热固性丙烯酸酯液晶树脂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热固性液晶树脂兼具热固性树脂与液晶树脂两者的优点,其力学性能、耐热性、尺寸稳定性以及光电性能等均优于普通热固性树脂,成型工艺性等优于热塑性液晶聚合物,有望作为高性能树脂基体使用。热固性丙烯酸酯液晶树脂是最早开发的热固性液晶树脂之一,其相转变温度较低,溶解性较好,因此热固性丙烯酸酯液晶树脂比其它液晶树脂具有更好的应用前景。
     目前国外对热固性丙烯酸酯液晶树脂虽已开展了大量研究,但对其力学性能的报道相对较少,某些热固性丙烯酸酯液晶树脂还存在耐热性低等缺点。本文针对高性能树脂基体的要求,合成了耐热性较高的无间隔链型热固性丙烯酸酯液晶树脂ME1、AE1以及短间隔链型热固性丙烯酸酯液晶树脂ME2、AE2,研究了树脂的合成、性能及影响因素,并对固化树脂的力学性能、耐热性进行了表征,对固化树脂结构与性能之间的关系进行了分析。结果表明,四种液晶树脂均具有预期的结构及良好的溶解性,其固化产物的介晶域具有较高的热稳定性。特别是ME2与AE2,其合成借鉴了环氧丙烯酸酯的合成路线,避免了传统路线原料贵、毒性大、步骤多、产率低等问题,其分子中存在短间隔链,克服了无间隔链型液晶树脂熔点过高的缺点,保持了较高的耐热性,赋予树脂以较高的韧性。与普通环氧丙烯酸酯树脂ME、AE相比,ME2、AE2的固化产物中存在介晶域,因此具有较高的冲击强度、弯曲强度、模量及耐热性。
     热固性树脂普遍存在冲击强度低、韧性差等缺点,而目前常用的橡胶、热塑性树脂改性剂在提高树脂基体韧性的同时,却影响到体系的耐热性、模量、成型工艺性等性能。本文利用耐热性较高的热固性丙烯酸酯液晶树脂ME1、ME2对热固性树脂间苯二甲酸二烯丙酯(DAIP)进行增韧改性,研究了改性剂种类、用量以及固化工艺等对改性体系性能的影响,结果表明,改性体系在冲击强度改善的同时,弯曲强度、模量、耐热性等均有提高;提出热固性丙烯酸酯液晶树脂增韧DAIP的机理主要是刚性粒子的增韧作用以及原位复合自增韧作用。比较了相容性及初始相态对改性体系性能的影响,发现在制定改性体系固化工艺时,应同时考虑改性体系相容性、介晶域形成、反应性、固化温度之间的矛盾。
     结合ME2对乙烯基酯树脂的改性以及ME1对聚甲基丙烯酸甲酯的改性研究,发现被改性树脂基体与改性剂之间相容性好、共聚程度高、改性剂含量低,均会妨碍相分离的进行、介晶域的生成,造成改性效果的降低。
Thermoset liquid crystalline resin (TLCR) is a new material which has properties of both thermoset and liquid crystalline (LC). Its high mechanical strength and heat resistance, good dimensional stability and processability, excellent optical and electrical properties make it be promisingly used as a high-performance resin matrix. As a member of the family of TLCR, thermoset acrylate liquid crystalline resin (TALCR) has drawn much attentions compared to other TLCRs because of its low thermotropic transition temperature, good solubility in common solvents.
    Although studies on TALCRs have been conducting relatively longer, investigation on their mechanical properties remains a fewer. Some TALCRs also show low heat resistance due to the presence of long spacer. Besides, the present synthesis routes are involved in too much acryloylchloride and chloro-nol, which are either poisonous or expensive. With these considerations, four novel TALCRs are firstly designed and synthesized. Two of them are TALCRs without spacer, and the other two are TALCRs with short spacer. The latter are synthesized with a new route, which relies on the esterification of epoxy and acrylic acid. All TALCRs possess desired structure and good solubility in common solvents such as acetone. Most of them have mesogenic phase, which is proved with POM and DSC. At the same time, the factors influencing mesogenic phase are also discussed. Furthermore, mechanical properties and heat resistance of the cured resins are characterized with DMA, DTA, TGA and other related methods. Compared with the cured resins of common vinyl ester, the cured TALCRs have good performances with higher 'impact and bend strength, higher modulus and glass transition temperatures. It is the mesogenic phase in the cured TALCRs that contribute to these advantages over the common resins, and the presence of the mesogenic phase is characterized with SEM and WAXD.
    In'addition, thermosets often show low impact strength and poor fracture toughness, so it is desirable to improve their toughness. However, the present approaches to toughen thermosets such as incorporating reactive rubbers or thermoplastics to thermosets usually result in decrease of other properties, such as heat resistance, modulus and processability. For the first time, the TALCRs are used to toughen diallyl isophthalate (DAIP), and the factors influencing the properties such as type and content of modifier, curing procedure are discussed. With a great improvement of impact strength, the modified DAIPs also show the increase in bend strength, .modulus and heat resistance. Moreover, the toughness mechanism of the modified systems is studied with DMA, SEM and WAXD.
