超浅埋大跨度连拱隧道围岩受力分析及工程应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
连拱隧道是隧道的重要结构形式,与分离式隧道相比,由于其线形流畅,占地面积少,空间利用率高,避免了洞口路基或大桥分幅,与洞外线路连接方便;同时在适应地形条件、环境保护以及工程数量上都具有优越性,近些年连拱隧道伴随着我国经济的快速发展,得到了前所未有的发展,同时出现了许多问题。青临高速公路长城岭隧道是双向六车道连拱隧道,最大埋深不足5米,最大跨度为17米,处于超浅埋大跨度连拱隧道。同时地表存在有2000多年历史的齐长城遗址,这对工程的施工提出了更高的要求,目前关于此类隧道的研究还比较少,没有值得可以借鉴的经验,为了使工程顺利进行,同时确保国家文化遗址的安全,本文以长城岭隧道作为工程背景,针对超浅埋大跨度连拱隧道的围岩受力分析展开了研究,在理论分析的基础上,通过研制相似材料和三维地质力学模型试验平台,进行地质力学模型试验,并结合数值模拟计算,结合现场监测,主要做了如下工作:
     (1)由于特殊的工程工况,涉及到重要的历史文化遗址保护,对地表沉降提出了极为严格的要求,因此按照目前的城市地下工程地表沉降标准以及国家相关文物保护规定,制定了地表沉降标准控制值。
     (2)在综合分析浅埋隧道破坏模式的基础上,基于hoek-brown非线性破坏准则,利用极限塑性分析,根据浅埋隧道围岩塌落破坏模式,计算了长城岭隧道的塌落破坏形状图。
     (3)根据相似定理,研制了模型相似材料和超浅埋大跨度连拱隧道地质模型平台,基于施工方案优选的进行了大比例尺重力作用下的三维地质力学模型试验,利用多种监测手段,综合分析了CRD1,CRD2和CD三种施工方案下的塑性区分布,围岩压力,水平收敛和拱顶沉降以及地面沉降等数据,得出CRD1和CRD2两种开挖方法对围岩影响没有很大的差别,而且两种施工方法下地表沉降数值低于30mm,可以作为施工方案进行。与CRD1和CRD2两种开挖方案相比,CD法开挖对围岩的影响要大的多,说明临时水平支撑在超浅埋大跨度隧道中起到的作用是至关重要的。相对于理论计算的隧道塌落面形状,采取CRD1和CRD2两种开挖方法得到的塌落面形状范围要更大一些,说明围岩受施工因素影响,破坏范围会增加。
     (4)针对超浅埋大跨度连拱隧道中隔墙上覆围岩特殊的结构转换和受力模式,展开中隔墙上覆围岩破坏模式和机理的地质力学模型试验,并利用udec进行模拟,全面揭示中隔墙上覆围岩破坏机理,并提出施工措施。
     (5)在理论分析和地质力学以及数值模拟结果分析基础上,基于改善围岩岩性和增强预支护力,选择了地表注浆和大管棚作为辅助施工手段,并进行现场试验研究。现场监测结果表明,拱顶沉降和水平收敛相比于模型试验结果要小很多,地表沉降最大值控制在30mm以内,说明辅助施工措施有效改善了围岩,减少了围岩的松动范围,进而说明了辅助措施选择的合理性。现场监测研究中,结合现场施工过程中出现的地表横向裂缝,发现地层的水平位移控制亦是关键因素,并针对现场出现的地层水平位移问题,制定了有效的治理措施。
     (6)通过电阻率试验可以得出,中隔墙上方约5m范围内围岩破裂程度较为严重,大洞拱顶约2.8m范围内围岩破裂程度较为严重,反映出中隔墙上方区域受开挖扰动影响应力状态调整频繁,围岩破坏严重。
Double-arch tunnel is an important structure tunnel, compared with the separated tunnel, because of its shape and smooth, small occupation area, high space utilization rate, to avoid the entrance road or bridge framing, convenient connection with outside line; at the same time to adapt to the terrain conditions, the number of environmental protection and engineering has the superiority, in recent years Double-arch tunnel, along with China's rapid economic development, has been hitherto unknown development, also appeared a lot of new challenges and problems. The Great Wall green near the highway tunnel is a two-way six lane double-arch tunnel, the maximum depth of less than5meters, the maximum span of17meters, is the super shallow buried large span Double-arch tunnel. At the same time, the surface has a history of over2000years the ruins of the Great Wall, which puts forward higher requirements for the project construction, and the current research on this kind of tunnel is very small, there is no experience, in order to make the project proceed smoothly, while ensuring that the national cultural safety of the site, the the Great Wall tunnel as the engineering background, based on the analysis of surrounding rock of shallow buried large span Double-arch tunnel, on the basis of theoretical analysis, through the development of similar test platform for materials and3-D geological model, geological mechanical model test, combined with field monitoring, the main contents are as follows:
     (1) Because of the special engineering condition, relates to the historical and cultural relics protection important, put forward very strict requirements on ground surface settlement, so according to the city underground engineering surface current settlement standards and relevant state regulations for the protection of cultural relics, the ground surface settlement control standard of value.
