莱芜市莱城区水土保持生态修复工程效益监测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
莱城区水土保持生态修复工程为水利部“全国水土保持生态修复工程”试点工程之一。本研究以莱芜水土保持生态修复项目区为研究对象,采用宏观监测与微观监测相结合、遥感信息监测与人工实地观测相结合、长期连续观测和短期临时观测相结合、时间序列与空间序列对比观测相结合的方法,对项目区内不同生态修复措施类型的生态、经济和社会效益进行监测与分析,结果表明生态修复工程取得了明显的生态、经济和社会效益。主要研究成果如下:
     (1)生态修复措施类型划分
     在对项目区全面踏勘的基础上,根据立地类型、现有植被状况及修复目的,同时结合生态修复工程的技术和效益特点,将生态修复试点工程区内的生态修复技术措施划分为2个大类(封山育林型和人工造林型)和4个亚类(人工林封育型、疏林补植型、荒坡封禁型和灌木封禁型)。
     (2)生态修复区林草植被覆盖度明显提高,植物群落盖度(郁闭度)增加
     实施生态修复措施后项目区林草覆盖度由修复前的57.7%增长到修复后的66.8%,增长幅度为9.1%。有林地(天然林或人工林)各植物群落乔灌草平均盖度为0.87,明显高于其它类型,其中阔叶林乔灌草植被盖度(平均值为0.88)大于针叶林(平均值为0.85)。从修复措施看,人工造林型植物群落植被盖度提高幅度(0.20)大于封山育林措施(平均提高幅度为0.16)。
     (3)生态修复区植被生长状况明显改善,生物(生长)量显著提高
     生态修复后各植物群落地下根系生物量和地上林木生物量均比修复前有显著提高。不同修复措施类型植物群落修复后土壤根重密度以人工造林型最大为5.91kg/m3,人工林封育型次之(5.76kg/m3),疏林补植型(5.73 kg/m3)、灌木封禁型(5.66 kg/m3)、荒坡封禁型(4.98 kg/m3)依次降低,
     (4)生态修复区域植物群落类型明显增加
     生态修复后项目区植物群落类型明显增加,植物种类越加丰富。植被类型在原有的基础上新增加2种;植物群落增加3种。生态修复后项目区共有种子植物242种,其中乔木增加3种,灌木增加10种,草本增加21种。
     (5)生态修复工程促进区域生物多样性明显增加
     生态修复后项目区各植物群落物种多样性和丰富度显著提高。各修复措施以疏林补植型提高物种多样性和均匀度指数幅度最大为(0.29、0.30),人工造林型次之(0.27、0.26),再次为灌木封禁型(0.26、0.14),荒坡封禁型最低为(0.24、0.01)。
     (6)生态修复工程促进了植被的自然演替
     生态修复后,不同植物群落都趋向于提高群落生态效益的方向演替,但演替过程与群落结构有所不同。
     ①人工林封育、疏林补植和荒坡造林措施都为人工造林群落,修复前乔木树种较为单一,封禁后近期内主要树种仍然以人工引入的侧柏(Platycladus orientalis Franco.)、刺槐(Robinia pseudoacacia Linn.)、赤松(Pinus densiflora sieb. ct zucc.)、油松(Pinus tabulaeformis Carr.)为主,但随着封禁年限的增长,在立地较好的群落中黄栌(Cotinus coggygria Scop. var. cinerea engl.)、榔榆(Ulmus parvifolia Jacq.)、栎类等适生天然林树种将会不断迁入,其乔灌草层物种丰富度、多样性和均匀度也将会呈现增加趋势。
     ②灌木封禁群落:该修复类型为乔木的灌木化经营,灌木树种多年后物种多样性和均匀度将会显著增加,仍以柞岚为主。草本层物种丰富度和均匀度也会随着灌木的增加而增加。整个群落趋向于提高群落生态效益的方向演替。
     ③荒坡封禁灌草群落:该群落类型封禁后,近期内林地内仍以灌木和草本为主,其物种丰富度和多样性将会有明显提高。但随着封禁时间的延长,一些适生的天然林乔木树种将会不断入侵,最终会形成乔灌草复层、异龄林分结构,生态效益将明显提高。
     (7)生态修复区土壤结构与水分状况明显改善,孔隙度提高
     ①土壤结构参数明显改善从土壤重量平均直径:人工林封育型中阔叶林土壤重量平均直径为1.95,高于针叶林(1.82)。疏林补植、荒坡封禁、灌木封禁和人工造林型植物群落修复后土壤重量平均直径分提高了0.1、0.02、0.14和0.12。从分形维数看:人工林封育类型中阔叶林土壤分形维数(2.46)低于针叶林(2.48)。疏林补植、荒坡封禁、灌木封禁和人工造林型植物群落修复后土壤分形维数分别减小了0.04、0.03、0.03和0.02。从土壤密度看:人工林封育类型中,阔叶林土壤密度(1.11 g/cm3)低于针叶林(1.14 g/cm3)。疏林补植、荒坡封禁、灌木封禁和人工造林型植物群落修复后土壤密度分别减小了0.02 g/cm3、0.08 g/cm3、0.03 g/cm3和0.13g/cm3,以人工造林地土壤密度减小幅度最大。从土壤孔隙度状况看:人工林封育类型中,阔叶林和针叶林土壤总孔隙度、毛管孔隙度和非毛管孔隙度平均值分别为(51.17%,47%)、(32.34%,31.94)和(18.83%,15.2)。疏林补植、荒坡封禁、灌木封禁和人工新造林植物群落土壤总孔隙度、非毛管孔隙度和毛管孔隙度比修复前分别提高了(4.26%、0.59%、3.66%)、(1.56%、0.34%、1.22%)、(2.45%、0.95%、1.49%)和(4.21%、3.7%、0.51%)。
     ②土壤水分含量提高人工封育类型中阔叶林土壤含水量为25mm,大于针叶林土壤含水量(24.09mm)。疏林补植、荒坡封禁、灌木封禁和人工新造林植物群落修复后土壤含水量分别提高了1.34mm、0.41mm、3.2mm和3mm。
     (8)生态修复区植被的蓄水保水效益明显增加
     生态修复后各修复措施类型植物群落的冠层水容量、枯落物储存量、枯落物水容量和土壤饱和贮水量(土壤蓄水量)均比修复前有明显提高。
     ①封山育林类型中,人工林封育型群落修复后总蓄水量为2172.9t/hm2,较荒坡封禁前(113.83 t/hm2)提高了1034.6 t/hm2。疏林补植、荒坡封禁、灌木封禁和人工造林型植物群落修复后总蓄水量分别比修复前提高了114.6t/hm2、95.5t/hm2、256.0t/hm2和260.7t/hm2。不同修复措施类型植物群落总蓄水量提高幅度以人工林封育型为最大,人工造林型次之,灌木封禁型、疏林补植型和荒坡封禁型依次降低。
