翻车机转速优化控制设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
翻车机系统是火电、化工、冶炼、矿山以及物流港口等行业不可替代的物料运输设备,为我国经济建设做出了重大贡献。由于其机械结构庞大、承重能力强、低速运转、频繁启、制动等特点,因此翻车机大多采用的是双电机同步驱动系统。近年来,多电机同步控制已成为国内外热点研究问题之一。
     本文以翻车机为研究对象,分别针对其单通道机驱动电机转速控制以及双电机的同步控制查阅了国内外的大量文献。根据翻车机系统国内外的发展现状以及诸多的国内外先进的智能控制算法及其在多电机同步控制中的应用研究,开展了翻车机同步控制先进控制算法的研究,具体工作如下:
     从三车翻车机的工作原理出发,根据翻车机工作所需要的最大驱动力以及驱动功率,选取了驱动电机的参数。应用了永磁同步电动机作为翻车机系统的驱动电机,在特定驱动系统的条件下,应用了3/2变换原理将ABC三相坐标系下的模型转变成d-q两相坐标系下的模型。
     设计了翻车机双电机驱动系统。先对单通道电机控制算法进行研究,由于PID控制算法在自适应性上的不足,引入了径向基函数神经网络对其3个控制参数进行在线整定,并且对径向基函数神经网络的结构以及将两者结合后的新控制算法进行了分析。
     为了提高上述结合算法的实时快速性,研究了一种新的广义预测控制算法,建立了永磁同步电机的CARIMA模型,并且利用MATLAB软件进行仿真,验证了基于广义预测控制器的翻车机单通道转速控制系统的优越性,最后对两台电机之间的同步误差采用了模糊径向基函数神经网络的控制方法,将其值在0的上下波动,确保两台驱动电机的一致性,从而保证翻车机系统可以长期稳定可靠的作业。
     最后,应用MATLAB软件中的GUIDE(图像用户开发环境)在Windows XP系统下,建立了翻车机转速控制仿真界面,实现控制可视化。通过仿真界面,验证了本文设计的控制系统的可行性。
Now car dumper has become the material transportation equipment any other can bereplaced in thermal power, chemical industry, metallurgical industry, mining, logisticsports and so on. And it makes a significant contribution to Chinese economic construction.Due to it has some special characteristics such as huge mechanical structure, load bearingcapacity, low-speed operation, moving and braking very frequently etc., driving the cardumper must use a dual-motor synchronization control system. Recently, the multi-motorsynchronization control is becoming one of the top research issues at home and abroadgradually.
     This paper selects car dumper as the study object, and a plenty of literature onsingle-channel machine drive motor speed control and dual-motor synchronization controlat home and abroad are searched. According to the development of car dumper system athome and abroad,this paper cites a number of domestic and foreign advanced intelligentcontrol algorithm and its application in motor control and multi-motor synchronouscontrol.
     Starts with the work process of three-car dumper, according to the maximum drivingforce and driving power when car dumper works normally, the driving motor parametersare selected correctly. This paper uses the PMSM as the driving motor of car dumpersystem. Moreover, the model in the ABC three-phase coordinate system is converted intothat in the d-q two-phase coordinate system by 3/2 transformation principle.
     This paper designs the dual-motors car dumper driving system. First it makes oneresearch on single-channel motor control algorithm. Due to the PID control algorithm is inthe lack of adaptability, radial basis function neural network is introduced in order to tuneits three control parameters on line. Moreover,this paper analyzes the structure of radialbasis function neural network and the new control algorithm which combines the twoones.
     In order to improve the real-time rapid character of combined algorithm above, thispaper makes one research on a new generalized predictive control algorithm,and theestablishes the CARIMA model of a permanent magnet synchronous motor. Then simulates the algorithm by MATLAB. It proves that the single-chanel speed control of cardumper GPC is the best method. At last, the synchronization errors between the twomotors is controlled by fuzzy radial basis function neural network control methods. Thevalue of fluctuations is restricted in the range of up or down to 0, in order to ensure theconsistency of the two drive motors and the dumper systems can be long-term stable andreliable operations.
     In the end, in Windows XP platform, the simulation interface of car dumper speedcontrol is established using GUIDE of MATLAB software, it makes the process of controlvisible. Over the simulation interface, it proves the control system design above isfeasible.
引文
[1]闻邦椿,赵春雨,苏东海.机械系统的振动同步与控制同步[M].北京:科学出版社,2003:3-5.
    [2]宋继尧.从秦皇岛港煤码头工程卸车系统看翻车机的技术进步[J].港工技术,1997,(4):10-13.
    [3] Haschke W. Introducing Large Rotary Packing Machines[C]. World Cement, 1990, 21(6):252-255.
    [4] Bayer K H, Waldmann H. Field-oriented Closed-loop Control of a Synchronous Machine with theNew Transvektor Control System[J], Siemens Review, 1972, 39(5): 220-223.
