用户名: 密码: 验证码:
涪陵地区长兴组地震相分析及储层预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
涪陵地区位于四川盆地东部,东邻大池干气田、西邻大天池气田。据古地磁资料,长兴期四川盆地位于赤道附近的低纬度区,气候温暖潮湿。这一气候特征也是二叠纪生物礁广泛发育的原因之一。“开江-梁平海槽”东段发育有普光、黄龙场、高峰场等礁滩型气藏,西段也发现了元坝、龙岗等礁滩气藏,而涪陵地区长兴期位于“开江-梁平海槽”西段。2010年,兴隆1井在长兴组测试获得天然气日产量51.7×104m3。为了解该区勘探前景和认识礁滩体发育、展布特征,本论文依据钻井资料、测井资料、地震资料,以多学科理论为指导,地质-地球物理结合为主线,在对区域地质背景充分了解基础上,开展了以单井沉积相分析、联井对比指导地震相分析以及沉积相平面展布的刻画。利用测井资料结合正演模拟技术分析储层地球物理响应特征,提取对储集体发育敏感的地震属性,与地震反演一起开展储层预测,最终对储集层进行综合评价,确定有利勘探目标区。
     通过层序地层分析,研究区长兴组可划分2个三级层序,都主要保存了海侵体系域和高水位体系域,且海侵体系域厚度明显小于高水位体系域厚度。根据区内露头剖面观察、钻井岩性特征、岩电关系特征等,将研究区划分为碳酸岩台地、斜坡及陆棚相。在长兴组2个三级层序的海侵体系域中,台内及台缘礁滩相都不发育;高水位体系域时期礁滩微相则比较发育,开阔台地与台缘亚相的礁滩微相随着海水逐渐向北和北东方向迁移。地震相分析结果得出,区内划分出4类区域地震相和包括迭瓦状前积、丘状及波状、串珠状、地层超覆歼灭等在内的五大类型局部地震异常。采用地质-地震相结合分析了长兴组储层地球物理响应特征,提出了适合研究区的储层预测方法,即首先用敏感地震属性结合地震相分析刻画礁滩有利发育带,再开展波阻抗反演和伽马反演,在去泥质的波阻抗反演剖面上拾取礁滩储层,进而实现长兴组上、下旋回储层厚度的平面预测。综合地震相及沉积相、波阻抗反演和储层厚度预测的成果,同时考虑敏感属性,并结合局部微幅构造进行了综合评价和有利区带预测。在长兴组上旋回划分了5个有利区带,其中Ⅰ类2个,Ⅱ类2个,Ⅲ类1个;长兴组下旋回划分了4个有利区带,其中Ⅰ类1个,Ⅱ类2个,Ⅲ类1个。
Fuling area lies east of Sichuan basin. It is east of the Da chigan gas fields, west of Datianchi gas fields. According to paleomagnetic data, the Sichuan Basin was located in the low latitudes near the equator in the Changxing Period when the climate was warm and humid. The climate characteristic was one of the reasons for reef widely developed in the Permian. In the east of KaiJiang-LiangPing trough, many gas fields of reef flat were found, such as Puguang gas pool, huanglongchang gas pool, Gaofengchang gas pool etc. Meanwhile, in the west of KaiJiang-LiangPing trough, many gas fields of reef flat also were found, such as yuanba gas pool, longgang gas pool etc. Fuling area was west of KaiJiang-LiangPing trough in the Changxing Period. In the 2010, Well Xinglong 1 set of tests obtaining gas production 51.7×104m3 in the Changxing formation. To see the exploration prospects and comprehend reef flat development and distribution characteristics. On the guide of a multi-disciplinary theory, this thesis , with geology association with geophysics as the main line, according to drilling data, log data, seismic data and combining with the regional geological background, carry out to the single well analysis and well comparison which instruct seismic facies analysis and sedimentary distribution of the plane characterization. We analyze geophysical response characteristics of the reservoir using log data analysis with forward modeling technique. Also, union with seismic inversion and extraction of seismic attributes which are sensitive to reservoir development in the area, we carriy out reservoir prediction. In the end , we run comprehensive evaluation of reservoir and determination favorable exploration targets area.
