淄博市水土保持生态修复区植被变化与土壤贮水特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对研究区内水土保持生态修复过程中植物群落、林草生长量、土壤物理性质、蓄水保水效益等方面进行监测研究,结果表明生态修复工程取得了明显的生态效益。主要结论如下:
     ①研究区林草覆盖度明显提高,植物群落盖度(郁闭度)增加。林草覆盖度由修复前的42.7%增长到修复后的51.5%,增长幅度为8.8%。有林地(天然林或人工林)各植物群落乔灌草平均盖度为0.86,明显高于其它类型;从疏林补植、荒坡造林和荒坡封禁三种封山育林措施看,以荒坡造林和疏林补植后植物群落盖度的提高幅度较大(乔灌草平均提高0.20和0.18),从退耕还林各措施类型群落植被盖度看,以林果梯田封禁后植被盖度的提高幅度较大(乔灌草平均提高0.35)。
     ②生态修复区植被生长状况明显改善,生物(生长)量显著提高。生态修复后各植物群落地下根系生物量和地上林木生物量均比修复前有显著提高。疏林补植、荒坡造林和荒坡封禁后植物群落的根重密度分别比修复前提高了2.0 kg/m~3、2.4kg/m~3和1.8 kg/m~3。
     ③生态修复后研究区植物群落类型明显增加,植物种类越加丰富。植被类型在原有的基础上新增加3种,植物群落增加6种,生态修复后,种子植物增加24种,其中人工引进乔木植物3种(仁用杏、大扁桃和冬枣),灌木植物增加5种,草本植物增加16种。
     ④生态修复后研究区各植物群落物种多样性和丰富度显著提高。有林地封禁型植物群落的物种丰富度和多样性指数高于其它修复类型。疏林补植、荒坡封禁和荒坡造林的生物多样性指数均比修复前提高(5和0.17)、(12和0.08)、(16和0.27)。退耕还林后封育型林果梯田的丰富度和多样性指数比封育前提高了6和0.6,封禁型林果梯田比封育前提高了20和0.72。
     ⑤生态修复工程促进了植被的自然演替。生态修复后,不同植物群落都趋向于提高群落生态效益的方向演替,但演替过程与群落结构有所不同。A:封禁型天然次生林群落:该修复措施类型的植物群落已经过了多年的封禁和自然演替,趋向于顶级群落演替或接近顶级群落,进一步加强封育后,现在的单纯林可能会过渡为混交林,形成复层混交林群落结构,整个群落趋向于提高林分生态效益的方向演替。B:人工林封禁、疏林补植和荒坡造林措施类型群落:这三种修复措施类型的植物群落都为人工植物群落,修复前乔木树种较为单一,封禁后主要树种仍然以人工引入的侧柏和刺槐为主。但随着封禁年限的增长,在立地较好的群落中,黄栌、榔榆、栎类等适生的天然林树种将会不断迁入,其乔灌草层物种丰富度、多样性和均匀度也将会呈现增加趋势。C:荒坡封禁灌草群落:该群落类型封禁后,近期内仍以灌木和草本为主,其物种丰富度和多样性将会有明显提高。随着封禁时间的延长,一些适生的天然(林)乔木树种(黄栌、榔榆、栎类等)将会不断入侵,最终会形成乔灌草复层、异龄林分结构,生态效益将明显提高。D:退耕还林型植物群落:该修复类型植物群落主要分布于人工梯田,经多年封禁后,无论是缓坡、陡坡梯田还是林果、作物梯田,首先增加的是灌草植被。随自然演替的发展,灌草层物种丰富度、多样性和均匀度指数均呈现增长趋势,乔木植物种类将会增加,黄栌、山榆、栎类等适生树种将会不断迁入。最终形成梯田乔灌草复层异龄林群落,群落演替趋向于提高植物群落生态效益的方向。
     ⑥生态修复区土壤密度和土壤孔隙度改善。从土壤密度看,有林地封禁类型中,天然林土壤密度稍小于人工林,其中混交林土壤密度(1.156g/cm~3)均小于单纯林(1.180g/cm~3)。疏林补植、荒坡造林、荒坡封禁和退耕还林型植物群落修复后土壤密度分别比修复前减小了0.008 g/cm~3、0.009 g/cm~3、0.005 g/cm~3和0.019g/cm~3。从土壤孔隙度看,有林地封禁类型中,天然林土壤孔隙状况优于人工林,其中混交林土壤总孔隙度、毛管孔隙度和非毛管孔隙度都优于单纯林。疏林补植、荒坡造林、荒坡封禁和退耕还林型植物群落修复前土壤总孔隙度、毛管孔隙度和非毛管孔隙度分别比修复后提高了(2.6%、0.25%、2.91%)、(11.04%、2.89%、17.05%)、(8.44%、2.04%、6.40%)和(2.7%、1.66%、1.05%)。
     ⑦生态修复区植被的蓄水保水效益明显增加。生态修复后各修复措施类型植物群落的冠层水容量、枯落物储存量、枯落物水容量和土壤饱和贮水量均比修复前有明显提高。A:有林地封禁型植物群落中,天然林修复后总蓄水量为3264.9t/hm~2,较修复前提高了2582.6 t/hm~2。人工林修复后总蓄水量为2966.5 t/hm~2,比修复前增长了2284.2 t/hm~2。天然林总蓄水量提高幅度大于人工林。B:疏林补植、荒坡造林、荒坡封禁和退耕还林型植物群落修复后总蓄水量分别比修复前提高了94.5t/hm~2、143.6 t/hm~2、139.6 t/hm~2和486.6 t/hm~2。
It had monitoring and research on the change of vegetation communities,growth mount of forest and grassland,soil character.The result indicated that the ecological rehabilitation project of soil and water conservation had got obvious ecological efficiency. The main results are as flowing:
