恒温恒湿环境气候箱温度控制算法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代控制系统正向着日常生活应用以及大型复杂的系统两个方向发展。产品的质量是否能使产品的性能达到最优是设计者所要考虑的问题。系统的复杂程度的增加,对其控制性能的要求也随之增加,如何用最简单、最实用的控制算法来得到最佳的控制性能,使系统能在相对恶劣的环境中也能保持控制的精确度和稳定性,这是人们所要解决的一个问题。
     实际工业运用中,控制对象往往会存在着非线性、时滞性等一系列影响控制效果的特性,所以一些传统的控制理论无法取得很好的控制效果。随着现代控制理论的发展,智能控制理论被提出用来解决一些不确定性系统的控制问题。
     在解决一些滞后性、非线性的复杂控制系统的过程中,模糊控制作为智能控制领域中的一个重要分支体现了其巨大的优越性。但是模糊控制器的设计是根据专家经验而来,所要设计者在设计的同时往往会加入自已的主观经验。所以,如何在设计中减少设计者主观因素的影响从而进一步提高控制器的性能变得十分重要。将模糊控制和其他算法结合起来设计具有自整定功能的智能模糊控制器是有一定的现实意义的。
     本文的研究对象是基于1立方米的环境气候箱的温度控制系统,文章从理论上分析了系统的工作机理,基于传热过程对系统建模,并确立其模型参数。由于该系统是一个非线性、滞后性的温控系统,系统的工作过程与其工作环境以及升温及降温速率都有很大的关系。本文通过类比PID控制、PID改进算法以及模糊自整定PID控制器的控制效果,针对控制对象,加入过程干扰量,在Matlab软件中的Simulink工具箱进行仿真,得到可视化仿真控制效果。在分析了传统控制算法不足的基础上,将模糊自整定PID控制算法应用在环境气候箱参数的检测和控制上,通过仿真可以得到模糊自整定PID控制是根据偏差及偏差的变化率自动调整PID控制参数,它即具有模糊控制响应快、适应性强的优点,同时又具有PID自整定控制的高精度、强鲁棒性的优点,为实际控制提供理论依据。
Application of Modern control system is developing to two directions covering fields of daily life and huge complicated system. The quality of the product whether can make to achieve the optimal function of the product should be considered by designer. As the increase of the complexity of the control system, the requirement of its control performance becomes higher and higher, How to use the simplest and the most practical control algorithm to obtain the best performance, and make the system accurate and stable in relatively tough environment, that is a problem what people want to solve.
     In industrial application, some traditional control theory fails to obtain the better control effect because of the nonlinear, time-delay and etc. of the object of the system. Consequently, with the development of modern control theory, the theory of intelligent control is put forward to resolve some uncertainty control problem.
     In the process of solving some time-delay and nonlinear complex control systems, the fuzzy control reflects its great superiority as an important branch in the field of intelligent control. But the design of fuzzy controller is always based on designer's subjective experience in different degree, that will affect the effect of the system. Therefore, it is important to know how to reduce the designer's subjective factors so as to improve the performance of the controller. With the rapid development of kinds of optimization algorithm, the intelligent controller combined with fuzzy control algorithm and other algorithms which has self-tuning function is of certain practical significance.
     The research object in this article was based on the temperature control system of one cubic meters of environmental climate box. The article analyzed the system of the working mechanism theoretically, established the Mathematical model and its parameters. Because it was a nonlinear, time-delay system, and there was a big relation in its working process and working environment and the rate of heating and cooling. This article gave the analogy of the effects of PID control, PID improved algorithm and fuzzy self-tuning PID control, and makes use of Simulink tool involved in Matlab to simulate and attain visual simulated outcomes by joining the process of different interferences. On the analysis of the shortages of the traditional control algorithm, the fuzzy control algorithm was used to measure and control the parameters of the climate box. Through the simulation to get that the fuzzy self-tuning PID control algorithm was according to the deviation and the change rate of deviation to adjust PID control parameters automatically, fuzzy self-tuning PID control had not only fast response and strong adaptability of fuzzy control, but also had high accuracy and strong robust of PID self-tuning control., that provided the theory basis for practical control.
引文
[1]石玉芬.负载对环境试验设备温湿度性能的影响[J].环境技术,1998(2):36-38.
    [2]魏铭炎.国外环境试验设备制造业一瞥[J].环境技术,1997,第17卷(6):17-18.
    [3]邹月琴,许钟麟,郎四维.恒温恒湿、净化空调技术及建筑节能技术研究综述[J].建筑科学,1996(2):45-52.
    [4]郑建福.环境试验设备控制技术的发展回顾[J].技术与应用,自动化与仪器仪表卷:18-20.
    [5]张志军,王丽鸿,孟繁娟,张磊.电阻炉温度控制试验台设计与应用[J].实验技术与管理,2010,第27卷(12):69-72.
    [6]吴俊杰,武立军,郭嗣琮.几种模糊控制算法的MATLAB仿真[J].辽宁工程技术大学学报,2003,第22卷(2):278-280.
    [7]李博,龚晓宏.基于MATLAB的模糊控制系统的优化设计与仿真[J].机械工程与自动化,2005,第2期:78-80.
    [8]刘金琨.先进PID控制及其Matlab仿真[M].北京:电子工业出版社,1996.
    [9]马耀名,郭嗣琮.模糊温控仪表的研究与发展[J].机械设计与制造,2003,第5卷:126-128.