    Modification of vinyl ester (VE) and poly(methylmethacrylate) (PMMA) with TALCRs is also studied. Same as modified DAIP systems, these two modified systems are also characterized with above methods. It is found that good compatibility, high copolymerziation of modified systems and low content of modifiers can influence the phase-separation and the appearance of mesogenic phase, which may reduce the modifying effect.
引文
1.F.Reinitzer.Monatsh,1888,9:421 间接引自:周其凤,王新久.液晶高分子,科学出版社,1999
    2.O.Lehmann,Verhandl,D.Deutschen.Phys.Ges.,Sitzung,1900,16(3):1 间接引自:周其凤,王新久.液晶高分子,科学出版社,1999
    3.何天白,胡汉杰.功能高分子与新技术.北京:化学工业出版社,2001,P241
    4.吴大诚,谢新光,徐建军.高分子液晶.成都:四川教育出版社,1988,P5~9
    5.E.L.托马斯.聚合物的结构与性能,科学出版社,1999
    6.周其凤,王新久.液晶高分子,科学出版社,1999
    7.李敏,周恩乐,徐纪平.新型液晶聚合物的分子设计及功能.高分子通报,1996,(1):45~50
    8.解孝林,李伯耿,潘祖仁.主链高分子液晶材料的困境及对策.大自然探索,1998,17(2):36~40
    9.晏华,李伯耿,解孝林,等.侧链液晶高分子的分子工程研究进展.高分子材料科学与工程,1997,13(6):27~32
    10.戴俊燕,刘伟昌,连彦青,等.液晶聚合物网络研究进展.功能高分子学报,2000,13(3):349~357
    11.陈祥宝.高性能树脂基体.北京:化学工业出版社,1999,219~-227
    12. Jun Yeob Lee, Jyongsik Jang. Synthesis and curing of liquid crystalline epoxy resin based on naphalene mesogen. J. Polym. Sci.: part: A, 1999,37:419~425
    13. M.A. Espinosa, V. Cadiz, M. Galia. New cholesteric liquid-crystal epoxy resins derived from 6-hydroxy-2-naphthoic acid. J. Polym. Sci.: part: A, 2001,39:2847~2858
    14. Weichang Liu, Cosimo Carfagna. Synthesis of liquid crystalline epoxy oligomers: effect of moleculear weight on the phase behavior, Macromol. Rapid Commun. 2001,22:1058~1062
    15. J. J. Mallon, P. M. Adams. Synthesis and characterization of novel epoxy monomers and liquid crystal thermosets, J. Polym. Sci., part:A,1993,31:2249~2260
    16.王良御.液晶化学,科学出版社,1988
    17. J. Y. Lee, J. Jang. Effect of substituents on the curing of liquid crystalline epoxy resin, J. Polym. Sci., part:A,1998,36:911~917
    18. Pere Castell, Marina Galia, Angels Serra. Synthesis of new epoxy liquid crystalline monomers with Azo groups in the central mesogenic core. Crosslinking with amines, Macromol. Chem. Phys.,2001,202:1649~1657
    19. C. Carfagna, E. Amendola, M. Giamberini. Liquid crystalline epoxy resins: curing of blends of mesogemic and nonmesogenic epoxy monomers, J. Mater. Sci. Lett., 1994,13:126~128
    20. Dieter Wohrle, Andreas Hartwig, Gunter Schnurpfeil, et al. Synthesis and photoinduced polymerization of liquid crystalline diepoxides for bonding in the microsystem technique, Polym. Adv. Technol., 2000,11:739~746
    21. W-F. A. Su, Chin-min Chuang. Effect of chemical structure changes on curing reactions and thermal
    
    properties of cyanate ester-cured rigid-rod epoxy resins, J. Appl. Polym. Sci. 2002,85:2419~2422
    22. Barbara Szczepaniak, Piotr Penczek, Malgorzata Warchalowska, et al. liquid crystalline epoxy resins by polyaddition of giglycidyl ether of 4,4-dihydroxybiphenyl and difunctional aromatic compounds, J. Polym. Sci.:Part A, 1998,36:21~29
    23. Barbara Szczepaniak, Kurt C. Frisch, Piotr Penczek, et al. curing of liquid crystalline epocy resins with a biguanide. J. Polym. Sci.:Part A, 1997,35:2739~2745
    24.左瑞霖,常鹏善.液晶环氧树脂的研究进展.高分子材料科学与工程,2002,
    25. Takashi Mihara, Yasuhiro Nishimiya, Naoyuki Koide. Synthesis and thermal properties of combined liquid crystalline epoxy resins, J. Appl. Polym. Sci. 1998,68:1979~1990
    26. S. Osada, S. Yano, K. Tsunashima, et al. new types of liquid crystalline epoxy resins cured by a mesogenic hardening compound, polymer, 1996,37:1925~1932
    27. Werner Mormann, Markus Brocher. Liquid crystalline thermosets from triaromatic ester group containing diepoxides and 4,4'-methylenedianiline, Chem. Phys., 1998,199:1935~1938