     ①The cover degree of forest and grassland in item region had been improved obviously,the vegetation cover degree increased.The forest and grassland degree was from 42.7%to 51.5%after ecological rehabilitation,increased 8.8%.The average cover degree of forest land was 0.86,which was higher than other types.Above the three hillclosing afforestation measures of supplement planting of sparse forest,the uncultivated land afforestation and the uncultivated land closing measures,the heighten extent of vegetation cover degree of the uncultivated land afforestation and supplement planting of sparse forest was bigger,(the average of arbor,shrub and herbage was 0.20 and 0.18).Between the reducing cultivated land to planting forest measures,the heighten extent of vegetation cover degree of the terrace closing of steep slope was higher(the average of arbor,shrub and herbage was 0.35).
     ②The vegetation in ecological rehabilitation region growing status had been improved,the biomass dad been improved obviously.After ecological rehabilitation,the underground root biomass and the overground forest biomass were both improved obviously.The root density of supplement planting of sparse forest,the uncultivated land afforestation and the uncultivated land closing measures were improved 2.0 kg/m~3、2.4 kg/m~3 and 1.8 kg/m~3 after ecological rehabilitation.
     ③The vegetation communities in item region after ecological rehabilitation were obviously increased,the foliage variety were more abundance.The vegetation type increased 3 genus,the vegetation communities increased 6 genus,after ecological rehabilitation the seed plant increased 24 genus,threrinto the arbor vegetation which was introduced into was 3 genus,the shrub vegetation increased 5 genuses,and the herb vegetation increased 16 genus.
     ④After ecological rehabilitation in item region were obviously improved.The species diversity and richness of forest closing vegetation communities were higher than others.The diversity index of supplement planting of sparse forest,the uncultivated land closing and the uncultivated land afforestation measures were increased(5 and 0.17),(12 and 0.08),(16 and 0.27).The richness and diversity of the terrace afforestation of gentle slope and the terrace closing of steep slope measures were increased(6 and 0.6) and(20 and 0.72).