     (2) Based on the failure mode of shallow tunnel on the comprehensive analysis, based on the Hoek-Brown nonlinear failure criterion, the limit of plastic analysis, establishment of shallow tunnel surrounding rock collapse and failure mode, and the the Great Wall tunnel collapse failure shape diagram calculation.
     (3) According to the similarity theorem, development of the similar material model, the super shallow buried large span Double-arch tunnel geological model of platform, the establishment of three-dimensional geomechanical model test of large scale under the action of gravity, with a variety of monitoring means, a comprehensive analysis of the CRD1, plastic zone distribution of three kinds of construction schemes for CRD2and CD, distribution of pressure of surrounding rock, and the ground settlement data of horizontal convergence and vault settlement, the effect of CRD1and CRD2two excavation methods on the surrounding rock is no great difference, and the surface of two kinds of construction methods of settlement value lower than30mm, can be used as construction scheme. Compared with CRD1and CRD2two kinds of excavation scheme, to a large number of CD the influence of excavation on surrounding rock, that temporary horizontal support to play in the super shallow buried large span tunnel's role is critical. Compared with the theoretical calculation of the tunnel collapse surface shape, get take CRD1and CRD2two kinds of excavation methods in surface shape scope bigger, illustrates the influence of surrounding rock affected by construction factors, damage range will increase.
     (4) For super shallow large-span tunnel wall overlying rock special structure and force, mode of the arched, expansion of geomechanical model test failure mode and mechanism of the overlying rock in the partition, and simulated by using UDEC, fully reveal the partition wall overlying surrounding rock failure mechanism, and put forward the construction measures.
     (5) The comprehensive theoretical analysis and experimental study, improve the surrounding rock and supporting force chose surface grouting and shed as auxiliary construction method based on enhanced advance, through field tests, field monitoring results indicate that, compared with the crown settlement and horizontal convergence on model test to become much smaller, the maximum surface subsidence control in30mm within that auxiliary construction measures, improve the surrounding rock, reduce the loose range of surrounding rock, and then illustrates the rationality of the auxiliary measures. Study site monitoring, surface transverse cracks with the site construction process, found that horizontal displacement control formation is also a key factor, and the horizontal displacement problems occurring in the field, formulate effective measures.
     (6) The electrical resistivity testing can be drawn, the Great Wall mountain tunnel engineering itself, partition wall approx.5m above the range of rock burst is serious, large vault of about2.8m range of rock burst is serious, which come with the numerical range of the plastic zone is basically a induced by resistivity testing can also reflect; out of the wall above the region affected by the excavation disturbance effect of stress state of frequent regulation, surrounding rock failure.
引文
[1]中华人民共和国交通部.JTD D70-2004公路隧道设计规范[S].北京:人民交通出版社,2004.