    28. M. G. Lu, M. J. Shim, S. W. Kim. Curing reaction and phase change in a liquid crystalline monomer, Chem. Phys., 2001,202:223~230
    29. W-F. A. Su, K. C. Chen, S. Y. Tseng. Effect of chemical structure changes on thermal, mechanical, and crystalline properties of rigid rod epoxy resins, J. Appl. Polym. Sci. 2000,78:446~451
    30. M. G. Lu, M. J. Shim, S. W. Kim. Dielectric relaxation and mechanical properties of liquid crystalline epoxy thermosets, J. Appl. Polym. Sci. 2000,77:1568~1573
    31.刘伟昌,申胜军,刘德山.液晶环氧树脂研究进展.高分子通报,1998,3:59~65
    32. M. Ochi, H. Taashima. Bonding properties of epoxy resin containing mesogenic group, polymer, 2001,42:2379~2385
    33. M. Ochi, Y. Shimizu, Y. Nakanishi, et al. effect of the network structure on thermal and mechanical properties of mesogenic epoxy resin cured with aromatic amine, J. Polym. Sci., part:B,1997,35:397~405
    34. C. Carfagna, E. Amendola, M. Giamberini, et al. liquid crystalline epoxy resins in polymer dispersed liquid crystal composites, Polym. Inter. 1997,44:465~473
    35. S. Jahromi. Synthesis and photoinitiated polymerization of liquid crystalline diepoxides, polymer, 1994,35:622~629
    36.陈立新,王汝敏,蓝立文,等.含芳香酯基液晶基元环氧树脂的合成、表征及固化体系的研究.玻璃钢/复合材料,2000,2:28~31
    37. W. F. Su. Thermoplastic and thermoset main chain liquid crystal polymers prepared from biphenyl mesogen, J. Polym. Sci., part:A, 1993,31:3251~3256
    38. Gunter Schnurpfeil, Andeas Harder, Hendrik Schroder, et al. Synthesis and photoinitiated polymerization of nematic liquid crystalline diepoxides, Macromol. Chem. Phys.,2001,202:180~187
    39. S. Jahromi. liquid crystalline epoxide thermosets: a deuterium nuclear magnetic resonance study, Macromolecules, 1994,27:2804~2813
    _
    
    
    40. C. G. Barclay, S. G. Mcnamee, C. K. Ober, et al. the mechanical and magnetic aligment of liquid crystalline epoxy therrmosets, J. Polym. Sci., part:A,1992,30:1845~1853
    41. Jyongsik Jang, Seong Cheol Kim, J. Yeob Lee. Reaction pathway of liquid crystalline epoxy resin/aromatic diamine curing system, Macromol. Rapid Commun. 2000,21:960~963
    42. J. Y. Lee, M. J. Shim, S. W. Kim. Synthesis of liquid crystalline epoxy and its mechanical and electrical characteristics—curing reaction of LCE with diamines by DSC analysis, J. Appl. Polym. Sci. 2002,83: 2419~2425
    43. S. W. Kim, M. J. Lu, M. J. Shim. Characteristics of medical polymer based on an epoxy resin system-curing reaction characteristics of biphenol epoxy monomer with phenolic functional hardeners, J. Appl. Polym. Sci. 2001,82:1495~1503
    44. J. Y. Lee, M. J. Shim, H. K. Lee, et al. reaction kinetics of liquid crystalline epoxy cured with aromatic diamine: its synthesis and mechanical and electrical characteristics, J. Appl. Polym. Sci. 2001,82:2372~2380
    45. M. G. Lu, M. J. Shim, S. W. Kim. Thermai degradation of LC epoxy thermosets, J. Appl. Polym. Sci. 2000,75:1514~1521
    46. David Ribera, Ana Mantecon, Angels Serra. Synthesis and crosslinking of a series of dimeric liquid crystalline epoxy resins containing imine mesogens, Chem. Phys.,2001,202:1658~1671
    47. Alice Mititelu, Thierry Hamaide, Christian Novat, et al. curing kinetics of liquid crystalline epoxy resins with inverse reactivity ratios, Chem. Phys.,2000,201:1209~1213
    48. C. Cafagna, D. Aciemo, V. D. Palma, et al. Coposites based on carbon fibers and liquid crystalline epoxy resins, 1 Monomer synthesis and matrix curing, Chem. Phys., 2000,201:2631~2638