     ⑤The ecological rehabilitation accelerated the vegetation natural succession.After ecological rehabilitation different vegetation communities all succeed to improving the community ecological efficiency direction,but the succeeding course and the vegetation community structure were different.A:The closing natural forest community,the vegetation community of this rehabilitation measure had many years closing and natural succession,all inclined to or close to the peak community,after farther afforestation,the single forest now would transit to mixed forest so as to form mixed forest community structure,the whole community intend to succeed to the direction of improving forest ecological efficiency.B:The manmade forest closing,supplement planting of sparse forest and the uncultivated land afforestation measure:the vegetations of these three ecological rehabilitation were all manmade communities,before rehabilitation the arbor trees were very single,after closing,the tree seed were still Platycladus orientalis and Robinia pseudoacacia that were introduced into by man.But with the increasing of the closing years,in the community of better condition some reasonable tree would be settled in such as Cotinus coggygris,Ulmus parvifolia,Quercus,it's arbor shrub and herb specify, diversity and evenness intended to improving intension.C:The uncultivated land closing communities:After the communities closing,in the near future it most was shrub and grassland,it's diversity and richness would be obviously improved.With the extending of closing time,some reasonable arbor tree would break in,at last it forms into compound and different age forest structure including arbor,shrub and herb,and it's ecological efficiency would be increased obviously.The reducing cultivated land to planting forest vegetation community:This rehabilitation measure mainly distribute in manmade terrace, after several years closing,not only the gentle slope,steep slope or the crop terrace,the shrub vegetation increased firstly in the community.With the improving of natural vegetation,the specify richness,diversity and evenness index all takes on improving intension,the arbor types would be improved,Cotinus coggygris etc some reasonable tree would be settled in.At last it forms into compound and different age forest community; the communities succeed to the direction of improving the vegetation ecological efficiency.
     ⑥The soil structure and water status were obviously improved,the soil porosity was enhanced.Asthe soil density,the natural forests' were smaller than the manmade forest, among these,the mixed forests'(1.156g/cm~3) were smaller than the single forest (1.180g/cm~3).After ecological rehabilitation the FD of supplement planting of sparse forest,the uncultivated land afforestation,the uncultivated land closing and reducing cultivated land to planting forest measure were decreased 0.008 g/cm~3,0.009 g/cm~3,0.005 g/cm~3 and 0.019g/cm~3.As the soil porosity,the natural forests' were superior to the manmade forest,among these,the mixed forests' were superior to the single forest.After ecological rehabilitation the FD of supplement planting of sparse forest,the uncultivated land afforestation,the uncultivated land closing and reducing cultivated land to planting forest measure were increased(2.6%,0.25%,2.91%),(11.04%,2.89%,17.05%),(8.44 %,2.04%,6.40%) and(2.7%,1.66%,1.05%).
     ⑦The vegetation water accumulation and containing efficiency of ecological rehabilitation region were increased obviously.After ecological rehabilitation the vegetations' canopy water containing,litter accumulating,litter water containing and soil saturated water containing quantity were all obviously increased.A:After ecological rehabilitation the total water cumulating quantity was 3264.9t/hm~2,was increased 2582.6 t/hm~2。The total water cumulating quantity of manmade forest was 2966.5 t/hm~2,was increased 2284.2 t/hm~2.The improved extent of mixed forests was bigger than the single forest.B:After ecological rehabilitation the total water cumulating quantity of supplement planting of sparse forest,the uncultivated land afforestation,the uncultivated land closing and reducing cultivated land to planting forest measure were increased 94.5 t/hm~2,143.6 t/hm~2,139.6 t/hm~2 and 486.6 t/hm~2.