     ②生态修复措施实施后典型植物群落地表径流量和产流率均小于对照区。其中混交林地表径流量和产流率最低(13.9 mm),单纯林次之(16.99 mm~22.75 mm),对照区最高(31.61mm)。
     (9)生态修复区水土流失减轻,土壤侵蚀量减小
     ①水土流失面积减小,水土流失强度减轻项目区水土流失面积由修复前的234.12km2减少为修复后的161.73km2,减少了72.39 km2。
     ②土地利用结构改善,林草面积增加。
     ③土壤侵蚀模数减小生态修复后研究区土壤侵蚀模数为1114t/km2a,生态修复后项目区土壤侵蚀模数较修复前降低了357t/km2﹒a,平均每年降低71.4 t/km2﹒a。
     ④保土效益明显项目区保土效益为24.3%,修复后比修复前土壤流失量减小95151t。
     (10)生态修复区经济效益明显提高
     直接经济效益主要是农作物及木材增产增收,年均增收206万元;各项小型拦蓄工程扩大灌溉面积85hm2,已实现经济效益205.58万元。生态修复措施不仅带来了上述的直接经济效益,还带来了间接经济效益,农民收入显著提高。
     (11)生态修复区社会效益显著
     ①调整了土地利用结构,土地利用日趋合理,林果用地所占比例大幅度增加。
     ②调整了农村产业结构。农业和牧业比重的下降,林果业和工副业的比重则大幅上升。
     ③提高了环境容量,缓解了人地矛盾,提高了劳动生产率,增加了农民人均纯收入。
     ④生态修复工程防洪、防火和防治病虫害效益显著,减少了项目区受灾面积和直接经济损失。
     综上所述,研究区生态修复效益较好,但仍存在部分生态脆弱环节,尚需进一步加大封山育林和退耕还林力度,使区域林草植被覆盖度和群落盖度进一步增加,森林植被结构更加合理、功能和抗性增强,综合效能得到更好的发挥。
Ecological Rehabilitation Project of Soil and Water Conservation in Laicheng is one of experimental projects of National Soil and Water Conservation ecological restoration project. It studies on Laiwu ecological restoration project of Soil and Water Conservation District ,Monitor and analysis the ecological, economic and social benefits after different types of ecological restoration using macro and micro combined monitoring, combined remote sensing information monitoring and artificial combined manual observations on the spot, combined long-term continuous observation and short-term temporary observation and time series sequence compare with the space observation methods. The result indicated that the ecological rehabilitation project of soil and water conservation had got obvious ecological, economic and social efficiency. The main results are as flowing:
     (1)Ecological restoration measures Classification
     On the basis of Comprehensive Surveying the project area, according to the site type, the existing situation and the purpose of the restoration, at the same time combining ecological restoration project of technical features and benefits, Ecological restoration will be a pilot project for the regional ecological restoration measures divided into two major categories and four sub-categories.
     (2)The cover degree of forest and grassland in the ecological restoration area increased significantly, the vegetation cover degree increased.
     The forest and grassland degree was from 57.7% to 66.8% after ecological rehabilitation, increased 9.1%.
     The average cover degree of forest land was 0.87, which was significantly higher than other types. The cover degree of broad-leaved Forest is higher than which of coniferous forest. From the different restoration measures, the cover degree of artificial forest is higher than which of the uncultivated land closing measures.