    [10]Yan Chen, Jinhui Lei, Xuebing Yang. Variable Discourse of Universe Fuzzy-PID Temperature Control ystem for Vacuum Smelting Basedon PLC[R]. Global Congress on Intelligent Systems.IEEE,2009:541-544.
    [11]MA Jiwei, MA Jimei. Intelligent Control and Implementation of a New Type Constant Temperature and Humidity Box[R].Proceeding of the 29th Chinese Control Conference,2010.
    [12]Xu Ling,Jiang Yan,Wang jianhui,Gao Tong,De Xiangyi. Design of Fuzzy-PID Controller Based on Prediction Model and lits Realiz ation in PLC[R/OL]. Chinese Control and Decision Conference,2008:3808-3811.
    [13]彭勇刚,韦巍.人工气候箱温湿度模糊控制[J].农业工程学报,2006,第22卷(8):166-169.
    [14]黄力栎.温湿度解耦模糊控制系统的研究[J].农机化研究,2010,第2期:56-59.
    [15]卢佩,刘效勇.温室大棚温湿度模糊解耦控制系统设计与仿真[J].农机化研究,2010,第1期:44-47.
    [16]李华,张桂青.多变量系统辨识及其PID解耦控制研究[J].电子设计工程,2010,第18卷(6):62-64.
    [17]董春霞.一阶惯性环节的模糊PID自整定控制算法的设计[J].天津职业大学学报,2006,第15卷(2):45-48.
    [18]杨广映.参数自调整模糊PID调节器的仿真研究[J].自动化仪表,2008,第29卷(5):24-26.
    [19]陈兵芽,张小海.PID参数自整定中的新方法[J].南昌大学学报,2007,第29卷(3):246-248.
    [20]Xianmei Zhao, Jie Tang, Dongxian Chen.Research of Temperature and Humidity Decoupling Control for Central Air-conditioning System[R].2009 International Conference on Intelligent Human-Machine Systems and Cybernetics,2009.
    [21]罗华阳,何敏,何昭晖.基于多变量模糊控制的智能温湿度控制仪的实现[J].中国仪器仪表,2008,第3期:48-50.
    [22]Chin May Ji, R.Wagiran, M.H.Shahrokh Abadi, M.N.Hamidon, and N.Misron. A Fully Temperature Controlled Test Chamber for the Application of Gas Sensor Characterization[R].Proceedings of 2009 IEEE Student Conference on Research and Development(SCOReD 2009),2009.
    [23]吴志勇,毕德纯.温湿试验箱发展综述[J].装备环境工程,2009,第6卷(5):63-67.
    [24]张孝华.湿度测量技术在环境试验设备中的应用探讨[J].认证与实验室,2010,第9卷:63-64.
    [25]Walter Lang, Hartmut Glosch, Sophie Billat, Thomas Querrioux, Micheael Kunze, Matthias Ashauer, Hermann Sandmaier. Humidity Measurement By Dynamic Dew-Point Detection[R].The International Conference on Solid State Sensors.Actuators and Microsystems,2003.
    [26]Li Chunwang, Tian Peizhe, Wu Yimin, He Jun. Design and Application of High-precision Temperature and Humidity Control for Automobile Painting Workshop Based on Sub-area Divisio Strategy[R].2009 Fourth International Conferenceon Innovative Computing, Information and Control,2009
    [27]台达DVP-PLC应用技术手册硬件篇[M].2009.
    [28]台达DVP-PLC应用技术手册程序篇[M].2009.
    [29]台达DVP-PLC应用技术手册特殊模块篇[M].2009
    [30]台达DTC1000&2000数字控制器操作手册[M].2009
    [31]台达DOP系列人机界面应用技术手册[M].2009.
    [32]李黎明Ansys有限元分析使用教材[M].清华大学出版商.2006.
    [33]陶建兴,杨亚东,孙庆宽.CFD仿真技术在空调房间温度场研究中的应用[J].暖通空调,2002,第32卷(2):95-98.
    [34]Zhijian Hou,Zhiwei Lian. Application of temperature fuzzy PI controller based on PLC[J/OL].IEEE,2006.
    [35]廖晓钟,刘向东.控制系统分析与设计[M].清华大学出版社,2008,10:173-175
    [36]席爱民.模糊控制技术[M].西安电子科技大学出版社.2008.
    [37]苏金明,张莲花等MATLAB工具箱应用[M].电子工业出版社,2004,1.
    [38]王三武,董金发.基于MATLAB模糊自整定PID控制器的设计与仿真[J].机电工程技术,2006,第35卷(2):67-70.
    [39]Zhijian Hou,Zhiwei Lian. Application of temperature fuzzy PI c ontroller based on PLC[J/OL].IEEE,2006.
    [40]W.Davis Harbour,Terry W.Martin. Development of a Fuzzy Logic Control System in Matlab for an Air Impingeme Oven[J/OL].IEEE,2006.
    [41]李敏远,都延丽,姜海鹏.智能自整定PID在药剂温度控制系统中的应用[J].控制理论与应用,2003,第20卷(5):805-808.
    [42]齐智敏.自控系统的干扰与消除措施[J].丹东纺专学报,2004,第11卷(3):49-50.
    [43]张淑娟,刘典.基于PLC的温室温度PID控制系统设计[J].科技信息,2008,(30):383.
    [44]钟晓伟,宋蛰存.基于单片机的实验室温湿度控制系统设计[J].林业机械与木土设备,2010,第38卷(1):39-42.
    [45]施俊良.室温自动调节原理和应用[M].中国建筑工业出版社,1983.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700