引文
[1]张艳红,葛茂行,张汉君.生态修复是防治水土流失的有效途径[J].南水北调与水利科技,2004,2(3):39-41
    [2]余新晓,牛健植,徐军亮.山区小流域生态修复研究[J].中国水土保持科学,2004,2(1):4-10
    [3]刘创民,李昌哲,苏云良等.北京九龙山灌丛植被的物种多样性分析[J].林业科学研究,1994,7(2):143-148
    [4]张鸿烈,刘光崧.陆地生物群落调查观测与分析-中国生态系统研究网络观测与分析标准方法[M].北京:中国标准出版社,1996:1-13
    [5]汪殿蓓,暨淑仪,陈鹏飞等.深圳南山区天然森林群落多样性及演替现状[J].生态学报,2003,239(7):1415-1422
    [6]马克平,黄建辉,于顺利等.北京东灵山地区植物群落多样性的研究[J].生态学报,2004,15(3):268-277
    [7]王小宏,王晓星,马静.浅谈水土保持生态修复项目效益监测指标与方法[J].内蒙古水利,2004,(2):39-42
    [8]蒲勇平.长江流域生态修复工程的意义及对策[J].水土保持通报,2002(4):9-11
    [9]周利民,邓岚.水土保持生态修复林植物群落演替研究[J].水土保持通报,2004,24(4):38-50
    [10]左长清.实施生态修复几个问题的探讨[J].水土保持研究,2002,9,(4):4-7
    [11]刘正斌.实施水保生态修复工程的实践与注意事项[J].水土保持科技情 报,2003,(3):36-39
    [12]赵秉栋,赵军凯,宫少燕.论生态修复在水土保持生态建设中的优化作用[J].水土保持研究,2004,11(3):105-108
    [13]胡建民,左长清,谢颂华.水土保持生态修复监测探讨[J].中国水土保持,2004,(7):27-28
    [14]王俊玲.结合退耕还林 实施水土保持生态修复工程[J].甘肃林业,2004,(4):3-5
    [15]杨少林,孟菁玲.浅谈生态修复的含义及其实施配套措施[J].中国水土保持,2004,(10):7-9
    [16]徐长林.浅谈生态修复工程水土保持监测[J].吉林林业,2004,(8):25-28
    [17]李智广.刍议水土保持生态修复工程的监测内容.水土保持通报.2004,24(2):46-47
    [18]焦居仁.生态修复的要点与思考.中国水土保持SWCC.2003(2):1-2
    [19]陈善沐,林文莲.水土保持生态修复与福建生态省建设.水土保持学报.2003,17(5):77-78
    [20]陈奇伯,陈宝昆,董映成,王震洪.水土流失区小流域生态修复的理论与实践.水土保持研究.2004,11(1):168-170
    [21]梁宗锁,左长清.简论生态修复与水土保持生态建设.中国水土保持SWCC.2003(4):12-13
    [22]康玲玲,吴卿,罗中伟,王云璋,陈发中.黄土高原水土保持生态环境建设生态效益监测方法探讨.水土保持通报.2004(3):40-45
    [23]胡建民,左长清,谢颂华.水土保持生态修复效益监测探讨.中国水利.2005(6):48-50
    [24]陈法杨,张长印,牛志明.全国水土保持生态修复分区探讨.中国水土保持SWCC.2003(8):2-3
    [25]林新明,郭新波,邓岚.乌陡河小流域生态修复技术及效益浅析.广东水利水电.2005(2):15-16
    [26]姜德文.以生态修复为指导思想的水土保持技术路线探讨.水土保持通报.2004,24(6):86-89
    [27]汪水前.水土保持生态修复监测内容探讨.福建水土保持.2004,16(3):62-66
    [28]车忠新,褚丽妹.辽东山区水土保持生态修复的实践与探讨.水土保持科技情报.2004(2):20-22
    [29]洪双旌.水土保持生态的修复需要人工的合理干预.水土保持研究.2004,11(3):307-309
    [30]薛顺康.生态修复项目监测初探.中国水土保持SWCC.2004(11):8-9
    [31]刘震.推进生态修复 加快治理步伐.中国水土保持SWCC.2004(10):1-2
    [32]毛德华,夏军,黄友波.西北地区生态修的若干基本问题探讨.水土保持学报.2003,17(1):15-18
    [33]何长高.关于水土保持生态修复工程中的几个问题的思考.中国水土保持科学.2004,2(3):99-102
    [34]梁宗锁,左长清,焦巨仁.生态修复在黄土高原水土保持中的作用.西北林学院学报.2003,18(1):20-24
    [35]左长清.实施生态修复几个问题德探讨.水土保持研究.2002,9(4):4-5
    [36]杨爱民,刘孝盈,李跃辉.水土保持生态修复的概念、分类与技术方法.中国水土保持SWCC.2005(1):11-13
