莱芜市生态修复工程区不同封育类型土壤水文特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
莱芜市水土保持生态修复工程为水利部“全国水土保持生态修复工程”试点工程之一。本论文以山东省莱芜市莱城区生态修复工程为研究背景,以修复区内的森林植被为研究对象,以土壤水文特征值为参数,对8种森林植物群落的保持水土和涵养水源功能进行测定和评价。主要研究成果如下:
     (1)生态修复措施类型划分
     在对项目区全面踏勘的基础上,根据立地类型、现有植被状况及修复目的,同时结合生态修复工程的技术和效益特点,将生态修复试点工程区内的生态修复技术措施划分为2个大类(封山育林型和人工造林型)和4个亚类(人工林封育型、疏林补植型、荒坡封禁型和灌木封禁型)。
     (2)生态修复区土壤结构明显改善
     从土壤重量平均直径:人工林封育型中阔叶林土壤重量平均直径为1.95,高于针叶林(1.82)。疏林补植、荒坡封禁、灌木封禁和人工造林型植物群落修复后土壤重量平均直径分提高了0.1、0.02、0.14和0.12。从分形维数看:人工林封育类型中阔叶林土壤分形维数(2.46)低于针叶林(2.48)。疏林补植、荒坡封禁、灌木封禁和人工造林型植物群落修复后土壤分形维数分别减小了0.04、0.03、0.03和0.02。
     (3)生态修复区土壤密度降低
     从土壤密度看:人工林封育类型中,阔叶林土壤密度(1.11 g/cm3)低于针叶林(1.14 g/cm3)。疏林补植、荒坡封禁、灌木封禁和人工造林型植物群落修复后土壤密度分别减小了0.02 g/cm3、0.08 g/cm3、0.03 g/cm3和0.13g/cm3,以人工造林地土壤密度减小幅度最大。
     (3)生态修复区土壤孔隙度提高
     从土壤孔隙度状况看:人工林封育类型中,阔叶林和针叶林土壤总孔隙度、毛管孔隙度和非毛管孔隙度平均值分别为(51.17%,47%)、(32.34%,31.94)和(18.83%,15.2)。疏林补植、荒坡封禁、灌木封禁和人工新造林植物群落土壤总孔隙度、非毛管孔隙度和毛管孔隙度比修复前分别提高了(4.26%、0.59%、3.66%)、(1.56%、0.34%、1.22%)、(2.45%、0.95%、1.49%)和(4.21%、3.7%、0.51%)。
     (4)土壤贮水量提高
     人工封育类型中阔叶林土壤贮水量为25mm,大于针叶林土壤含水量(24.09mm)。疏林补植、荒坡封禁、灌木封禁和人工新造林植物群落修复后土壤含水量分别提高了1.34mm、0.41mm、3.2mm和3mm。
     (5)土壤稳渗速率增加
     人工造林型、疏林补植型、荒坡封禁和灌木封禁类型植物群落修复后入渗速率比修复前分别提高了3.48 mm/min、2.42mm/min,2.23 mm/min,2.58 mm/min。与荒草坡相比,人工林封育型各植物群落平均入渗速率提高了3.59 mm/min。
     综上所述,研究区在采取了生态修复措施以后,土壤的水文物理性状有了明显的好转,土壤密度减小、孔隙度增加、贮水量增加、土壤的稳渗速率增加,生态修复措施效益较好,但仍存在部分生态脆弱环节,尚需进一步加大封山育林和退耕还林力度,使区域林草植被覆盖度和群落盖度进一步增加,森林植被结构更加合理、功能和抗性增强,综合效能得到更好的发挥。
Ecological Rehabilitation Project of Soil and Water Conservation in Laicheng is one of experimental projects of National Soil and Water Conservation ecological restoration project . It studies on Laiwu ecological restoration project of Soil and Water Conservation District ,Monitor and analysis the ecological, economic and social benefits after different types of ecological restoration using macro and micro combined monitoring, combined remote sensing information monitoring and artificial combined manual observations on the spot, combined long-term continuous observation and short-term temporary observation and time series sequence compare with the space observation methods. The result indicated that the ecological rehabilitation project of soil and water conservation had got obvious ecological, economic and social efficiency. The main results are as flowing:
     (1)Ecological restoration measures Classification
     On the basis of Comprehensive Surveying the project area, according to the site type, the existing situation and the purpose of the restoration, at the same time combining ecological restoration project of technical features and benefits, Ecological restoration will be a pilot project for the regional ecological restoration measures divided into two major categories and four sub-categories.
