太阳能在水中辐射透射的实验研究与海水太阳池的数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盐梯度海水太阳池是一个具有收集和贮存太阳能双重功能,被誉为未来可以大规模和长时间贮存太阳能的最有应用前景的低温热源设备。相对于传统的燃料太阳池具有原理简单、运行费用低及能源充足的优点,近年来引起世界各国的广泛重视和研究。本论文针对海水非对流型盐梯度太阳池主要做了如下的工作:
     1.建立了海水太阳池的物理模型,分析了太阳池内的基本热平衡模型,双对流扩散模型和湍流卷吸运动模型。通过对上述模型的研究,文中讨论了太阳池内部稳定性条件及边界的变化规律。
     2.研究表明,水的浊度是影响太阳池热效率的主要因素之一,提高水的透明度能够增加太阳池的运行效率。文中对用过滤和药剂降低太阳池介质浊度的方法进行了实验研究。
     3.设计及建造了测量水中太阳辐射透射率的装置。实验研究了超纯水、海水,淡水,降浊后的老卤溶液在不同浊度下的辐射透射率随深度变化的关系。并与W.S.模型进行了对比分析。
     4.应用有限差分法和控制容积法对二维模型下太阳池的瞬态行为进行了数值模拟。分析了太阳池内部的温度、盐度分布情况,研究了池壁倾角、风及连续阴天对太阳池热性能的影响。
     本文对水中太阳辐射透射率的实验研究及太阳池的数值模拟方面进行了详尽的分析,其结果可以为太阳池的实际运行提供参考。
The salt-gradient solar pond has the dual functions in collecting and reserving solar energy, and it is praised as the most promising heat resource equipment that can storage large-scale energy for long-term in the future. Because the theory is simple and it can provide sufficient energy with lower running cost, the solar pond has been recognized and studied by every country in the world recently. This thesis has carried out the following work about the seawater solar pond:
    1.The model of seawater solar pond was build up, and the basic heat balance model, double-diffusive process model and turbulent entrainment model were analyzed. Based on the research of the models, the stability conditions and interface growth in solar pond are discussed.
    2.Results indicate that the turbidity of water is one of the main factors to affect the thermal efficiency of the solar pond. Increasing aqueous clarity can increase the operation efficiency of the solar pond. In this thesis, the method of using filtration and medicament to reduce the turbidity of medium in solar pond are experimentally studied.
    3.A set of equipments to measure the transmission of solar radiation in the water is designed and put to use. By the method of experiment, the relationship between transmission of solar radiation and the depth at different turbidity are studied using the ultrapure water, seawater, fresh water and the brine, which is treated to reduce the turbidity. And the result is contrasted with W.S. model.
    4.The transient performance of the solar pond is simulated by the finite difference method and the control volume scheme. The distributions of temperature and salt are analyzed, and the effect of slope wall, wind and consecutive cloudy days to the thermal performance of the solar pond are studied.
    The analysis of this thesis in the experiment of solar radiation transmission and the numerical simulation of the solar pond are elaborated, and the result can be referenced for the actual operation of the solar pond.
引文
[1] Hershel Weinberger, The Physics of the Solar Pond, Solar Energy, 1964, Vol. 8 (2) : 45-56.
    [2] Ari Rabl, Carl E. Nielsen, Solar Ponds for Space Heating, Solar Energy, 1975, Vol. 17: 1-12.
    [3] A. Akbbarzadeh, G. Ahmadi, Computer Simulation of the Performance of A Solar Pond In the Southern Part of Iran, Solar Energy, 1980, Vol. 24: 143-151.
    [4] C.F. Kooi, The Steady State Salt Gradient Solar Pond, Solar Energy, 1979, Vol. 23: 37-45.
    [5] M. N. A. Hawlader, B. J. Brinkworth, An Analysis of the Non-Convecting Solar Pond, Solar Energy, 1981, Vol. 27: 195-204.
    [6] Syed A. Shah, Ted H. Short and R. Peter Fynn, Modeling and Testing A Salt Gradient Solar Pond in Northeast Ohio, Solar Energy, I981, Vol. 27: 393-401.
    [7] Z. Panahi, J. C. Batty, J. P. Riley, Numerical Simulation of the Performance of a Salt-Gradient Solar Pond, JSEE, 1983, Vol. 105: 369-374.
    [8] J. R. Hull, K. V. Liu and W. T. Sha, Dependence of Ground Heat Loss Upon Solar Pond Size and Perimeter Insulation, Solar Energy, 1984, Vol. 33: 25-33.
    [9] J. R. Hull, Solar Pond Ground heat Loss to A Moving Water Table, Solar Energy, 1985, Vol 35: 211-217.