    49. C. Cafagna, G. Meo, L. Nicolais, et al. Coposites based on carbon fibers and liquid crystalline epoxy resins,2 dynamic mechanical analysis and fracture toughness behaviour, Chem. Phys., 2000,201:2639~2645
    50. Werner Mormann, Markus Brocher. Liquid crystalline thermosets from triaromatic ester group containing diepoxides and aromatic diamines, Chem. Phys.,1998,199:853~859
    51. Chibing Tan, B. M. Fung. Birefringence and dichroism of oriented epoxy thermoset films, J. Polym. Sci., part:B, 2001,39:915~919
    52. Soon Man Hong, Sung Sang Hwang, Jun Yoeb Lee. The effect of the curing agent content on the curing and liquid crystalline phase of liquid crystalline epoxy resin, J. Polym. Sci., part:B, 2001,39:374~379
    53. Baoquan Chen, Atsushi Kameyama, Tadatomi Nishikubo. New polymers with the mesogens in the side chain and kinked aromatic structures in the main chain from the polyaddition of bis(epoxide)s and di(ester)s, J. Polym. Sci., part:A,2000,38:988~998
    54. A. Shiota, C. K. Ober. Smectic network obtained from twin LC epoxy monomers—mechanical deformation of the smectic network, J. Polym. Sci., part:B,1998,36:31~38
    55. J. Liu, C. Wang, G. A. Campbell, et al. the use of tetraalkylphosphonium-tetrafluoroborate-tetrafluoroboboric acid in the curing of a liquid crystalline epoxy resin, J. Polym. Sci., part:A,1998,36:31~
    
    38
    56. J. Liu, C. Wang, G. A. Campbell, et al. effect of liquid crystalline structure formation on the curing kinetics of an epoxy resin, J. Polym. Sci., part:A,1997,35:1105~1124
    57. Q. Lin, A. F. Yee, H. J. Sue, et al.evolution of structure and properties of a liquid crystalline epoxy during curing, J. Polym. Sci., part:B, 1997,35:2363~2378
    58. V. Strehmel. Model reactions and formation of epoxy net works with the phenylbenzoate mesogen, J. Polym. Sci., part:A, 1997,35:2653~2688
    59. A. Shiota, C. K. Ober. Synthesis and curing of novel Lctwin epoxy monomers for liquid crystal thermosets, J. Polym. Sci., part:A,1996,34:1291~1303
    60. B. Sczepaniak, K. C. Frisch, P. Penczek, et al. liquid crystalline epoxy resins by polyaddition of aliphatic diepoxides with 4,4'-dihydroxybiphenyl, J. Polym. Sci., part:A, 1995,33: 1275~1281
    61. C. G. Barclay, C. K. Ober, K. I. Papathomas, et al. liquid crystalline thermosets based on dihydroxymethylstilbene: synthesis and characterization, J. Polym. Sci., part:A,1992,30:1831~1843
    62. J. Mijovic, X. Chert, J. Sy. Dipole dynamics in liquid crystalline epoxides by broad band dielectric relaxation spectroscopy, Macromolecules, 1999,32:5365~5374
    63. C. Ortiz, R. Kim, E. Rodighiero, et al. deformation of a polydomain, liquid crystalline epoxy based thermoset, Macromolecules, 1998,31:4074~4088
    64. B. C. Benicewicz, M. E. Smith, J. D. Earls, et al. magnetic field orientation of liquid crystalline epoxy thermosets, Macromolecules, 1998,31:4730~4738
    65. C. Ortiz, M. Wagner, N. Bhargava, et al.deformation of a plydomain, smectic liquid crystalline elastomer, Macromolecules, 1998,31:8531~8539
    66. A. Shiota, C. K. Ober. Orientation of liquid crystalline epoxides under ac electric fields, Macromolecules, 1997,30:4278~4287
    67. S. Jahromi, W. A. G. Kuipers, B. Norder, et al. liquid crystalline epoxide thermosets. Dynamic mechanical and thermal properties, Macromolecules, 1995,28:2201~2211
    68. A. Shiota, C. K. Ober. Analysis of smecticstructure formation in liquid crystalline thermosets, polymer, 1997,38:5857~5867
    69. Q. Lin, A. F. Yee. Phase transformation of a liquid crystalline epoxy during curing, polymer communications, 1994,35:2679~2682
    70.刘伟昌,申胜军,周其痒,等.含偶氮介晶基元的环氧化合物的合成,清华大学学报(自然科学版),1998,12:104~106