     (2)The soil structure parameters were improved
     According to the manmade forest closing, the soil MWD of broad-leaved forest(1.95) is bigger than which of coniferous forest (1.82 ). After ecological rehabilitation the MWD of supplement planting of sparse forest, the uncultivated land closing, shrubs closing and artificial forest were increased 0.1、0.02、0.14 and 0.12. From the soil FD, the broad-leaved forest (2.46) were smaller than the single forest (2.48). After ecological rehabilitation the soil FD of supplement planting of sparse forest, the uncultivated land closing , shrubs closing and artificial forest were decreased0.04、0.03、 0.03 and 0.02.
     (3)The soil density was lower
     The soil density of broad-leaved forest (1.11 g/cm3)is smaller than which of coniferous forest in manmade forest closing(1.14 g/cm3). After ecological rehabilitation the FD of supplement planting of sparse forest, the uncultivated land closing, shrubs closing and artificial forest measure were decreased 0.02 g/cm3、0.08 g/cm3、0.03 g/cm3 and 0.13g/cm3, artificial forest measure was decreased mostly.
     (4)The soil porosity was improved
     As the soil porosity, the mean soil total porosity, capillary porosity and non-capillary porosity of the broad-leaved forest and the coniferous forest were (51.17%,47%)、(32.34%,31.94)and(18.83%,15.2). After ecological rehabilitation the mean soil total porosity, capillary porosity and non-capillary porosity of supplement planting of sparse forest, the uncultivated land closing, shrubs closing and artificial forest measure were increased (4.26%、0.59%、3.66%)、(1.56%、0.34%、1.22%)、(2.45%、0.95%、1.49%)and(4.21%、3.7%、0.51%).
     (5)The soil moisture was obviously increased
     In manmade forest closing measure, the soil moisture of the broad-leaved forest(25mm) is higher than which of the coniferous forest(24.09mm). After ecological rehabilitation the soil moisture of supplement planting of sparse forest, the uncultivated land closing, shrubs closing and artificial forest measure were increased 1.34mm、0.41mm、3.2mm and 3mm.
     (6)The soil infiltration was obviously increased
     After ecological rehabilitation the mean soil infiltration, capillary porosity and non-capillary porosity of supplement planting of sparse forest, the uncultivated land closing, shrubs closing and artificial forest measure were increased (3.48mm/min、2.42mm/min、2.23mm/min、2.58mm/min),compare with wild slope,the average soil infiltration of manmade forest was increased 3.59 mm/min.
     Above all, the ecological rehabilitation efficiency of item region was better, but it still existed ecological frail tache and need increase the forest closing and afforestation intensity, it let the forest vegetation cover degree and community cover degree improve, the forest vegetation structure was more reasonable so as to the function and efficiency was exerted better.
引文
[1] D.希勒尔.土壤物理学概论[M].西安,陕西教育出版社,1988:139—153
    [2]曹新孙.农田防护林学.中国林业出版社,1986
    [3]车忠新,褚丽妹.辽东山区水土保持生态修复的实践与探讨.水土保持科技情报.2004(2):20-22
    [4]陈法杨,张长印,牛志明.全国水土保持生态修复分区探讨.中国水土保持SWCC.2003(8):2-3
    [5]陈奇伯,陈宝昆,董映成,王震洪.水土流失区小流域生态修复的理论与实践.水土保持研究.2004,11(1):168-170
    [6]陈善沐,林文莲.水土保持生态修复与福建生态省建设.水土保持学报.2003,17(5):77-78
    [7]冯杰,郝振纯,陈启慧.分形理论在土壤大孔隙研究中的应用及其展望[J].土壤,2001,3:123-130
    [8]杨洪晓,卢琦,吴波.青海共和盆地沙化土地生态修复效果的研究[J].中国水土保持科学,2006,4(2):7-12
    [9]崔鹏,王道杰,韦方强.干热河谷生态修复模式及其效应[J].中国水土保持科学,2005,3(3):60-64
    [10]张光灿,夏江宝,王贵霞,等.鲁中花岗岩山区人工林土壤水分物理性质[J].水土保持学报.2005,19(6):44-48
    [11]高甲荣,肖斌,张东升,等.国外森林水文研究进展评述[J].水土保持学报,2001,15(5):60-75.