     (3)The vegetation conditions of ecological Restoration Area is improved significantly and the biomass dad been improved obviously. After ecological rehabilitation, the underground root biomass and the overground forest biomass were both improved obviously. The artificial forest has the maximum root density which is 5.91 kg/m3, reforestation pattern takes the second place (5.76 kg/m3), and then supplement planting of sparse forest(5.73 kg/m3), Shrubs closing(5.66 kg/m3),the uncultivated land closing(4.98 kg/m3)reduce in turn.
     (4)The vegetation communities in ecological restoration region were obviously increased.
     The vegetation communities in item region after ecological rehabilitation were obviously increased, the foliage variety were more abundance. The vegetation type increased 2 genus, the vegetation communities increased 3 genus, the item region has 242 species of seed plants after ecological rehabilitation , arbor vegetation increased 3 genus, the shrub vegetation increased 5 genus , and the herb vegetation increased 16 genus.
     (5)The species diversity of vegetation communities in item region were obviously improved because of the ecological rehabilitation project.
     After ecological rehabilitation the species diversity and richness of vegetation communities in item region were obviously improved. The diversity and uniformity degree index of supplement planting of sparse forest is the highest of all which is (0.29、0.30),and then artificial forest(0.27、0.26),Shrubs closing(0.26、0.14),the uncultivated land closing(0.24、0.01)reduce in turn.
     (6)The ecological rehabilitation project accelerated the vegetation natural succession.
     After ecological rehabilitation different vegetation communities all succeed to improving the community ecological efficiency direction, but the succeeding course and the vegetation community structure were different.
     ①The manmade forest closing, supplement planting of sparse forest and the uncultivated land afforestation measure: The vegetations of these three ecological rehabilitations were all manmade communities, before rehabilitation the arbor trees were very single, after closing, the tree seed were still Platycladus orientalis, Robinia pseudoacacia ,Pinus densiflora and Pinus tabulaeformis , that were introduced into by man. But with the increasing of the closing years, in the community of better condition some reasonable trees would be settled in such as Cotinus coggygris, Ulmus parvifolia, Quercus, it’s arbor shrub and herb specify, diversity and evenness intended to improving intension .
     ②The closing shrub community ,this rehabilitation style is to manage arbor as shrub, the species diversity and uniformity degree of shrubs would increase obviously, still mainly oak Lan. The species diversity and uniformity degree of herbage would increase along with shrubs. The whole vegetation communities tend to improve the community ecological efficiency direction.