    71.刘伟昌,王晓工,周其痒,等.新型酯类液晶环氧预聚物的合成与表征.高等学校化学学报,2000,7:1151~1153
    72.刘伟昌,申胜军,王晓工,等.一种液晶环氧树脂固化中扩散控制动力学研究.高分子学报,2000,2:167~171
    73.刘伟昌,刘德山,申胜军,等.一种液晶环氧树脂固化动力学FTIR研究.功能高分子学报,1999,3:
    
    307~311
    74. C. Ortiz, L. Belenky, C. K. Ober, et al. microdeformation of a polydomain, smectic liquid crystalline thermoset, J. Mater. Sci., 2000,35:2079~2086
    75. H. J. Sue, J. D. Earls, R. E. Hefner. Fracture behaviour of liquid crystal epoxy resin systema based on the diglycidyl ether of 4,4'-dihydroxy-α-methylstilbene and sulphanilamide part Ⅰ effects of curing variations, J. Mater. Sci., 1997,32:4031~4037
    76. H. J. Sue, J. D. Earls, R. E. Hefner. Fracture behaviour of liquid crystal epoxy resin systema based on the diglycidyl ether of 4,4'-dihydroxy-α-methylstilbene and sulphanilamide part Ⅱ effect due to blending with TACTIX~* 556 epoxy resin and phenolic monomers, J. Mater. Sci., 1997,32:4039~4046
    77. Q. Lin, A. F. Yee, H. J. Sue, et. al. evolution of structure and properties of a liquid crystalline epoxy during curing, J. Polym. Sci., part:B, 1997,35:2363~2378
    78. Andrea E. Hoyt, B. C. Benicewicz. Rigid rod molecules as liquid crystal thermosets. Ⅰ. Rigid rod amides, J. Polym. Sci., part: A, 1990,28:3403~3415
    79. Andrea E. Hoyt, B. C. Benicewicz Rigid rod molecules as liquid crystal thermosets. Ⅱ. Rigid rod esters, J. Polym. Sci., part: A, 1990,28:3417~3427
    80. Andrea E. Hoyt, S. J. Huang. Reactive lyotropic polyimide oligomers, J. Polym. Sci.,part: A, 1996,34:587~595
    81.米军,张欣苑,李祝,等.液晶双马来酰亚胺/环氧树脂共聚物的制备.热固性树脂,1997,(3):5~8
    82. K. Kallal-Bartolomeo, J. Milano, J. Verner, et al. synthesis, chanracterization and properties of liquid crystalline bismalides containing phenylbenzoate mesogens and polymethylenic spacers, Macromol. Chem. Phys. 2000,201:2276~2281
    83.米军,刘孝波,张欣苑,等.含柔性链的双马来酰亚胺/双烯丙基氧基联苯共聚物的合成.合成化学,1997,5(4):377~380
    84.刘孝波,陈欣,江璐霞,等.液晶热固性聚酰亚胺自增强行为的研究.四川联合大学学报(工程科学版),1997,1(4):82~89
    85.范浩军,顾宜,谢美丽.3,5-二氨基苯甲酸-4'-联苯酯及含液晶侧链的聚酰亚胺的合成与表征.高分子学报,2001,(4):494~498
    86.刘孝波,米军,顾宜,等.液晶双马来酰亚胺共聚物Ⅰ液晶行为与性能.高分子材料科学与工程,1995,11(1):112~115
    87.刘孝波,江璐霞,蔡兴贤.含芳酯键双马来酰亚胺的合成与液晶行为.塑料工业,1994,(2):19~22
    88. H. Fan, Y. GU, M. Xie. In-situ self reinforced polyimide for film materials, Polym. Int., 2001,50:1331~1337
    89. J. C. Ou, Y. L. Hong, F. S. Yen, et al. Cyanated liquid crystals with trans-stilbene structure: synthesis and their cyclotrimerizations, J. Polym. Sci., part:A, 1995,33:313~321
    90. W. Mormann, J. G. Zimmermann. Liquid crystalline thermosels through cycl otrimeriztion of diromatic dicyanates, Macromolecule, 1996,29:1105~1109
    91. W. Normann, C. Kuckertz. Liquid crystalline cynuate thermosets through cyclotrimerisation of triamatic
    
    dicyanates, Macromol. Chem. Phys., 1998,199:845~851
    92. G. G. Barclay, C. K. Ober, K. I. Papathomas, et al. rigid-rod thermosets based on 1,3,5-triazine-linked aromatic ester segments, Macromolecules,1992,25:2947~2954
    93. A. M. Gupta, C. W. Macosko. Characterization and modeling of rigid branched polycyanates, macromolecules, 1993,26:2455~2463
    94. Arthur J. Gavrin, Elliot P. Douglas. Isothermal curing of acetylene functionalized liquid crystalline thermoset monomers. Macromolecules, 2001,34:5876~5884
    95. A. P. Melissaris, M. H. Litt. High modulus and high Tg thermally stable polymers from Di-p-ethnylbenzoyl ester monomers: synthesis, solid state polymerization, processing, and thermal properties. Macromolecules, 1994,27:2675~2684
    96. A. J. Gavrin, C. L. Curts, E. P. Douglas. High-temperature stability of novel phenylethynyl liquid crystalline thermoset, J. Polym. Sci.,1999,37:4184~4190