    [5] Depenbrock M. Direct Self-Control(DSC) of Inverter Fed Induction Machine[J]. IEEETransactions on Power Electronics,1988,3(4): 420-429.
    [6]金贺荣.基于虚拟仪器的翻车机传动系统扭矩测试算法研究[D].秦皇岛:燕山大学博士学位论文. 2007,10-11.
    [7]孙优贤,楮键.工业过程控制技术方法篇[M].北京:化学工业出版社,2006:1-5.
    [8]刘军,张航.基于先进模糊控制理论的混凝加药过程优化[J].西南给排水,2007,29(4):38-42.
    [9]郭霞,李海涛,马新星.基于模糊免疫PID控制的力矩电机PWM调速系统[J].海军航空工程学院学报,2010,25(3):263-267.
    [10]赵金宪,张志强.模糊自适应PID控制在污水处理溶解氧控制中的应用[J].机械制造与自动化,2011,40(4):161-164.
    [11]黄章明,李方园.锅炉汽包水位模糊控制系统的仿真与设计[J].技术纵横,2011,(9):76-78.
    [12] Borchiellini R. A fuzzy logic procedure for ventilation control in case of fire in long tunnels[J].FireSafety Journal, 2009, 44: 612-621.
    [13] Kumaz S, Cetin O, Kaynak O. Adaptive neuro-fuzzy inference system based zutonomous flightcontrol of unmanned air vehicles[J]. Expert Systems with Applications, 2010, 37(2): 1229-1234.
    [14] Hakiki K, Meroufel A, Concquempot V, et al. A new adaptive fuzzy vector control for permanentmagnet synchronous motor drive[C]. 18thMediterranean Conference on Control and Automation.Marrakech, Morocco: IEEE, 2010: 922-927.
    [15]诸静等.智能预测控制及其应用[M].浙江:浙江大学出版社,2007:105-106.
    [16] McCulloch W S, Pitts W. A Logical Calculus of the Ideas Immanent in Nervous Active[J]. Bulletinof Mathematical Biophysics, 1943, 5: 115-133.
    [17]黄德双.一种新的径向基概率神经网络模型(I):基本理论[J].计算机研究与发展,1998,35(2):118-121.
    [18]曾琳,张文涛.基于RBF神经网络的智能PID控制算法[J].计算机与数字工程,2011,39(1):17-21.
    [19]崔宝侠,李月明,段勇.基于神经网络PID控制的抛料垛板系统[J].沈阳工业大学学报,2011,33(2):188-193.
    [20]王飞,张天平,朱柏城.带有摄动的随机非线性系统的自适应神经网络控制[J].系统科学与数学,2011,31(6):686-696.
    [21]张文辉,齐乃明,尹洪亮.基于滑模变结构的空间机器人神经网络跟踪控制[J].控制理论与应用,2011,28(9):1141-1144.
    [22]张峻颖,刘东红.基于RBF神经网络的烟叶烤房PID解耦控制[J].计算机与数字工程,2011,39(8):21-24.
    [23]睢丹,向方.神经网络在PID控制器参数优化中的研究[J].计算机仿真,2011,28(8):177-182.
    [24] Seok-Beom R, Su-Chong J, Pedrycz W. The development of fuzzy radical basis function neuralnetworks based on the concept of information ambiguity[J]. Neurocomputing, 2010, 73(1):2464-2477.
    [25] Sengur A, Turkoglu I. A hydrid method based on artificial immune system and fuzzy k-NNalgorithm for diagnosis of heart valve diseases[J]. Expert Systems with Applications, 2008, 35(3):1011-1020.
    [26] Janiknik L J, Forrester S T, A.Rawson. The prediction of soil chemical and physical propertiesfrom mid-infrared spectroscopy and combined partial least-squares regression and neuralnetworks(PLS-NN) analysis[J]. Chemometrics and Intelligent Laboratory Systems, 2009,97(2):179-188.
    [27] Monner D, James A R. A generalized LSTM-like training algorithm for second-order recurrentneural networks[J]. Neural Networks, 2012, 25: 70-83.
    [28] Eduardo C, Jaime C, Marcos R L, et al. NeuralSens: A neural network based framework to allowdynamic adaptation in wireless sensor and actor networks[J]. Journal of Network and ComputerApplications, 2012, 35(1): 382-393.
    [29] Rouhani R, Mehra R K. Model Algorithmic Control(MAC): Basic Theoretical Properties.Automatica, 1982, 18(4): 401-414.
    [30]高延英,纪彬,白广利.基于模型预测控制在温度控制中的应用[J].自动化技术与应用,2011,30(6):6-10.
    [31]苑金巍,干树川,李先杰.基于DMC的循环流化床锅炉燃烧控制系统设计[J].自动化与仪器仪表,2010,(6):37-40.