     ③The uncultivated land closing communities: After the communities closing, in the near future it most was shrub and grassland, its diversity and richness would be obviously improved. But with the extending of closing time, some reasonable arbor trees would break in, at last it forms into compound and different-age forest structure including arbor, shrub and herb, and its ecological efficiency would be increased obviously.
     (7)The soil structure and water status were obviously improved, the soil porosity was enhanced.
     ①The soil structure parameters were improved:
     According to the manmade forest closing, the soil MWD of broad-leaved forest(1.95) is bigger than which of coniferous forest(1.82). After ecological rehabilitation the MWD of supplement planting of sparse forest, the uncultivated land closing, shrubs closing and artificial forest were increased 0.1、0.02、0.14 and 0.12. From the soil FD, the broad-leaved forest (2.46) were smaller than the single forest (2.48). After ecological rehabilitation the soil FD of supplement planting of sparse forest, the uncultivated land closing , shrubs closing and artificial forest were decreased0.04、0.03、0.03 and 0.02. The soil density of broad-leaved forest (1.11 g/cm3)is smaller than which of coniferous forest in manmade forest closing(1.14 g/cm3). After ecological rehabilitation the FD of supplement planting of sparse forest, the uncultivated land closing, shrubs closing and artificial forest measure were decreased 0.02 g/cm3、0.08 g/cm3、0.03 g/cm3 and 0.13g/cm3, artificial forest measure was decreased mostly. As the soil porosity, the mean soil total porosity, capillary porosity and non-capillary porosity of the broad-leaved forest and the coniferous forest were (51.17%,47%)、(32.34%,31.94)and(18.83%,15.2). After ecological rehabilitation the mean soil total porosity, capillary porosity and non-capillary porosity of supplement planting of sparse forest, the uncultivated land closing, shrubs closing and artificial forest measure were increased (4.26%、0.59%、3.66%)、(1.56%、0.34%、1.22%)、(2.45%、0.95%、1.49%)and(4.21%、3.7%、0.51%).
     ②the soil moisture was obviously increased.
     In manmade forest closing measure, the soil moisture of the broad-leaved forest(25mm) is higher than which of the coniferous forest(24.09mm). After ecological rehabilitation the soil moisture of supplement planting of sparse forest, the uncultivated land closing, shrubs closing and artificial forest measure were increased 1.34mm、0.41mm、3.2mm and 3mm.
     (8)The vegetation water accumulation and containing efficiency of ecological rehabilitation region were increased obviously.
     After ecological rehabilitation the vegetations’canopy water containing, litter accumulating, litter water containing and soil saturated water containing quantity were all obviously increased.
     ①In hill closing for forestation measure, the total water cumulating quantity of manmade forest closing was 2172.9t/hm2, increased by 1034.6 t/hm2 than before the uncultivated land closing(113.83 t/hm2). After ecological rehabilitation the total water cumulating quantity of supplement planting of sparse forest, the uncultivated land closing, shrubs closing and artificial forest measure were increased 114.6 t/hm2、95.5 t/hm2、256.0 t/hm2 and 260.7 t/hm2. The total water cumulating quantity of manmade forest closing is the highest of all measures ,artificial forest takes the second place and then shrubs closing, supplement planting of sparse forest and uncultivated land afforestation measure reduce in turn.
     ②The ground runoff and runoff production rate were less than comparison region, among these, the ground runoff quantity and runoff production rate of the mixed forests were the lowest, the single forest was lower (16.99 mm~22.75 mm),the comparison region was the highest(31.61mm).
     (9)The soil and water loss intensity of ecological rehabilitation decreased, the soil erosion quality reduced.
     ①The soil and water area reduced, the soil and water loss intensity decreased: The soil and water loss area of item region decreased from 234.12km2 to 161.73 km2, decreased by 72.39 km2.
     ②The land using structure was improved, the forest area increased.
     ③The soil erosion modulus was reduced: After ecological rehabilitation, the soil erosion modulus of item region was 1114t/km2﹒a, was reduced 357t/ km2﹒a, decreased 71.4 t/ km2﹒a annually.