    97. J. S. Ullett. Proceedings of the 7th international conference on rapid prototyping, University of Dayton, Dayton, OH, April 1997, p.203
    98. R. A. Hikmet, Dirk J. Broer. Dynamic mechanical properties of anisotmpic networks formed by liquid crystalline acrylates. Polymer, 1991,32:9,1627~1632
    99. J.W.Schultz, R.P.Chartoff, J.S. Ullett. Photopolymerization of nematic liquid crystal monomers for structural applications: linear viscoelastic behavior and cure effects. J. Polym. Sci. Part: B, 1998, 36:1081~1089
    100. Dirk J. Broer, Jan Boven, Grietje N. In-situ photopolymerization of oriented liquid-crystalline acrylates, 3 oriented polymer networks from a mesogenic diacrylate. Mol. Makro. Chem. 1989, 190:2255~2268
    101. R.A.Hikmet, B. H. Zwerver, D. J. Broer. Anisotropic polymerization shrinkage behaviour of liquid crystalline diacrylates, Polymer, 1992,33:89~95
    102. R.A.Hikmet, J.Lub, A.J.W.Tol. effect of the orientation of the ester bonds on the properties of three isomeric liquid crystal diacrylates before and after polymerization. Macromolecules, 1995,28,3313~3327
    103. J.W.Schultz, R.P.Chartoff. photo polymerization of nematic liquid crystal monomers for structural application: molecular order and orientation dynamics. Polymer,1998,39,2:319~325
    104. Morton H. Litt, Wha-tzong Whang, Kung-ti Yen, et al. crosslinked liquid crystal polymers from liquid crystal monomers: synthesis and mechanical properties. J. Polym. Sci. Part: A,1993,31:183~191
    105. Dirk J. Broer, R.G. Gossink, R.A.M. Hikmet. Oriented polymer networks obtained by photopolymerization of liquid-crystalline monomers. Makro. Chem., 1990,191:45~66
    106. Dirk J. Broer, Rifat A. M. Hikmet, Ger Challa. In-situ photopolymerization of oriented liquid-crystalline acrylates, 4 influence of a lateral methyl substituent on monomer and oriented polymer network properties of a mesogenic diacrylate. Makro. Chem. 1989,190,3201~3215
    107. Dirk J. Broer, Grietje N. anisotropic thermal expansion of densely cross-linked oriented polymer networks. Mol. Polym. Eng. and Sci.,mid-may,1991,31:9,625~631
    108. I. Heyderickx, Dirk J. Broer, H. Van Den Boom, et al. liquid-crystalline ordering in polymeric networks as
    
    studied by polarized Raman scattering. J. Polym. Sci. Part: B, 1992,30:215~220
    109. I. Dierking. Polymer network-stabilized liquid crystals, Adv. Mater., 2000,(3): 167~181
    110. H. Andersson, F. Sahlen, M. Trollsas. Preparation and characterization of crosslinked liquid crystalline polymer films as nonlinear optical materials. J.M.S.-Pure Appl. Chem., 1996, A33(10): 1427~1436
    111. L. Callau, A. Mantecon, J. A. Reina. Crosslinking of vinyl-terminated biphenyl and naphthalene side-chaon liquid crystalline poly(epichlorohydrin) derivatives, J. Polym. Sci., part:A, 2002,40:2237~2244
    112. U. Caruso, P. Iannelli, A. Roviello, et al. segmented liquid crystalline polyesters with allyl group as lateral substituent, J. Polym. Sci., part:B, 1998,36:2371~2378
    113. D. Aciemo, L. D. Maio, P. Iannelli. Supramolecular hexagonal structure of a segmented liquid crystalline polyester with allyl group as lateral substituent, J. Polym. Sci., part:B, 1999,37:1601~1607
    114. L. D. Malo, P. Iannelli, S. Pragliola, et. al. crosslinking of a fibrous sample to a macro-oriented mesomorphic network, J. Polym. Sci., part:B, 1998,36:433~438
    115. M. J. Whitcombe, A. Gilbert, A. Hirai, et al. cinnamate ester containing liquid crystalline side chain polymers, J. Polym. Sci., part:A, 1991,29:251~259