    [10] V.V.N. Kishore and Veena Joshi, A Practical Collector Efficiency Equation For Nonconvecting Solar Ponds, Solar Energy, 1984, Vol. 23: 391-395.
    [11] F. Zangrando, A Simple Method to Establish Salt Gradient Solar Ponds, Solar Energy, 1980, Vol. 25: 467-470.
    [12] J. R. Hull, Maintenance of Brine Transparency in Salinity Gradient Solar Ponds, JSEE, 1990, Vol 112: 65-68.
    [13] A. Vitner and S. Sarig, Variations of Temperature, Concentration, and Supersaturation in A Laboratory-Scale Saturated Solar Pond, Solar Energy, 1990, Vol. 45: 185-188.
    [14] T. A. Newell, R. G. Cowie, Construction and Operarion Activities At the University of Illinois Sat Gradient Solar Pond, Solar Energy, 1990, Vol. 45: 231-239.
    [15] Kimio Kanayama, Hideo Inaba, Hiromu Baba and Takeyuki Fukuda, Experiment and Analysis of Practical-Scale solar Pond Stabilized With Salt Gradient, Solar Energy, 1991, Vol. 46: 353-359.
    [16] B. S. Sherman and Jorg Imberger, Control of a Solar Pond, Solar Energy, 1991, Vol. 46: 71-81.
    [17] Sergio Folchitto, Seawater As Salt and Water Source For Solar Ponds, Solar Energy, 1991, Vol. 46: 343-351.
    
    
    [18] B. S. Sherman, Gradient Maintenance: Using Discrete Brine Injections in a Salt Gradient Solar Pond, Solar Energy, 1992, Vol. 49: 321-327.
    [19] M. Hassairi, M. J. Safi and S. Chibani, Natural Brine Solar Pond: An Experimental Study, Solar Energy, 2001, Vol. 70: 45-50.
    [20] G. Lesino, L. Saravia and D. Galli, Industrial Production of Sodium Sulfate using Solar Ponds, Solar Energy, 1990, Vol. 45: 215-219.
    [21] H. Z. Tabor, B. Doron, The Beith Ha' arava, 5MW(e) Solar Pond Power Plant (SPPP)—Progress Report, Solar Energy, 1990, Vol. 45: 247-253.
    [22] Francisco Collado and Preston lowrey, Temperature, Thermal Efficiency, and Gradient Performance From Two Seawater-SZ Solar Ponds, Solar Energy, 1991, vol. 46: 361-370.
    [23] F. Munoz, R. Almanza, A Survey of Solar Pond Developments, Energy, 1992, Vol. 17: 927-938.
    [24] M.A.K. LDHLD, Solar Ponds in Alkaline Lake and Oil Well Regions Energy Convers. Mgmt, 1996. Vol. 37, No. 12: 1677-1694.
    [25] M. HASSAIRI , M. J. SAFI and S. CHIBANI Natural Brine Solar Pond: An Experimental Study, Solar Energy, 2001, Vol. 70, No.1:45-50.
    [26] Huanmin Lu, John C. Walton, Andrew H.P. Swift Desalination coupled with salinity-gradient solar ponds, Desalination, 2001, 136: 13-23.
    [27] H. AL-HUSSAINI and K. O. SUEN, Using Shallow Solar Ponds as Heating Source for Greenhouse in Cold Climates, Energy Convers. Mgmt, 1998, Vol. 39, No. 13: 1369-1376.
    [28] Z. M. Zhang, Y. F. Wang, A Study On the Thermal Storage of the Ground Beneath Solar Ponds By Computer Simulation, Solar Energy, 1990, vol. 44:243-248.
    [29] A. Akbarzadeh, P. Golding, The Importannce of Wall Angle for Stability in Solar Ponds, Solar Energy, 1992, vol. 49: 123-126.
    [30] K. A. Antonopoulos, E. E. Rogdakis, Correlations for the Yearly or Seasonally Optimum Salt-Gradient Solar Pond In Greece, Solar Energy, 1993, vol. 50: 417-424.
    [31] J. Wang, j. Seyed-Yagoobi, Effect of Water Turbidity On Thermal Performance of A Salt-Gradient Solar Pond, Solar Energy, 1995, vol. 54: 301—308.
    [32] K. Al-Jamal, S. khashan, Parametric Study of a Solar Pond for Northern Jordan, Energy, 1996, vol. 21: 939-946.
    [33] F. B. Alagao, Simulation of the Transient Behavior of a Closed-Cycle Salt-Gradient Solar Pond, Solar Energy, 1996, vol. 56: 245-260.
    [34] R. kayali, S. Bozdemir and K. Kiymac, A Rectangular Solar Pond Model Incorporating Empirical functions for Air and Soil Temperatures, Solar Energy, 1998, vol. 46: 345-353.