     ④The soil conservation efficiency was obvious. The soil conservation efficiency was 24.3%, it decreased 95151t after ecological rehabilitation.
     (10)The economic efficiency was improved obviously.
     The direct economic efficiency is mostly from the increasing production of crops and timber, the annual income is 2.06 million Yuan. The ecological rehabilitation measure not only took direct economic efficiency but also take indirect economic efficiency, and it improved the local farmer income.
     (11)The social efficiency of ecological rehabilitation was prominent
     ①The structure of land use was adjusted, land use is becoming more rational, the proportion of orchard land increased dramatically.
     ②The industrial structure in the item region was adjusted. The proportion of agriculture and animal husbandry declined, but the proportion of the orchard industry and sideline increased substantially.
     ③The capacity of the environment is improved, the contradiction between people and land become catabatic, labor productivity is improved, the per capita net income of farmers increase.
     ④The flood, fire and pest control efficiency of the ecological restoration project is significant. The affected area and direct economic losses was reduced.
     Above all, the ecological rehabilitation efficiency of item region was better, but it still existed ecological frail tache and need increase the forest closing and afforestation intensity, it let the forest vegetation cover degree and community cover degree improve, the forest vegetation structure was more reasonable so as to the function and efficiency was exerted better.
引文
D.希勒尔.土壤物理学概论[M].西安,陕西教育出版社,1988:139—153
    D.希了尔著.土壤和水-物理过程.华梦军译.农业出版社,1981
    曹新孙.农田防护林学.中国林业出版社,1986
    车忠新,褚丽妹. 辽东山区水土保持生态修复的实践与探讨.水土保持科技情报.2004(2):20-22
    陈法杨,张长印,牛志明. 全国水土保持生态修复分区探讨.中国水土保持SWCC.2003(8):2-3
    陈奇伯,陈宝昆,董映成,王震洪. 水土流失区小流域生态修复的理论与实践.水土保持研究.2004,11(1):168-170
    陈 善 沐 , 林 文 莲 . 水 土 保 持 生 态 修 复 与 福 建 生 态 省 建 设 . 水 土 保 持 学报.2003,17(5):77-78
    冯杰,郝振纯,陈启慧.分形理论在土壤大孔隙研究中的应用及其展望[J].土壤,2001,3:123-130
    高甲荣,肖斌,张东升,等.国外森林水文研究进展评述[J].水土保持学报,2001,15(5):60-75
    高人,周广柱.辽宁东部山区几种主要森林植被类型枯落物层持水性能研究[J].沈阳农业大学学报.2002.33(2):115-118
    高志义.水土保持林学.中国林业出版社,1996,(1),7-39
    宫阿都,何毓蓉.金沙江干热河谷区(云南)退化土壤结构性与形成机理[J].水土保持学报.2001,19(3):213-219