    116. N. Kawatsuki, H. Takatsuka, T. Yamamoto, et al. optical anisotropy of a photoreacted side-chain liquid crystalline polymer induced by linearly polarized UV light, J. Polym. Sci., part:A, 1998,36:1521~1526
    117. J. W. Schultz, J. Bhatt, R. P. Chartoff, et al. polymerization and viscoelastic behavior of networks from a dual-curing, liquid crystalline monomer, J. Polym. Sci., part:B, 1999,37:1183~1190
    118. Kathrin Kurschner, Peter Strohriegl. polymerizable liquid crystalline twin molecules: synthesis and thermotropic properties. Liquid Crystals,2000,27:12,1595~1611
    119. Mikael Trollas, Fredrik Sahlen, Ulf W. Gedde, et al. novel thermally stable polymer materials for second-order nonlinear optics. Macromolecules,1996,29:2590~2598
    120. Mikael Trollas, Christian Orrenius, Fredrik Sahlen, et al. preparation of a novel cross-linked polymer for second-order nonlinear optics. J. Am. Chem. Soc., 1996,118:8542~8548
    121. Brian C. Baxter, Douglas L. Gin. Synthesis and polymerization of a chiral liquid crystal diacrylate exhibiting smectic A and C phases. Macromolecules, 1998,31:4419~4425
    122.姚康德,成国祥.环氧树脂增韧研究进展.热固性树脂,2001,16(2):22~25
    123.石胜伟,曹有名.环氧树脂增韧改性新方法.现代化工,1999,19(6):14~18
    124.杨伏生,周安宁,葛龄梅,等.聚合物增强增韧机理研究进展,中国塑料,2001,(8):6~10
    125.郑强,冯金茂,俞月初,等.聚合物增韧机理研究进展,高分子材料科学与工程,1998,(4):12~15
    126.陈平,韩丽洁.热同性树脂的增韧方法和增韧机理,热固性树脂,1996,(2):42~46
    127.沈大理,吴良义.新型环氧树脂、固化剂、复合材料及纳米技术进展,2001,(5):37~41
    128. R. A. Hikmet, J.Lub, P. Maassen vd Brink. Structure and mobility within anisotropic networks obtained by photopolymerization of liquid crystal molecules. Macromolecules, 1992,25:4194~4199
    129. Seiji Kurihara, Keisuke lwamoto, Takamasa Nonaka. Preparation and structure of polymer networks by
    
    polymerization of liquid crystalline monomers in DC electric field. Polymer, 1998,39:15,3565~3569
    130. Charles E. Hoyle, Tsuyoshi Watanabe, J.B. Whitehead. Anisotropic network formation by photopolymerization of liquid crystal monomers in a low strength magnetic field. Macromolecules, 1994,27:6581~6588
    131. R.A.Hikmet.piezoelectric networks obtained by photopolymerization of liquid crystal molecules. Macromolecules, 1992,25:5759~5764
    132. Dirk J. Broer, I. Heyderickx. Three dimentionally ordered polymer networks with a helicoidal structure. Macromolecules, 1990,23:2474~2477
    133. M. Kato, H. Ohara, T. Fukuda, et. al. synthesis of NLO diacrylate monomers and their photopolymerizations with LC diacrylate monomers in mixed liquid crystalline state, Macromol. Chem. Phys., 1998,199:881~888
    134. L. Corvazier, Y. Zhao. Induction of liquid crystal orientation through Azobenzene containing polymer networks, Macromolecules, 1999,32:3195~3200
    135. S. Kurihara, A. Sakamoto, T. Nonaka. Liquid crystalline polymer networks: effect of crosslinking on the stability of macroscopic molecular orientation, Macromolecules, 1999,32:3150~3153
    136. S. Kurihara, A. Sakamoto, D. Yoneyama, et. al. photochemical switching behavior of liquid crystalline polymer networks containing Azobenzene molecules, Macromolecules, 1999,32:6493~6498
    137. S. Kurihara, M. Ishii, T. Nonaka. novel preparations of helical polymer and ionomer networks, Macromolecules, 1997,30:313~315
    138. H. P. Mueller, R. Gipp. Chem. Abstr., 1988, 108:131303x
    139.恽魁宏,高鸿宾,任责忠.高等有机化学,高等教育出版社,1988
    140.中国化工产品大全,化学工业出版社,1998
    141.王德中.环氧树脂生产与应用,化学工业出版社,2001,第二版
    142. Zuo Ruilin, Chang Pengshan, Xie Yunchuan, et al. study of DEAn catalyzing the synthesis of VE, 粘接, 2002, 3: 7~11
    143.何曼君,陈维孝,董西侠.高分子物理,复旦大学出版社,1990
    144.常鹏善.西北工业大学硕士学位论文,2001
    145.潘祖仁,于在璋.自由基聚合,化学工业出版社,1983