     Through sequence analysis, the Changxing formation in the Fuling area is divided into 2 3rd-order sequence which all are mainly preserved transgression systems tract(TST) and high systems tract(HST), the thickness of TST is smaller than of HST. According to observation of the area outcrops, drilling lithology, lithology-electrical characteristics, the sedimentary facies in the study area was divided into carbonate platform, slope and continental shelf. In the TST of the 2 3rd-order sequence, the reef flat of platform and platform margin is not developed. But in the TST, the reef flat is developed, with open platform and platform margin gradually as the water moving to north and northeast. From seismic facies analysis, it’s concluded that the area be divided into four categories regional seismic facies and five major local seismic anomaly including imbricated prograding structure, moniliform, stratigraphic overlap pinchout ,dome-shaped and wave. By combing with geology and seismic, we analyze geophysical response characteristics of the reservoir in the study area and propose for reservoir prediction method, it is that bonding with seismic facies ,we firstly confirm the favorable development zone of reef flat by sensitive seismic attributes, and then carry out impedance inversion and gamma inversion, and pick up the reservoir of reef flat on the impedance inversion section from which we remove mudstone, predict reservoir thickness of the 2 3rd-order sequence on the plane in the end.With taking into account the sensitive attributes and local small structures, Integrated seismic facies, sedimentary facies, impedance inversion and reservoir thickness prediction, we comprehensively evaluate and predict favorable zones of the study area. In the first circle round ,we think there are 4 favorable zones, including one typeⅠ, two typeⅡand one typeⅡ. In the second circle round ,we think there are 5 avorable zones, including two typeⅠ, two typeⅡand one typeⅡ.
引文
[1] Backus GE , Giltert JF.The resolving power of gross earth data. Geophys.JR.astr.1968,16:169-205.
    [2] Baclcus GE,Gilbert JF,Uniqueness in th inversion of inaccurate gross earth data PhiI,TranRoy,1970,A266:123-192.
    [3] Baclcus GE , Gilbert JF. Numerical application of a formulion for geophysical inverse[J].Geophys.J.R.astr.1967,13:247-276.
    [4] Brown A R. Seismic attributes and their classification [J]. The Leading Edge. 1996 15(10): 1090.
    [5] Burianyk M. Amplitude vs offset and seismic rock property analysis: A primer [J]. CSEG 2000 25 (9): 6-16
    [6] Clif Jordan,James Lee Wilson著.邢永明,姬美兰译.礁-地球物理学家要考虑的地质因素[J].国外油气勘探,1998,10(6):679-684.
    [7] Doveton J.H., Borneman E. Log Normalization by Trend Surface Analysis [J]. The Log Analyst.1983.
    [8] Gao Dengliang. Application of seismic texture model regression to seismic facies characterization and inter-pretation[J] . The Lead
    [9] Gao Dengliang. Application of three-dimensional seismic texture analysis with special reference to deep-marine facies discriminatio
    [10] Goodway W N. AVO and lame constants for rock parameterization and fluid detection [J]. CSEG RECORDER. 2001,26 C6):39-60.
    [11] Jackson DD. Interpretation of inaccurate , inasufficient and inconsistent data.Geophs.J.R.astr,1972,28:97-109.
    [12] Jones IF,Baud H and Straehan A. Velocity as an Attribute-Continuous Velocity Estimation from PreSDM CRP Gathers [J] 61st Mtg. Eur.
    [13] Lewis C. Seismie attributes for reservoir monitoring: A feasibility study using forward modeling [Jl. 65th Annual Internat. Mtg. S
    [14] Mallick. A simple approximation to the P- wave reflection coefficient and its implication in the inversion of amplitude variation w
    [15] Matteueci G. Seismic attribute analysis and calibration: Ageneral Procedure and acasestudy [J]. Annual Meeting Abstraets, Society
    [16] Mazzotti A Prospecting. Amplitude, phase and frequency versus offset applications [J]. Geophysical1991,39: 863-886.
    [17] SeymourRH,牛敏荃译利用地震地质控制由井外推储集层岩性[J].国外油气勘探,1990, 20(1):7-10.
    [18] Sheriff R E. Encyclopedic dictionary of exploration geophysics [M]. Third edition. Soc. Expl. Geophys. 1991.
    [19] Sheriff,Robert.E. Seismic stratigraphy[M]. International Human Resources Development Corp. 1982:25-50.
    [20] Vail P R,Audemard F,Bowman SA,Eisner P N,C Perez-Cruz. The Stratigraphic Signatures of Tectonics,Eustasy and Sedimentology—an
    [21] Winggins RA. The generalized linear inverse problem: implication of surface waves and free oscillations for earthg structure. Rev.
    [22]蔡涵鹏.礁滩相储层综合预测研究——以SYB地区长兴组为例[D].成都:成都理工大学,2009.
    [23]陈洪德,钟怡江,侯明才等.川东北地区长兴组-飞仙关组碳酸盐岩台地层序充填结构及成藏效应[J].石油与天然气地质,2009,30(5):539-547.