    [32]朱贺,王洪超.基于PLC的DMC-PID的串级控制算法研究[J].工业仪表与自动化装置,2010,(6):30-35.
    [33]张嘉英,王秀玲,武欣梅.火电厂制粉系统预测函数控制策略仿真[J].电力自动化设备,2011,31(6):105-108.
    [34]王杰,武海博,朱晓东.船舶电力系统柴油机的小波基预测函数控制[J].电力自动化设备,2010,30(9):24-29.
    [35]邵克勇,徐双双,陈琴.基于种族分级遗传算法的受限广义预测控制[J].自动化技术与应用,2011,(10):45-50.
    [36]李瑞瑞.基于粒子群优化的隐式广义预测控制[J].工业控制计算机,2011,24(10):45-48.
    [37]陈志旺,刘文龙. Henon混沌系统广义预测控制无静差快速算法[J].物理学报,2011,(1):42-45.
    [38] Camacho E F. Constrained Generalized Predictive control[C]. IEEE Trans on AC, 1993, 38(2):327-332.
    [39] Katende E,Jutan A,Experimental evaluation of predictive temperature control for a batch reactorsystem[C]. IEEE Transactions on Control Systems Technology, 2000, 8(1): 2-13.
    [40]程路,姜长生,文杰等.近空间飞行器飞/推一体化模糊自适应广义预测控制[J].系统工程与电子技术,2011,33(1):127-134.
    [41]李灿军,彭辉.液位系统的多模型广义预测控制研究[J].计算机工程与应用,2011,47(27):236-240.
    [42]时汝佳,刘友宽,金秀章.基于广义预测控制的热工应用研究[J].仪器仪表用户,2010,17(4):32-33.
    [43] Sato T. Design of a GPC-based PID controller for controlling a weigh feeder[J]. ControlEngineering Practice, 2010, 18(2): 105-113.
    [44] Ye F, Dumont G A. A generalized predictive control design for the paper machine benchmark[J].Control Engineering Practice, 1995, 3(10): 1487-1490.
    [45]梅杨,杨贺升,李正熙.基于滑模变结构的间接矩阵变换器-异步电机控制系统研究[J].变频器世界,2011,(10):69-73.
    [46]付光杰,张雷,郑连亮.粒子群优化模糊PI算法的永磁同步电机控制[J].大电机技术,2011,
    (6):29-34.
    [47]钟晓伟,宋蛰存,姜忠.模糊PID控制器在无刷直流电机控制系统中的应用[J].化工自动化及仪表,2010,37(8):87-89.
    [48]鲍晓华,刘冰,朱庆龙等.基于BP神经网络高压潜水电机绝缘寿命预测[J].电机与控制应用,2011,38(11):57-65.
    [49] Cetin E, Oguz U, Hasan H S. A neuro-fuzzy controller for speed control of a permanent magnetsynchronous motor drive[J]. Expert Systems with Applications, 2008, (34): 657-664.
    [50] Han H C, Jin-Woo J. Takagi-Sugeno fuzzy speed controller design for a permanent magnetsynchronous motor[J]. Mechatronics, 2011, 14(5): 1-12.
    [51]盛华,方强.基于广义预测的双电机同步控制[J].机电工程,2010,27(3):107-112.
    [52]李俊丽,何勇,王生泽.单神经元PID在多电机同步控制中的应用[J].机电工程,2010,27(8):14-20.
    [53]沙琳,黄琦兰,杨公源.基于变参数智能控制的多电机同步控制系统[J].天津工业大学学报,2007,26(5):58-62.
    [54]张承慧,石庆升,程金.一种基于相邻耦合误差的多电机同步控制策略[J].中国电机工程学报,2007,27(15):59-64.
    [55] Edward C L, Thomas M J. Impact of Saturation and Inverter Cost on Synchronous Machine DriveOptimization[C]. IEEE Transactions on Industry Applications, 2000, 36(3): 723-729.
    [56] Verrelli C M. Fourier series expansion for synchronization of permanent magnet electric motors[J].Applied Mathematics and Computation, 2011, 217(9): 4502-4515.
    [57] Verrelli C M. Synchronization of permanent magnet electric motors: New nonlinear advanced res-ults[J]. Nonliear Analysis: Real World Applications, 2012, 13(1): 395-409.
    [58]马小亮.大功率交-交变频调速及矢量控制技术[M].北京:机械工业出版社,1999
    [59]张保银,岳毅宏,韩文秀等.基于开环-闭环控制的离散动力系统同步研究[J].控制与决策,2005,20(1):51-54.
    [60] Zengqi S, Zhidong D. A Fuzzy Neural Network and Its Application to Controls[J]. ArtificialIntelligence in Engineering, 1996, (10): 311-315.
    [61] Takagi, Sugeno. Fuzzy Identification of Systems and Its Applications to Modeling and Control[C].IEEE Trans SMC, 1985, (15): 116-132.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700