    宫阿都,何毓蓉.金沙江干热河谷区退化土壤结构的分形特征研究[J].水土保持学报 2001,45(3):112-115
    宫阿都.何毓蓉.金沙江干热河谷退化土壤结构的分形特征研究[J].水土保持学报,2001,15(3):112-115
    韩冰,吴钦孝等.油松林枯落物对坡面土壤侵蚀的影响[J].防护林科技 1995.23(2):5-9
    何长高. 关于水土保持生态修复工程中的几个问题的思考.中国水土保持科学.2004,2(3):99-102
    贺康宁.林地土壤水分运动的数学模型[J].北京林业大学学报,1992,(1):77-86
    洪 双 旌 . 水 土 保 持 生 态 的 修 复 需 要 人 工 的 合 理 干 预 . 水 土 保 持 研究.2004,11(3):307-309
    胡 建 民 , 左 长 清 , 谢 颂 华 . 水 土 保 持 生 态 修 复 效 益 监 测 探 讨 . 中 国 水利.2005(6):48-50
    胡 建 民 , 左 长 清 , 谢 颂 华 . 水 土 保 持 生 态 修 复 监 测 探 讨 [J]. 中 国 水 土 保持,2004,(7):27-28
    胡建忠.“最大截留量”并非最大“林冠截留量”.水土保持通报.1992.12(3):63
    贾志军,王贵平,李俊仪,等.土壤含水率对坡耕地产流影响的研究[J].山西水土保持科技,1999,22(4):25—27
    姜德文. 以生态修复为指导思想的水土保持技术路线探讨.水土保持通报.2004,24(6):86-89
    蒋定生,黄国俊,谢永生.黄土高原土壤入渗能力野外测试[J].水土保持通报,1984,4(4):7—9
    焦居仁. 开展生态修复的启示与建议.中国水土保持 SWCC.2003(3):1-2
    焦居仁. 生态修复的要点与思考.中国水土保持 SWCC.2003(2):1-2
    康玲玲,吴卿,罗中伟,王云璋,陈发中. 黄土高原水土保持生态环境建设生态效益监测方法探讨.水土保持通报.2004(3):40-45
    雷志栋.太行山林业研究.河南科学技术出版社,1991,62-69
    李 恩 羊 . 土 壤 - 植 物 - 大 气 连 续 体 水 分 传 输 的 计 算 机 模 拟 [J]. 水 利 学报,1992,(3):1-12
    李智广.刍议水土保持生态修复工程的监测内容.水土保持通报.2004,24(2):46-47
    梁宗锁,左长清,焦巨仁. 生态修复在黄土高原水土保持中的作用.西北林学院学报.2003,18(1):20-24
    梁 宗 锁 , 左 长 清 . 简 论 生 态 修 复 与 水 土 保 持 生 态 建 设 . 中 国 水 土 保 持SWCC.2003(4):12-13
    林新明,郭新波,邓岚. 乌陡河小流域生态修复技术及效益浅析.广东水利水电.2005(2):15-16
    刘创民,李昌哲,苏云良等.北京九龙山灌丛植被的物种多样性分析[J].林业科学研究,1994,7(2):143-148
    刘国彬,杨勤科,许明祥,张文辉,陈云明. 水保生态修复的若干科学问题.中国水利.2004(16):31-32
    刘建立,徐邵辉,刘辉.几种土壤累积粒径分布模型的对比研究[J].水科学进展.2003, 14(5):588-592
    刘霞,张光灿,李雪蕾等.小流域生态修复过程中不同森林植被土壤入渗与贮水特征[J].水土保持学报,2004,18(6):1—5
    刘霞,张光灿.水土保持原理实习实验指导书.山农大水保教研室,1996:1-10
    
    刘贤赵,康绍忠.降雨入渗和产流问题的若干进展及评述[J].水土保持通报,1999,19(2):57—62
    刘云鹏,王国栋,张社奇,等.陕西 4 种土壤粒径分布的分形特征研究[J].2003, 31(2):92-94
    刘云鹏.王国栋,张社奇等.陕西 4 种土壤粒径分布的分形特征研究.[J] 西北农林科技大学学报,2003,24(3):92-94
    刘震.推进生态修复 加快治理步伐.中国水土保持 SWCC.2004(10):1-2
    刘正斌.实 施水保生态修复工程的实践与注意事项[J].水土保持科技情报,2003,(3):36-39
    罗戴.土壤水分分类及土壤水分性质[J].土壤科学研究最新进展,1958,(4)
    马克平,黄建辉,于顺利等.北京东灵山地区植物群落多样性的研究[J].生态学报,15(3):268-277
    马履一.国内外土壤水分研究现状及进展[J].北京林业大学学报,1991,(3):21-30
    毛德华,夏军,黄友波. 西北地区生态修的若干基本问题探讨.水土保持学报.2003,17(1):15-18
    蒲勇平. 长江流域生态修复工程的意义及对策[J].水土保持通报,2002(4):9-11
    邱仁辉,扬玉盛,俞新妥.不同栽植代数衫木林土壤结构特性的研究[J].北京林业大学学报,1998,20(4):6-11
    孙时轩.造林学(第 2 版).中国林业出版.2000
    谭孝元.土壤水分的能量概念及其意义[J].土壤学进展,1979,(1):1-2
    田积莹.黄土地区土壤的物理性质与黄土成因的关系[J].中国科学院西北水保所集刊,1987(5):1—12