    [2]中华人民共和国铁道部.TB 10003-2005铁路隧道设计规范[S].北京:中国铁道出版社,2005.
    [3]刘洪州,黄伦海.连拱隧道设计施工技术研究现状[J].西部探矿工程,2001(1):54-55.
    [4]马万权,程崇国.关于连拱隧道建设技术问题的思考[J].公路,2003(5):29-32.
    [5]姚振凯,李世清,朱琪,陈信标.公路连拱隧道技术新进展[M].北京:人民交通出版社,2011.
    [6]吴介普,北京地区浅埋暗挖引起的地表沉降及其控制标准的研究[D],北京交通大学,2009.
    [7]高谦,乔兰,吴顺川等.地下工程系统分析与设计.北京:中国建材工业出版社,2005
    [8]Terzaghi K. Rock defects and loads on tunnel supports. In:Proctor RV, White TL, editors. Rock tunnelling with steel supports, vol.1. Youngstown, OH:Commercial Shearing and Stamping Co.; 1946. p.17-99.
    [9]Atkinson J H, Ports D M. Stability of shallow tunnel in cohesionless soil[J]. Geotechnique 1977,27(2):203-215
    [10]Leca E, Dormieux L. Upper and lower bound solutions for the face stability of shallow circular tunnels in frictional material[J], Geotechnique,1990,40(4):581-606
    [10]Soubra A H. Three-dimensional face stability analysis of shallow circular tunnels[C]. International Conference on Geotechnical and Geological Engineering,19-24 November 2000. Melbourne, Australia
    [12]Soubra A H. Kinematical approach to the face stability analysis of shallow circular tunnels[C].8th International Symposium on Plasticity,443~445. Canada,British Columbia
    [13]Subrin D, Wong H. Tunnel face stability in frictional material:a new 3D failure mechanism[J]. C. R. Mecanique,2002,330:513-519. (In French)
    [14]Subnn D, Branque D, Berthoz N, Wong H. Kinematic 3D approaches to evaluate TBM face stability:Comparison with experimental laboratory observations[C].2th International conference on computational methods in tunneling,Ruhr University Bochum,9-11 September 2009, Aedificatio Publishers,801-808
    [15]Mair R J. Centrifuge model testing of tunnel constmction in soft clay. Seminar on Tunnels and Underground Structure Technology,Taipei(1978).
    [16]Davis E H, Gunn M J, Mair R J, Seneviratne H N. The stability of shallow tunnels and underground openings in cohesive material[J]. Geotechnique,1980,30(4):397-416
    [17]Sloan S W, Assadi A. Stability of shallow tunnels in soft ground. In Predictive soil' mechanics, Proceedings of the Wroth Mernodal Symposium(eds G T Houlsby, Schofield AN), PP.644---663. London:Thomas Telford.1993
    [18]Takernura J, Kimura T, Wong S F. Undrained stability of two-dimensional unlined tunnels in soR soil[C]. Proceedings, JSCE, No.418/Ⅲ-12(Geotechnical Eng.), pp.267-277(1990)
    [19]Osman A S, Mair R J, Boiton M D. On the kinematics of 2D tunnel collapse in undrained clay[J]. Geotechnique 2006,56(9):585-595
    [20]Sloan S WAssadi A. Undrained stability of a square tunnel in a soil whose strength increases linearly with depth[J]. Computer and Geotechnies,1991,12:321-346
    [21]G. J. Bae, H. S. Shin, C. Sicilia2, Y. G. Choi and J. J. Lim。Homogenization framework for three-dimensional elastoplastic finite element analysis of a grouted pipe-roofing reinforcement method for tunneling[J]. INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS。2005; 29:1-24
    [22]Kotake N, Yamamoto Y, Oka K. Design for umbrella method based on numerical analysis and field measurements.In Proceedings of the ITA Congress on Tunnelling and Ground Conditions, Abdel SalamM(ed.). Cairo,1994; 501-508.