    146. E. Amendola, M. Giamberini, C. Carfagna, et al. self-toughing liquid crystalline vinyl ester adhesives, Macromol. Symp. 2002,180:153~167
    147.殷敬华,莫志深.现代高分子物理学,科学出版社,2001
    148.吕锡慈.高分材料的强度与破坏,四川教育出版社,1988
    149.潘道成,鲍其鼐,于同隐.高聚物及其共混物的力学性能,上海科学技术出版社,1990
    150.吴培熙,张留成.聚合物共混改性,中国轻工业出版社,1996
    151.左瑞霖,常鹏善,梁国正,等.DAIP的研究与应用,第八届全国绝缘材料与绝缘技术学术交流会论文
    
    
    152.倪礼忠,柴孟贤,黄涛,等.DAIP树脂的增韧研究,华东理工大学学报,1998,24(6):699~703
    153.陈腊琼,王正东,赵玉庭.烯丙基酯树脂的研究进展,纤维复合材料,1993,3:15~21
    154.赵玉庭,关淑英,陶婉蓉.DAIP树脂及其玻璃钢的制备,玻璃钢,1981,1:1~4
    155.陈腊琼,王正东,赵玉庭.DAIP增韧的研究,热固性树脂.1993,4:12~17
    156.倪礼忠,周权,顾澄中,等.室温固化DAIP树脂体系的性能研究.华东理工大学学报,1998,24(4):462~465
    157.周权,傅俊,倪礼忠.DAIP树脂及其复合材料的性能研究,功能高分子学报,2001,3:319~322
    158. Kilwon Cho. Effect of molecular weight between crosslinks on fracture behaviour of diallylterephalate resins, Polymer, 1996, 37(5): 813~817
    159.左瑞霖.VE增韧DAIP树脂的性能研究,高分子材料科学与工程,已录用
    160.米军,刘孝波,蔡兴贤.热致液晶聚酯酰亚胺/双马型聚酰亚胺的半互穿聚合物网络.四川联合大学学报(工程科学版),1998,2(5):69~73
    161.陈立新,王汝敏,蓝立文等.液晶环氧/双马来酰亚胺共聚物的研究材料科学与工程,2001,19(1):109~111
    162.陈立新,王汝敏,蓝立文.液晶环氯/二元胺/CYD-128体系固化行为的研究.热固性树脂,2001,16(1):9~12
    163.陈立新,王汝敏,常鹏善.液晶环氧/二元胺/CYD-128体系固化行为的研究——Ⅱ性能及增韧机理.热固性树脂,2001,16(3):1~4
    164.常鹏善,左瑞霖,王汝敏,等.一种液晶环氧增韧环氧树脂的研究,高分子学报,2002,5:682~684
    165.钟文斌,王霞瑜.液晶环氧树脂改性普通环氧树脂的研究.粘接,2000,21(1):17~20
    166.刘孝波,朱蓉琪,蔡兴贤.侧链液晶环氧树脂及其固化物的研究.热固性树脂,1997,(1):13~17
    167.应圣康,余丰年.共聚合原理,化学工业出版社,1984
    168.沈开猷.不饱和聚酯树脂及其应用,化学工业出版社,2001,第二版
    169.钱保功,许观藩,余赋生.等.高聚物的转变与松弛,科学出版社,1986
    170. C. R Hsu, L. J. Lee. Free-radical crosslinking copolymerization of styrene/unsaturated polyester resins:1. phase separation and microgel formation, polymer, 1993,34(21):4496~4505
    171. A. Mottsa, J. Karger-Kcsis. Cure characteristics of a vinyl ester resin as assessed by FTIR and DSC techniques, polymers and polymer composites, 2000,8(7):455~460
    172. C. Cafagna, L. Nicolaisi, E. Amendola, et al. Toughing epoxy resins by liquid crystalline polymers. J. Appl. Polym. Sci., 1992, 44: 1465~1471
    173. Keikoga, Weiyuan Lei. Preparation of N-grafted poly(p-phenyleneterephthalamine) and applications to a moleculear composite with epoxy resin. Polymer Journal, 1993,25(2): 185~191
    174.梁伟荣,王惠民.热致液晶聚合物增韧环氧树脂的研究.玻璃钢/复合材料,1997,4:3~4
    175.曹有名,石胜伟,孙军,等.热致液晶PET-PHB共聚酯增韧改性环氧树脂.西安交通大学学报,2001,(35)2:187~191
    176.王惠民,益小苏.热致液晶聚合物原位增强复合材料的研究,玻璃钢/复合材料,1994,(5):34~45
    
    
    177.益小苏,沈烈原位复合材料的成纤过程与增强机制,材料研究学报,1996,(4):337~344
    178.益小苏,沈烈.热致液晶高分子微纤的形貌特征和一个模量分析的方法,高分子学报,1994,(5):621~626
    179.益小苏,P.Hoeck,W.Michaeli.熔融混合工艺对原位复合材料力学性能的影响,浙江大学学报,1995,(3):390~395
    180.益小苏,赵高明,王惠民.一个热致液晶高分子-高聚物复合体系的粘度参数,高分子学报,1995,(1):109~112
    181.张军,何嘉松.含液晶聚合物的原位复合材料中界面相容性的改善策略,高分子通报,2000,(4):10~19
    182.周培润,盛勤,王正东,等.丁腈橡胶对乙烯基酯树脂的改性研究,玻璃钢/复合材料,1995,3:15~18
    183.周培润,陈晖,方群英,等.高韧性、低收缩MFE-5乙烯基酯树脂的研究,玻璃钢/复合材料,2000,2:21~22
    184. C. M. Lubi, K. Ravi, A. Ahammed, et al. modification of unsaturated polyester resin using elastomers, J. elastomers and plastics, 2000,32:60~72
    185. K. Sudharsanam, N. G. Nair. Studies on crosslinked transparent acrylic panels, polym, plast. Technol. Eng.,1995,34(3):439~446
    186.袁金颖,左光汉,左晓兵,等.共聚交联改性有机玻璃的研制与性能研究,高分子材料科学与工程,1999.15(5):154~156
    187.潘明旺,台会文,张留成.甲基丙烯酸氨基甲酸酯/甲基丙烯酸甲酯热固性透明材料的合成、性能与形态结构的研究,中国塑料,1995,9(4):21~26
    188.王磊.交联有机玻璃的热性能及应用,材料工程,1999,12:16~18
    189.杨瑞芹,陈尔凡.耐热有机玻璃的研制,塑料工业,1999,27(2):49~51
    190.袁金颖,左光汉,左晓兵,等.有机玻璃改陸及其进展,化工新型材料,1996,12:2~5
    191.董绍胜,张志嵌,苏荣军,等.N-取代马来酰亚胺在开发新材料中的应用,中国塑料,1998,12:24~29
    192.潘祖仁.高分子化学,化学工业出版社,1985
    193.W.施纳贝尔.聚合物降解原理及应用化学工业出版社,1988
    194.N.格雷塞.聚合物降解过程化学,中国工业出版社,1965

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700