    汪殿蓓,暨淑仪,陈鹏飞等. 深圳南山区天然森林群落多样性及演替现状[J].生态学报,2003,239(7):1415-1422
    汪水前. 水土保持生态修复监测内容探讨.福建水土保持.2004,16(3):62-66
    王家福等.山东峨庄自然保护区建设项目可行性研究报告[J].山东省林业检测规划院,2001,(10):1—31
    王金平.土壤物理学的研究动态及展望. [J]土壤,1985,(6):281-289
    王俊玲.结合退耕还林 实施水土保持生态修复工程[J].甘肃林业,2004,(4):3-5
    王礼先,王斌瑞.林业生态工程. 中国林业出版社,1995:14-19
    王礼先等,森林水文研究及流域治理综述[J].水土保持科技情报。1990(2)
    王勤,等.安徽大别山库区不同林分类型的土壤特性及其水源涵养功能[J].水土保持学报,2003,17(3)59—62
    王小宏,王晓星,马静.浅谈水土保持生态修复项目效益监测指标与方法[J].内蒙古水利,2004,(2):39-42
    王佑民,翁俊华.林地枯落物的水土保持作用[J].中国水土保持.SWCC 2002.7(18)
    王佑民.我国林冠降水再分配研究综述.西北林学院学报[J].2000.15(3):1-7
    王佑民.中国林地枯落物持水保土作用研究概况[J].水土保持学报. 2000.14(4): 108-113
    王治国.关于生态修复若干概念与问题的讨论[J].中国水土保持.2003,(10):4-8
    吴蔚东,黄月琼,黄春昌,等.江西声主要森林类型下土壤的物理性质[J].江西农业大学学报.1996,18(2):132-136
    吴蔚东.江西省山地几种森林类型下土壤物理性状的研究[J].土壤侵蚀与水土保持学报.1997,1(3):50-55
    谢 立 亚 , 郑国 祥 , 郑 娟. 辽 宁 省 生态 修 复 的实 践 与 经验 . 山 西 水土 保 持 科技.2004(4):34-35
    徐长林.浅谈生态修复工程水土保持监测[J].吉林林业,2004,(8):25-28
    薛顺康. 生态修复项目监测初探.中国水土保持 SWCC.2004(11):8-9
    杨爱民,刘孝盈,李跃辉. 水土保持生态修复的概念、分类与技术方法.中国水土保持SWCC.2005(1):11-13
    杨承栋.森林土壤研究几个方面的进展[J].世界林业研究.1994,(4):14-20
    杨吉华,张永涛,高祥伟,等.封山育林提高森林蓄水保土效益的研究[J].水土保持研究 ,2001,8(3):2~5
    杨培岒;罗远培;石元春.用粒径的重量分布表征的土壤分形特征[J].科学通报,1993,38(20):1896-1899
    杨少林,孟菁玲.浅谈生态修复的含义及其实施配套措施[J].中国水土保持,2004,(10):7-9
    杨诗秀.匀质土壤一维饱和流动通用程序[J].水利学报,1991,(9):32-36
    杨新民,杨文治.纸坊沟流域人工刺槐林生长状况与土壤水分条件研究[J].水土保持研究,1994,(3)
    尹 澄 清 , 毛 战 坡 . 用 生 态 工 程 技 术 控 制 农 村 非 点 源 水 污 染 . 应 用 生 态 学报.2002,13(2):229-232
    于志民,余新晓,水源涵养林效益研究[M].中国林业出版社,[M].1999: 45—55
    余新晓,牛健植,徐军亮.山区小流域生态修复研究[J].中国水土保持科学,2004,2(1):4-10
    余新晓,赵玉淘等.贡噶山东坡峨眉冷杉林地被物分布及其水文效应初步研究[J].2002.24(5/6):14-18
    张保华,何毓蓉,周红艺,程根伟.长江上游典型区高山不同林型土壤结构性与水分效应[J].水土保持学报,2002,16(4):127-129
    张保华,何毓蓉,周红艺等.长江上游典型区亚高山不同林型土壤的结构性与水分效应[J].水土保持学报,16(4):127-129
    张光灿,胡振琪.煤矸石山刺槐林分生产力及生态效应的研究[J].生态学报,2002,(5):621-628
    张光灿,刘霞,赵玫.泰山几种林分枯落物和土壤水分效应研究[J].林业科技通讯.1996.6:28-29
    张光灿,刘霞等.树冠截留降雨模型研究进展及其述评[J].南京林业大学学报.2000.24(1):64-68
    张鸿烈,刘光崧.陆地生物群落调查观测与分析-中国生态系统研究网络观测与分析标准方法[M].北京:中国标准出版社,1996:1-13
    张建军,贺康宁,朱金照.晋西黄土区水土保持林林冠截留的研究[J].北京林业大学报.1995.17(2):27-31
    张艳红,葛茂行,张汉君.生态修复是防治水土流失的有效途径[J].南水北调与水利科技,2004,2(3):39-41
    张志强,余新晓,赵玉涛,等.森林对水文过程影响研究进展[J].应用生态学报,2003,14(1):113-116
    张治国.张云龙.刘徐师.等.林业生态工程学[M].中国林业出版社, 1999: 45—55
    赵秉栋,赵军凯,宫少燕. 论生态修复在水土保持生态建设中的优化作用[J].水土保持研究,2004,11(3):105-108