    [23]Sicilia C. A study of 3D masonry arch structures using centrifuge modelling and FE analysis. Ph.D. Thesis,University of Wales,2001.
    [24]M. Fraldi, F.Guarracino 。Limit analysis of collapse mechanisms in cavities and tunnels according to the Hoek-Brown failure criterion[J]. International Journal of Rock Mechanics & Mining Sciences 46 (2009) 665-673
    [25]A.M. Suchowerska, R.S. Merifield, J.P. Carter, J. Clausen. Prediction of underground c avity roof collapse using the Hoek-Brown failure criterion[J], Computers and Geotechnics,2012(44):93-103.
    [26]姜功良.浅埋软土隧道稳定性极限分析[J].土木工程学报,1998,31(5):65-72
    [27]Yang XL, Huang F. Collapse mechanism of shallow tunnel based on nonlinear Hoek-Brown failure criterion. Tunn Undergr Space Technol 2011;26:686-91.
    [28]申玉生.软弱围岩双连拱隧道设计施工关键技术研究[D].成都.西南交通大学硕士学位论文.2005.
    [29]林刚.连拱隧道施工力学行为研究[D].成都.西南交通大学硕士学位论文.2005.
    [30]H.Yoshimura, T Yuki, Y.Yamada, N.Kokubun. Analysis and monitoring of the Miyana railway tunnel constructed using the New Austrian Tunnelling Method. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts[J].1986,23(4):67-75.
    [3 1]姜玉松,刘海燕.双连拱隧道施工中隔墙的稳定性分析[J].安徽理工大学学报(自然科学版),2005,25(4):38-40.
    [32]申玉生,赵玉光.高速公路双连拱隧道的中墙力学特性分析[J].地下空间与工程学 报.2005,1(2):200-205.
    [33]彭定超,章勇武.开挖施工方式对连拱隧道中墙影响的空间分析[J].现代隧道技术.2002,39(1):47-53.
    [34]陈少华,李勇.联拱隧道的结构分析[J].中国公路学报.2000,13(1):48-51.
    [35]何川,李永林,林刚.连拱隧道施工全过程三维有限元分析[J].中国铁道科学.2005,26(2).34-38.
    [36]胡庆安,夏永旭,王文上.双连拱隧道施工过程的三维数值模拟[J].长安大学学报(自然科学版).2005,25(1):48-51.
    [37]李永斌,浅埋重载大跨径连拱隧道施工过程空间力学效应分析[D]长沙:长沙理工大学,2007
    [38]丁文其,王晓形,朱合华等.连拱隧道设计荷载的确定方法[J].中国公路学报,2007,(05):78-82.
    [39]申玉生,赵玉光,张焕新等.双连拱隧道施工过程弹塑性有限元数值分析[J].岩石力学与工程学报,2004,(S2):4946-4951.
    [40]邓建,朱合华,丁文其.不等跨连拱隧道施工全过程的有限元模拟[J].岩土力学,2004,(03):477-480.
    [41]李鸿博,郭小红.公路连拱隧道土压力荷载的计算方法研究[J].岩土力学,2009,(11):3429-3434.
    [42]刘涛,沈明荣,陶履彬等.连拱隧道动态施工模型试验与三维数值仿真模拟研究[J]岩石力学与工程学报,2006,(09):1802-1808.
    [43]沈泰.地质力学模型试验技术的进展[J].长江科学院院报,2001,18(5):32-36.
    [44]张乾兵.大型地下洞室群劈裂破坏现场监测和三维地质力学模型试验研究[D].济南:山东大学硕士学位论文,2010.
    [45]Fumagalli E. Statical and geomechanical model[M]. New York:Springer,1973.
    [46]Fumagalli E. Geomechanical models of dam foundation. In:Proceedings of the International Colloquium on Physical Geomechanical models. Bergamo, Italy:ISRM, 1979.