    [37]刘国彬,杨勤科,许明祥,张文辉,陈云明.水保生态修复的若干科学问题.中国水利.2004(16):31-32
    [38]焦居仁.开展生态修复的启示与建议.中国水土保持SWCC.2003(3):1-2
    [39]钟明星,黄正建,黄明艳,甘露.浅谈水土保持生态修复的适宜条件及工作重点.中国水土保持SWCC.2005(1):16-17
    [40]谢立亚,郑国祥,郑娟.辽宁省生态修复的实践与经验.山西水土保持科技.2004(4):34-35
    [41]D.希了尔著.土壤和水—物理过程.华梦军译.农业出版社,1981
    [42]王礼先等,森林水文研究及流域治理综述[J].水土保持科技情报。1990(2)
    [43]高甲荣,肖斌,张东升,等.国外森林水文研究进展评述[J].水土保持学报,2001,15(5):60-75
    [44]张志强,余新晓,赵玉涛,等.森林对水文过程影响研究进展[J].应用生态学报,2003,14(1):113-116
    [45]张治国.张云龙.刘徐师.等.林业生态工程学[M].中国林业出版社,1999:45-55
    [46]于志民,余新晓,水源涵养林效益研究[M].中国林业出版社,[M].1999:45-55
    [47]刘霞,张光灿,李雪蕾等.小流域生态修复过程中不同森林植被土壤入渗与贮水特征[J].水土保持学报,2004,18(6):1-5
    [48]赵西宁,吴发启.土壤水分入渗的研究进展和评述[J].西北林学院学报,2004,19(1):42-45
    [49]田积莹.黄土地区土壤的物理性质与黄土成因的关系[J].中国科学院西北水保所集刊,1987(5):1-12
    [50]蒋定生,黄国俊,谢永生.黄土高原土壤入渗能力野外测试[J].水土保持通报,1984,4(4):7-9
    [51]贾志军,王贵平,李俊仪,等.土壤含水率对坡耕地产流影响的研究[J].山西水土保持科技,1999,22(4):25-27
    [52]王勤,等.安徽大别山库区不同林分类型的土壤特性及其水源涵养功能[J].水土保持学报,2003,17(3)59-62
    [53]杨吉华,张永涛,高祥伟,等.封山育林提高森林蓄水保土效益的研究[J].水土保持研究,2001,8(3):2-5
    [54]D.希勒尔.土壤物理学概论[M].西安,陕西教育出版社,1988:139-153
    [55]赵鸿雁,吴钦孝.黄土高原人工油松林林冠截留动态过程研究[J].生态学杂志.2002.(6):21-23
    [56]张建军,贺康宁,朱金照.晋西黄土区水土保持林林冠截留的研究[J].北京林业大学报.1995.17(2):27-31
    [57]张光灿,刘霞等.树冠截留降雨模型研究进展及其述评[J].南京林业大学学报.2000.24(1):64-68
    [58]高人,周广柱.辽宁东部山区几种主要森林植被类型枯落物层持水性能研究[J].沈阳农业大学学报.2002.33(2):115-118
    [59]王佑民.中国林地枯落物持水保土作用研究概况[J].水土保持学报.2000.14(4):108-113
    [60]王佑民,翁俊华.林地枯落物的水土保持作用[J].中国水土保持.SWCC 2002.7(18)
    [61]中野秀章.森林水文学.北京.中国林业出版社.1983
    [62]朱金兆,刘建军等.森林凋落物层水文生态功能研究[J].北京林业大学学报.2002.24(5/6):30-34
    [63]韩冰,吴钦孝等.油松林枯落物对坡面土壤侵蚀的影响[J].防护林科技1995.23(2):5-9
    [64]张光灿,刘霞,赵玫.泰山几种林分枯落物和土壤水分效应研究[J].林业科技通讯.1996.6:28-29
    [65]胡建忠.“最大截留量”并非最大“林冠截留量”.水土保持通报.1992.12(3):63
    [66]余新晓,赵玉淘等.贡噶山东坡峨眉冷杉林地被物分布及其水文效应初步研究[J].2002.24(5/6):14-18
    [67]赵鸿雁.黄土高原森林植被水土保持机理研究[J].林业科学,2001,37(5):140-144
    [68]张保华,何毓蓉,周红艺等.长江上游典型区亚高山不同林型土壤的结构性与水分效应[J].水土保持学报,16(4):127-129
    [69]吴蔚东.江西省山地几种森林类型下土壤物理性状的研究[J].土壤侵蚀与水土保持学报.1997,1(3):50-55
    [70]王金平.土壤物理学的研究动态及展望.[J]土壤,1985,(6):281-289
    [71]张光灿,胡振琪.煤矸石山刺槐林分生产力及生态效应的研究[J].生态学报,2002,(5):621-628
    [72]王治国.关于生态修复若干概念与问题的讨论[J].中国水土保持.2003,(10):4-8