    [35] Xiang Yi Li, Kimio Kanayama, Hiromu Baba, Spectral calculation of the thermal performance of a solar pond and comparison of the results with experiments,
    
    Renewable Energy 2000, 20:371—387.
    [36] M.R. JAEFARZADEH and A. AKBARZADEH, Towards the Design of Low Maintenance Salinity Gradient Solar Ponds, Solar Energy, 2002, Vol.73, No. 5:375-384.
    [37] Huanmin Lu, Andrew H. P. Swift, Herbert D. Hein, Jr., John C. Walton, Advancements in Salinity Gradient Solar Pond Technology Based on Sixteen Years of Operational Experience, Journal of Solar Energy Engineering, 2004, Vol. 126:759-767.
    [38] 宋爱国,徐河,李申生,非对流型实验性太阳池的研究,太阳能学报,1984,第5卷,第1期:111-115.
    [39] 徐河,李申生,太阳池的研究与应用,太阳能学报,1983,第4卷,第1期:74-86.
    [40] 徐河,C.E.Nielsen,盐梯度太阳池内部稳定性的实用判据和监测方法,太阳能学报,1990,第11卷,第1期:79-87.
    [41] 郑宏飞,蒙沛南,周科,圆形斜壁氯化镁溶液太阳池梯度区温度分布的研究,太阳能学报,1992,第13卷,第4期:353-357.
    [42] 何小荣,郑宏飞,用计算机模拟研究太阳池稳定特性及结构参数,广西大学学报(自然科学版),1994,第19卷,第2期:129-133.
    [43] 蒙沛南,郑宏飞,周科,圆形斜壁氯化镁溶液太阳池的蓄热性能研究,太阳能学报,1998,第3期:277-281.
    [44] 宋克辉,张梅,李申生,四种太阳池工质的浓度与折射率和温度的关系,太阳能学报,1994,第15卷,第3期:240-247.
    [45] 李申生,全饱和型太阳池的热稳定性条件,太阳能学报,1995,第16卷,第4期:333-339.
    [46] 聂宜如,田芳,氯化镁、氯化钙太阳池热稳定系数的测定,首都师范大学学报(自然科学版),1997,第18卷,增刊:73-79.
    [47] 白生菊,青海地区太阳池发电技术开发应用,青海大学学报(自然科学版),2000,第18卷,第1期:42-45.
    [48] 葛新石,黄护林,带有透明蜂窝漂浮式选择性吸热器的小型净水太阳池数值模拟分析,太阳能学报,1995,第16卷,第3期:240-246.
    [49] 金援月,陈钟欣,王启杰,测量太阳池盐浓度的激光光纤技术,太阳能学报,1994,15卷,第2期:198-200.
    [50] 董金嫣,胡洪伟,用超声技术测量太阳池盐水浓度,实用测试技术,2000,第5期:18-19.
    [51] 谢列先,小型太阳池的集热储热性能的研究,广西林业科学,2001,第30卷,第3期:129-131.
    [52] 罗莎莎,郑绵平,新型太阳池的研究,盐湖研究,2003,第11卷,第3期:65-69。
    [53] 罗莎莎,西藏地区盐湖太阳池技术开发应用的研究,能源工程,2003:5-8.
    [54] 潘涛,严邦宁,周科,太阳池的盐浓度分布及动态仿真,山东科学,1995,第八卷,第三期:20-24.
    [55] 丁成立,芒硝太阳池的研究与应用,太阳能学报,2003,第24卷,第4期:504-507.
    [56] 孙文策,周永平,解茂昭,张曦,盐田太阳池实验研究,大连理工大学学报,2003,
    
    第43卷,第2期:176—180.
    [57] Jun Wang, Jamal Seyed-Yagoobi, Experiment Studies of Radiation Transmission inWater and Numerical Simulation of Dynamic Behavior of a Salt-Gradient Solar Pond, 1993.
    [58] 郭延伟,刘鉴民,M.DAGUENET,太阳能的利用,科学技术文献出版社,1987。
    [59] SERGIOFOLCHITTO, Seawater as Salt and Water Source for Solar Ponds, Solar Energy, 1991, Vol46, No. 6: 343-351.
    [60] J.Srinivasan,刘景兰译,毛阴秋校,小型太阳池梯度区的盐浓度分布.
    [61] Akbarzadeh A., Mac Donald R.W.G. and Wang Y. F. Reduction of surface mixing in solar ponds by floating. Solar Energy, 1983.31(4):377-380.
    [62] 陶文铨编著,数值传热学,第一版,西安交通大学出版社,西安,1988.
    [63] FynnRP, ShortTH, SolarPond[M],陕西科学技术出版社出版,1985.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700