    赵鸿雁,吴钦孝.黄土高原人工油松林林冠截留动态过程研究[J].生态学杂志.2002.(6):21-23
    赵鸿雁.黄土高原森林植被水土保持机理研究[J].林业科学,2001,37(5):140-144
    赵西宁,吴发启.土壤水分入渗的研究进展和评述[J].西北林学院学报,2004,19(1):42—45
    中野秀章.森林水文学.北京.中国林业出版社.1983
    钟明星,黄正建,黄明艳,甘露. 浅谈水土保持生态修复的适宜条件及工作重点.中国水土保持 SWCC.2005(1):16-17
    周国富,黄勇,吕涛等. 赤水市生态修复工程社会效益监测与评价研究[J].水土保持研究,2005,12(1):72-74
    周利民,邓岚. 水土保持生态修复林植 物群落演 替研究[J].水土保持通报,2004,24(4):38-50
    朱金兆,刘建军等.森林凋落物层水文生态功能研究[J].北京林业大学学报.2002.24(5/6):30-34
    庄继平,邵明安.SPAC 中的水分运动[J].西北水土保持研究所集刊,1991,(13):3-12
    左长清. 实施生态修复几个问题的探讨[J].水土保持研究,2002,9,(4):4-7
    左长清.实施生态修复几个问题德探讨.水土保持研究.2002,9(4):4-5
    Burrough P A.Multiscal.sources of spatial variability in soil variation[J].Jourmal of soil science,1987,(34):577-597
    Cognard-Plancq,Anne-Laure,et al.The role of forest cove on stream flow down sub-Mediterranean mountain watersheds:a modeling approach[J].Journal of Hydrology,2001,254(1-4):229-243
    DAI Li-mi;LI Qiu-rong;WANG Rong;JI Lan-zhu.Responses of the seeding of five dominant tree species in Chanbai Mountain to Soil Water Stress.Joural of Forestry Research,2003(03)
    Hillel D.Crust formation in lassies soils[J].International Soil Sci.,1960,29(5):330—337
    Kostiakov A N. On the dynamics of the coeffiet of water percolation in siols and on the necessity of studying it forma dynamic point of view for purposes of a melioration [J].Soil Sci.,1932,97(1):17—21
    Liu Shi-Rong,Sun Peng-Sen,Wen Yuan-Guang.Comparative analysis of hydrological funcations of major forest ecosystems in China.Acta Phytoecologica Sinica.2003.27(1)16-22
    Mandelbort B B.Form Chance and Dimension[M].San Freeman,1997:1-234
    Philp J R.Theory of infiltration about sorptivity and algebraic infiltrationequations[J].Soil Sci.,1957,84(4),257—264
    PutuhenaWM,CorderyI.Estimation of interception capacity of the forest floor[J].Jhydrol,1996,180:283-299
    Smith R E.The infiltration envelope results from a theoretical infiltromete[J].Journal of Hydrology,1972,17(1):1—21
    Tyler S W.Wheatcraft s w.Fractal of soil partice-size distribution in soil with a fragmentation model[j].soil Scisoc Am J,1999,(63):782-788
    ZHANG Guang-can ,HE Kang-ning,LIU Xia;Fitting [J]Soil Moisture Environment of Growth on Loess Plateau in Semi-arid Region . Journal of Soil and Water Conservation 2001.12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700