.156 (2009) A66.
    [39]C.M. Julien, M. Massot, Mat. Sci. Eng. B-Solid 97 (2003) 217.
    [40]C. Sigala, A. Verbaere, J.L. Mansot, D. Guyomard, Y. Piffard, M. Tournoux, J. Solid State Chem.132 (1997) 372.
    [41]H. Kawai, M. Nagata, H. Tukamoto, A.R. West, Electrochem. Solid St.1 (1998) 212.
    [42]A.R. West, H. Kawai, M. Nagata, H. Kageyama, H. Tukamoto, Electrochim. Acta,45 (1999) 315.
    [43]M. Kunduraci, J.F. Al-Sharab, GG. Amatucci, Chem. Mater.18 (2006) 3585.
    [1]S.T. Myung, S. Komaba, N. Kumagai, H. Yashiro, H.T. Chung, T.H. Cho, Electrochim. Acta 47 (2002)2543.
    [2]D.C. Li, A. Ito, K. Kobayakawa, H. Noguchi, Y. Sato, Electrochim. Acta 52 (2007) 1919.
    [3]J.C. Arrebola, A. Caballero, L. Heman, J. Morales, Eur. J. Inorg. Chem. (2008) 3295.
    [4]J.C. Arrebola, A. Caballero, L. Hernan, J. Morales, J. Power Sources 180 (2008) 852.
    [5]X. Fang, N. Ding, X.Y. Feng, Y. Lu, C.H. Chen, Electrochim. Acta 54 (2009) 7471.
    [6]D.Q. Liu, J.T. Han, J.B. Goodenough, J. Power Sources 195 (2010) 2918.
    [7]L. Zhou, D.Y. Zhao, X.W. Lou, Angew. Chem. Int. Edit.51 (2012) 239.
    [8]T.A. Arankumar, A. Manthiram, Electrochim. Acta 50 (2005) 5568.
    [9]M. Aklalouch, J.M. Amarilla, R.M. Rojas, I. Saadoune, J.M. Rojo, J. Power Sources 185 (2008) 501.
    [10]A. Ito, D. Li, Y. Lee, K. Kobayakawa, Y. Sato, J. Power Sources 185 (2008) 1429.
    [11]J. Liu, A. Manthiram, J. Phys. Chem. C 113 (2009) 15073.
    [12]S.H. Oh, K.Y. Chung, S.H. Jeon, C.S. Kim, W.I. Cho, B.W. Cho, J. Alloy Compd.469 (2009) 244.
    [13]S.W. Oh, S.T. Myung, H.B. Kang, Y.K. Sun, J. Power Sources 189 (2009) 752.
    [14]H.L. Wang, H. Xia, M.O. Lai, L. Lu, Electrochem. Commun.11 (2009) 1539.
    [15]D.Q. Liu, Y.H. Lu, J.B. Goodenough, J. Electrochem. Soc.157 (2010)A1269.
    [16]T. Ohzuku, K. Ariyoshi, S. Yamamoto, Y. Makimura, Chem. Lett. (2001) 1270.
    [17]K. Ariyoshi, S. Yamamoto, T. Ohzuku, J. Power Sources 119 (2003) 959.
    [18]H.F. Xiang, X. Zhang, Q.Y. Jin, C.P. Zhang, C.H. Chen, X.W. Ge, J. Power Sources 183 (2008)355.
    [19]H.M. Wu, I. Belharouak, H. Deng, A. Abouimrane, Y.K. Sun, K. Amine, J. Electrochem. Soc. 156 (2009) A1047.
    [20]D. Aurbach, B. Markovsky, Y. Talyossef, G. Salitra, H.J. Kim, S. Choi, J. Power Sources 162 (2006) 780.
    [21]H. Lee, S. Choi, S. Choi, H.J. Kim, Y. Choi, S. Yoon, J.J. Cho, Electrochem. Commun.9 (2007)801.
    [22]J.C. Arrebola, A. Caballero, L. Hernan, J. Morales, J. Power Sources 183 (2008) 310.
    [23]吴宇平,戴晓兵,马军旗,程预江,《锂离子电池——应用与实践》,化学工业出版社,(2004).
    [24]黄可龙,王兆翔,刘素琴,《锂离子电池原理与关键技术》,化学工业出版社,(2007).
    [25]K. Zaghib, M. Simoneau, M. Armand, M. Gauthier, J. Power Sources 81 (1999) 300.
    [26]Y.K. Sun, D.J. Jung, Y.S. Lee, K.S. Nahm, J. Power Sources 125 (2004) 242.
    [27]K. Mukai, K. Ariyoshi, T. Ohzuku, J. Power Sources 146 (2005) 213.
    [28]M. Winter, J.O. Besenhard, Electrochimica. Acta 45 (1999) 31.
    [29]F.Y. Cheng, J. Liang, Z.L. Tao, J. Chen, Adv. Mater.23 (2011) 1695.
    [30]C.M. Park, J.H. Kim, H. Kim, H.J. Sohn, Chem. Soc. Rev.39 (2010) 3115.
    [31]W.J. Zhang, J. Power Sources 196 (2011) 877.
    [32]A.K. Shukla, T.P. Kumar, Curr. Sci. India 94 (2008) 314.
    [33]U. Kasavajjula, C.S. Wang, A.J. Appleby, J. Power Sources 163 (2007) 1003.
    [34]H. Li, Z.X. Wang, L.Q. Chen, X.J. Huang, Adv. Mater.21 (2009) 4593.