    [73]张保华,何毓蓉,周红艺,程根伟.长江上游典型区高山不同林型土壤结构性与水分效应[J].水土保持学报,2002,16(4):127-129
    [74]杨承栋.森林土壤研究几个方面的进展[J].世界林业研究.1994,(4):14-20
    [75]吴蔚东,黄月琼,黄春昌,等.江西声主要森林类型下土壤的物理性质[J].江西农业大学学报.1996,18(2):132-136
    [76]孙时轩.造林学(第2版).中国林业出版.2000
    [77]Kostiakov A N.On the dynamics of the coeffiet of water percolation in siols and on the necessity of studying it forma dynamic point of view for purposes of a melioration[J].Soil Sci.,1932,97(1):17-21
    [78]Philp J R.Theory of infiltration about sorptivity and algebraic infiltrationequations[J].Soil Sci.,1957,84(4),257-264
    [79]Smith R E.The infiltration envelope results from a theoretical infiltromete[J].Journal of Hydrology,1972,17(1):1-21
    [80]Hillel D.Crust formation in lassies soils[J].International Soil Sci.,1960,29(5):330-337
    [81]Liu Shi-Rong,Sun Peng-Sen,Wen Yuan-Guang.Comparative analysis of hydrological funcations of major forest ecosystems in China.Acta Phytoecologica Sinica.2003.27(1)16-22
    [82]PutuhenaWM,CorderyI.Estimation of interception capacity of the forest floor[J]. Jhydrol, 1996,180:283-299
    [83] Cognard-Plancq, Anne-Laure, et al. The role of forest cove on stream flow down sub-Mediterranean mountain watersheds:a modeling approach[J]. Journal of Hydrology, 2001, 254(1-4):229-243
    [84] Tyler S W. Wheatcraft s w. Fractal of soil partice-size distribution in soil with a fragmentation model[j]. soil Scisoc Am J, 1999, (63) :782-788
    [85] Mandelbort B B. Form Chance and Dimension[M]. San Freeman,1997: 1-234
    [86] ZHANG Guang-can ,HE Kang-ning, LIU Xia;Fitting [J]Soil Moisture Environment of Growth on Loess Plateau in Semi-arid Region . Journal of Soil and Water Conservation 2001.12
    
    [87] DAI Li-mi;LI Qiu-rong;WANG Rong;JI Lan-zhu. Responses of the seeding of five dominant tree species in Chanbai Mountain to Soil Water Stress. Joural of Forestry Research, 2003(03)
    
    [88] Burrough P A. Multiscal. sources of spatial variability in soil variation[J]. Jourmal of soil science, 1987, (34):577-597

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700