    [12]高志义.水土保持林学.中国林业出版社,1996,(1),7-39
    [13]宫阿都,何毓蓉.金沙江干热河谷区(云南)退化土壤结构性与形成机理[J].水土保持学报.2001,19(3):213-219
    [14]宫阿都,何毓蓉.金沙江干热河谷区退化土壤结构的分形特征研究[J].水土保持学报2001,45(3):112-115
    [15]宫阿都.何毓蓉.金沙江干热河谷退化土壤结构的分形特征研究[J].水土保持学报,2001,15(3):112-115
    [16]何长高.关于水土保持生态修复工程中的几个问题的思考.中国水土保持科学.2004,2(3):99-102
    [17]洪双旌.水土保持生态的修复需要人工的合理干预.水土保持研究.2004,11(3):307-309
    [18]胡建民,左长清,谢颂华.水土保持生态修复监测探讨[J].中国水土保持,2004,(7):27-28
    [19]贾志军,王贵平,李俊仪,等.土壤含水率对坡耕地产流影响的研究[J].山西水土保持科技,1999,22(4):25—27
    [20]姜德文.以生态修复为指导思想的水土保持技术路线探讨.水土保持通报.2004,24(6):86-89
    [21]焦居仁.开展生态修复的启示与建议.中国水土保持SWCC.2003(3):1-2
    [22]康玲玲,吴卿,罗中伟,王云璋,陈发中.黄土高原水土保持生态环境建设生态效益监测方法探讨.水土保持通报.2004(3):40-45
    [23]雷志栋.太行山林业研究.河南科学技术出版社,1991,62-69
    [24]李恩羊.土壤-植物-大气连续体水分传输的计算机模拟[J].水利学报,1992,(3):1-12
    [25]李智广.刍议水土保持生态修复工程的监测内容.水土保持通报.2004,24(2):46-47
    [26]梁宗锁,左长清,焦巨仁.生态修复在黄土高原水土保持中的作用.西北林学院学报.2003,18(1):20-24
    [27]梁宗锁,左长清.简论生态修复与水土保持生态建设.中国水土保持SWCC.2003(4):12-13
    [28]林新明,郭新波,邓岚.乌陡河小流域生态修复技术及效益浅析.广东水利水电.2005(2):15-16
    [29]刘国彬,杨勤科,许明祥,张文辉,陈云明.水保生态修复的若干科学问题.中国水利.2004(16):31-32
    [30]刘建立,徐邵辉,刘辉.几种土壤累积粒径分布模型的对比研究[J].水科学进展.2003, 14(5):588-592
    [31]刘霞,张光灿,李雪蕾等.小流域生态修复过程中不同森林植被土壤入渗与贮水特征[J].水土保持学报,2004,18(6):1-5
    [32]刘霞,张光灿.水土保持原理实习实验指导书.山农大水保教研室,1996:1-10
    [33]刘云鹏,王国栋,张社奇,等.陕西4种土壤粒径分布的分形特征研究[J].2003, 31(2):92-94
    [34]刘云鹏.王国栋,张社奇等.陕西4种土壤粒径分布的分形特征研究.[J]西北农林科技大学学报,2003,24(3):92-94
    [35]刘正斌.实施水保生态修复工程的实践与注意事项[J].水土保持科技情报,2003,(3):36-39
    [36]马履一.国内外土壤水分研究现状及进展[J].北京林业大学学报,1991,(3):21-30
    [37]毛德华,夏军,黄友波.西北地区生态修的若干基本问题探讨.水土保持学报.2003,17(1):15-18
    [38]蒲勇平.长江流域生态修复工程的意义及对策[J].水土保持通报,2002(4):9-11
    [39]邱仁辉,扬玉盛,俞新妥.不同栽植代数衫木林土壤结构特性的研究[J].北京林业大学学报,1998,20(4):6-11
    [40]孙时轩.造林学(第2版).中国林业出版.2000
    [41]谭孝元.土壤水分的能量概念及其意义[J].土壤学进展,1979,(1):1-2
    [42]田积莹.黄土地区土壤的物理性质与黄土成因的关系[J].中国科学院西北水保所集刊,1987(5):1—12
    [43]汪殿蓓,暨淑仪,陈鹏飞等.深圳南山区天然森林群落多样性及演替现状[J].生态学报,2003,239(7):1415-1422
    [44]汪水前.水土保持生态修复监测内容探讨.福建水土保持.2004,16(3):62-66
    [45]王家福等.山东峨庄自然保护区建设项目可行性研究报告[J].山东省林业检测规划院,2001,(10):1—31
    [46]王礼先,王斌瑞.林业生态工程.中国林业出版社,1995:14-19
    [47]王礼先等,森林水文研究及流域治理综述[J].水土保持科技情报。1990
    [48]王勤,等.安徽大别山库区不同林分类型的土壤特性及其水源涵养功能[J].水土保持学报,2003,17(3)59—62
    [49]王小宏,王晓星,马静.浅谈水土保持生态修复项目效益监测指标与方法[J].内蒙古水利,2004,(2):39-42
    [50]吴蔚东,黄月琼,黄春昌,等.江西声主要森林类型下土壤的物理性质[J].江西农业大学学报.1996,18(2):132-136
    [51]吴蔚东.江西省山地几种森林类型下土壤物理性状的研究[J].土壤侵蚀与水土保持学报.1997,1(3):50-55
    [52]谢立亚,郑国祥,郑娟.辽宁省生态修复的实践与经验.山西水土保持科技.2004(4):34-35