    [35]WJ. Zhang, J. Power Sources 196 (2011) 13.
    [36]A.R. Kamali, D.J. Fray, Rev. Adv. Mater. Sci.27 (2011) 14.
    [37]Y.Y. Xia, T. Sakai, T. Fujieda, M. Wada, H. Yoshinaga, Electrochem. Solid. St.4 (2001) A9.
    [38]D.H. Kim, Y.S. Kim, J. Wu, Z.J. Liu, J.Z. Song, H.S. Kim, Y.G.Y. Huang, K.C. Hwang, J.A. Rogers, Adv. Mater.21 (2009) 3703.
    [39]V.L. Pushparaj, M.M. Shaijumon, A. Kumar, S. Murugesan, L. Ci, R. Vajtai, R.J. Linhardt, O. Nalamasu, P.M. Ajayan, P. Natl. Acad. Sci.104 (2007) 13574.
    [40]L.B. Hu, J.W. Choi, Y. Yang, S. Jeong, F. La Mantia, L.F. Cui, Y. Cui, P. Natl. Acad. Sci.106 (2009)21490.
    [41]G. Nystrom, A. Razaq, M. Stromme, L. Nyholm, A. Mihranyan, Nano Lett.9 (2009) 3635.
    [42]L.B. Hu, H. Wu, F. La Mantia, Y.A. Yang, Y. Cui, Acs. Nano 4 (2010) 5843.
    [1]Y. Gao, K. Myrtle, M.J. Zhang, J.N. Reimers, J.R. Dahn, Phys. Rev. B 54 (1996) 16670.
    [2]Q.M. Zhong, A. Bonakdarpour, M.J. Zhang, Y. Gao, J.R. Dahn, J. Electrochem. Soc.144 (1997) 205.
    [3]Y.K. Choi, B.H. Kim, J. Ceram. Soc. Jpn.108 (2000) 261.
    [4]G.Q. Liu, L. Qi, L. Wen, Rare Metal Mat. Eng.35 (2006) 299.
    [5]T. Ohzuku, S. Takeda, M. Iwanaga, J. Power Sources 82 (1999) 90.
    [6]K. Ariyoshi, Y. Iwakoshi, N. Nakayama, T. Ohzuku, J. Electrochem. Soc.151 (2004) A296.
    [7]G.Q. Liu, L. Wen, Y.M. Liu, J. Solid State Electr.14 (2010) 2191.
    [8]B. Rambabu, R. Santhanam, J. Power Sources 195 (2010) 5442.
    [9]T.F. Yi, Y. Xie, M.F. Ye, L.J. Jiang, R.S. Zhu, Y.R. Zhu, Ionics 17 (2011) 383.
    [10]Y. Idemoto, H. Narai, N. Koura, J. Power Sources 119 (2003) 125.
    [11]H.S. Fang, L.P. Li, G.S. Li, J. Power Sources 167 (2007) 223.
    [12]X. Fang, N. Ding, X.Y. Feng, Y. Lu, C.H. Chen, Electrochim. Acta 54 (2009) 7471.
    [13]D.Q. Liu, J.T. Han, J.B. Goodenough, J. Power Sources 195 (2010) 2918.
    [14]S.T. Myung, S. Komaba, N. Kumagai, H. Yashiro, H.T. Chung, T.H. Cho, Electrochim. Acta 47 (2002) 2543.
    [15]N. Amdouni, K. Zaghib, F. Gendron, A. Mauger, C.M. Julien, J. Magn. Magn. Mater.309 (2007) 100.
    [16]H.Y. Xu, S. Xie, N. Ding, B.L. Liu, Y. Shang, C.H. Chen, Electrochim. Acta 51 (2006) 4352.
    [17]L. Zhang, X.Y. Lv, Y.X. Wen, F. Wang, H.F. Su, J. Alloy Compd.480 (2009) 802.
    [18]M. Kunduraci, G.G. Amatucci, J. Electrochem. Soc.153 (2006) A1345.
    [19]J.H. Kim, S.T. Myung, Y.K. Sun, Electrochim. Acta 49 (2004) 219.
    [20]L. Wen, Q. Lu, G.X. Xu, Electrochim. Acta 51 (2006) 4388.
    [21]Y.S. Lee, Y.K. Sun, S. Ota, T. Miyashita, M. Yoshi, Electrochem. Commun.4 (2002) 989.
    [22]J.C. Arrebola, A. Caballero, L. Hernan, J. Morales, J. Power Sources 180 (2008) 852.
    [23]W.W. Zhou, K.B. Tang, S.A. Zeng, Y.X. Qi, Nanotechnology 19 (2008) 065602.
    [24]C.K. Huang, J.S. Sakamoto, J. Wolfenstine, S. Surampudi, J. Electrochem. Soc.147 (2000) 2893.
    [25]G. Nagasubramanian, J. Appl. Electrochem.31 (2001) 99.
    [26]S.S. Zhang, K. Xu, T.R. Jow, Electrochim. Acta 48 (2002) 241.
    [27]S.S. Zhang, K. Xu, T.R. Jow, J. Power Sources 115 (2003) 137.
    [28]C.R. Sides, C.R. Martin, Adv. Mater.17 (2005) 125.
    [29]M.C. Smart, J.F. Whitacre, B.V. Ratnakumar, K. Amine, J. Power Sources 168 (2007) 501.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700