    [24]陈勇.川东北礁滩储层地震检测与流体识别研究——以SYB地区长兴组为例[D].成都:成都理工大学,2009.
    [25]陈宗清.四川盆地长兴组生物礁气藏及天然气勘探[J].石油勘探与开发,2008,35(2):148-163.
    [26]陈祖传.地球物理勘探技术的地进展[J].地球物理学进展,1995, 10 (3):1-20.
    [27]储昭宏.川东北长兴组一飞仙关组碳酸盐岩储层研究[D].北京:中国地质大学(北京),2006.
    [28]杜远胜,殷鸿福,王治平.秦岭造山带晚加里东—早海西期的盆地格局与构造演化[J].地球科学——中国地质大学学报,1997,22(4):401-405.
    [29]杜增利.致密碎屑岩储层地震预测研究——以官渡构造带为例[D].成都:成都理工大学,2007.
    [30]韩小俊.川东南地区复杂储层识别及预测方法研究及应用[D].成都:成都理工大学,2007.
    [31]姜忠正.川东北地区长兴组层序地层与储层精细研究[D].成都:成都理工大学,2009.
    [32]蒋志斌,王兴志,张帆等.四川盆地北部长兴组-飞仙关组礁、滩分布及其控制因素,2008,35(5):940-950.
    [33]金以钟等.四川盆地晚古生代至中三叠世古构造演化特征及意义[G].//罗志立.龙门山造山带的崛起和四川盆地的形成及演化.成都:成都科技大学出版
    [34]刘宝珺,许效松,潘杏南等,中国南方古大陆沉积地壳演化与成矿[M].北京:科学出版社,1994.
    [35]刘癸.地震相分析在深反射地震勘探资料中的应用[J]地质力学学报,2005,11(2):129-131
    [36]刘划一等.川东上二叠统生物礁气藏形成条件及勘探目标研究.四川石油管理局研究院. 1998.
    [37]罗志立等.试论上样子地台的峨眉地裂运动. [G].//罗志立.龙门山造山带的崛起和四川盆地的形成及演化.成都:成都科技大学出版社,1994.
    [38]马永生,牟传龙,郭彤楼等.四川盆地东北部长兴组层序地层与储层分布[J].地学前缘,2005,12(3):179-185.
    [39]帅庆伟.川东北礁滩储层地震相分析[D].成都:成都理工大学,2009.
    [40]童崇光.油气田地质学[M].北京:高等教育出版社,1984:102-104.
    [41]汪泽成,赵文智,张林等.四川盆地构造层序与天然气勘探[M].北京:中国地质出版社,2002.
    [42]王长城.川东南地区复杂储层地质特征及有效储层预测研究[D].成都:成都理工大学,2006.
    [43]王福利.川西白马庙地区地震储层预测研究[D].北京:中国地质大学,2002.
    [44]王一刚,张静,杨雨等.四川盆地东部上二叠统长兴组生物礁气藏形成机理[J].海相油气地质,1997,5(1-2):145-152.
    [45]王允诚.油层物理学[M].北京:石油工业出版社,1993.
    [46]王允诚.油气储层评价[M].北京:石油工业出版社.1999.
    [47]王志章,熊琦华.测井资料标准化及其应用效果[J].测井技术,1993(6).
    [48]吴因业,顾家裕.油气层序地层学[M].北京:石油工业出版社,2002.72-83.
    [49]夏宏泉,刘红歧.BP神经网络在测井资料标准化中的应用[J].测井技术,1996,20(3).
    [50]杨立强.测井约束地震反演综述[J].地球物理学进展,2003, 18(3):530-534.
    [51]殷积峰.波形分类技术在川东生物礁气藏预测中的应用[J].石油物探,2007,46(1):53-74.
    [52]殷积峰.川东二叠系生物礁的地质特征与地震预测技术研究[D].北京:中国地质大学(北京),2008.
    [53]翟光明.中国石油地质志(卷十)——四川油气区[M].北京:石油工业出版社,1989.
    [54]张敏知.生物礁地球物理响应特征及储层预测——以川东北SYB地区长兴组为例[D].成都:成都理工大学,2008.
    [55]张延玲,杨长春,贾曙光.地震属性技术的研究和应用[[J].地球物理学进展.2005, 20 (4):1129-1133.
    [56]张渝昌等.中国含油气盆地原理分析[M].南京:南京大学出版社,1997.
    [57]赵路子.碳酸盐岩隐蔽滩相储层特征及预测模型[D].成都:成都理工大学,2008.
    [58]朱剑兵,赵培坤.国外地震相划分技术新进展[J].勘探地球物理进展,2009,32(3):167-171

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700