    [53]徐长林.浅谈生态修复工程水土保持监测[J].吉林林业,2004,(8):25-28
    [54]薛顺康.生态修复项目监测初探.中国水土保持SWCC.2004(11):8-9
    [55]杨爱民,刘孝盈,李跃辉.水土保持生态修复的概念、分类与技术方法.中国水土保持SWCC.2005(1):11-13
    [56]杨承栋.森林土壤研究几个方面的进展[J].世界林业研究.1994,(4):14-20
    [57]杨培岒;罗远培;石元春.用粒径的重量分布表征的土壤分形特征[J].科学通报,1993,38(20):1896-1899
    [58]杨少林,孟菁玲.浅谈生态修复的含义及其实施配套措施[J].中国水土保持,2004,(10):7-9
    [59]杨新民,杨文治.纸坊沟流域人工刺槐林生长状况与土壤水分条件研究[J].水土保持研究,1994,(3)
    [60]于志民,余新晓,水源涵养林效益研究[M].中国林业出版社,[M].1999: 45—55
    [61]余新晓,牛健植,徐军亮.山区小流域生态修复研究[J].中国水土保持科学,2004,2(1):4-10
    [62]余新晓,赵玉淘等.贡噶山东坡峨眉冷杉林地被物分布及其水文效应初步研究[J].2002.24(5/6):14-18
    [63]张保华,何毓蓉,周红艺,程根伟.长江上游典型区高山不同林型土壤结构性与水分效应[J].水土保持学报,2002,16(4):127-129
    [64]张保华,何毓蓉,周红艺等.长江上游典型区亚高山不同林型土壤的结构性与水分效应[J].水土保持学报,16(4):127-129
    [65]张艳红,葛茂行,张汉君.生态修复是防治水土流失的有效途径[J].南水北调与水利科技,2004,2(3):39-41
    [66]张治国.张云龙.刘徐师.等.林业生态工程学[M].中国林业出版社, 1999: 45—55
    [67]赵秉栋,赵军凯,宫少燕.论生态修复在水土保持生态建设中的优化作用[J].水土保持研究,2004,11(3):105-108
    [68]赵西宁,吴发启.土壤水分入渗的研究进展和评述[J].西北林学院学报,2004,19(1):42—45
    [69]中野秀章.森林水文学.北京.中国林业出版社.1983 []钟明星,黄正建,黄明艳,甘露.浅谈水土保持生态修复的适宜条件及工作重点.中国水土保持SWCC.2005(1):16-17
    [70]周国富,黄勇,吕涛等.赤水市生态修复工程社会效益监测与评价研究[J].水土保持研究,2005,12(1):72-74
    [71]周利民,邓岚.水土保持生态修复林植物群落演替研究[J].水土保持通报,2004,24(4):38-50
    [72]庄继平,邵明安.SPAC中的水分运动[J].西北水土保持研究所集刊,1991,(13):3-12
    [73]左长清.实施生态修复几个问题的探讨[J].水土保持研究,2002,9,(4):4-7
    [74] Cognard-Plancq,Anne-Laure,et al.The role of forest cove on stream flow down sub-Mediterranean mountain watersheds:a modeling approach[J].Journal of Hydrology,2001,254(1-4):229-243
    [75] DAI Li-mi;LI Qiu-rong;WANG Rong;JI Lan-zhu.Responses of the seeding of five dominant tree species in Chanbai Mountain to Soil Water Stress.Joural of Forestry Research,2003(03)
    [76] Liu Shi-Rong,Sun Peng-Sen,Wen Yuan-Guang.Comparative analysis of hydrological funcations of major forest ecosystems in China.Acta Phytoecologica Sinica.2003.27(1)16-22
    [77] PutuhenaWM,CorderyI.Estimation of interception capacity of the forest floor[J].Jhydrol,1996,180:283-299
    [78] Tyler S W.Wheatcraft s w.Fractal of soil partice-size distribution in soil with a fragmentation model[j].soil Scisoc Am J,1999,(63):782-788
    [79] ZHANG Guang-can ,HE Kang-ning,LIU Xia;Fitting [J]Soil Moisture Environment of Growth on Loess Plateau in Semi-arid Region . Journal of Soil and Water Conservation 2001.12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700