    [47]Hendron A J, Paul Engeling, Aiyer A K, et al. Geo-mechanical model study of the behavior of underground openings in rock subjected to static loads (report 3)-tests on lined openings in jointed and intact rock [R]. AD Report,1972.
    [48]Heuer R E, Hendron A J. Geo-mechanical model study of the behavior of underground openings in rock subjected to static loads (report 2)-tests on unlined openings in intact rock [R]. AD Report,1971.
    [49]MUller L, Reik G, Fecker E, Sharma B. Importance of model studies on Geomechanics. In: Proceedings of the International Conference on Geomechanical model. Bergamo, Italy: ISRM,1979.
    [50]da silveira AF, Azeredo MC, Esteves Fereira MJ, Pereira da costa CA. High density and low strength materials for geomechanical models. In:Proceedings of the International Conference on Geomechanical model. Bergamo, Italy:ISRM,1979.
    [51]Barton N R. A low strength material for simulation of the mechanical properties of intact rock mechanics. In:Proceedings of the International Conference on Geomechanical model. Bergamo, Italy:ISRM,1979.
    [52]R. Castro, R. Trueman and A. Halim. A study of isolated draw zones in block caving mines by means of a large 3D physical model[J]. Int. J. Rock Mech.& Min. Sci.,2007,44: 860-870.
    [53]Sterpi, D., and Cividini, A.2004. A Physical and numerical investigation on the stability of shallow tunnels in strain softening media. Rock Mechanics and Rock Engineering,37(4): 277-298.
    [54]Meguid, M.A., Saada, O., Nunes, M.A., and Mattar, J.2008. Physical modeling of tunnels in soft ground:a review. Tunnelling and Underground Space Technology,23(2):185-198.
    [55]韩伯鲤,张文昌,杨存奋.新型地质力学模型材料MIB[J].武汉水利电力大学学报,1983,(1):11-16.
    [56]张强勇, 李术才,郭小红等.铁晶砂胶结新型岩土相似材料的研制及其应用[J].岩土力学,2008,29(8):2126-2130.
    [57]李树忱,冯现大,李术才等.新型固流祸合相似材料的研制及应用[J].岩石力学与工程学报,2010,29(2):281-288.
    [58]徐文胜,许迎年,王元汉等.岩爆模拟相似材料的筛选试验研究[J].岩石力学与工程学报,2000,19(supp):873-877.
    [59]张杰,侯忠杰.固-液祸合试验材料的研究[J].岩石力学与工程学报,2004,23(18):3157-3161.
    [60]彭海明,彭振斌,韩金田等.岩性相似材料研究[J].广东土木与建筑,2002,12(12):13-17.
    [61]陈安敏,顾金才,沈俊等.岩土工程多功能模拟试验装置的研制及应用[J].岩石力学与工程学报,2004,23(3):372-378.
    [62]李仲奎,卢达溶,中山元等.三位模型试验新技术及其在大型地下洞群研究的应用[J].岩石力学与工程学报,2003,22(9):1430-1436.
    [63]朱维申,张乾兵,李勇等.真三轴荷载条件下大型地质力学模型试验系统的研制[J].岩石力学与工程学报,2010,29(1):1-6.
    [64]张强勇,李术才,贾超等.高地应力真三维加载模型试验系统:中国,ZL200810016641[P].2008-10-15.
    [65]张强勇,李术才,尤春安等.新型组合式三维地质力学模型试验台架装置的研制及应用[J].岩石力学与工程学报,2007,26(1):143-148.
    [66]孙晓明,何满潮,刘成禹等.真三轴软岩非线性力学试验系统研制[J].岩石力学与工程学报,2005,24(16):2870-2874.
    [67]Jian Liu, Xia-Ting Feng et al. Stability assessment of the Three-gorges Dam foundation, China using physical and numerical modeling-Part I:physical model tests[J]. Int. J. Rock Mech.& Min. Sci.,2003,40:609-631.
    [68]Li Zhongkui, Liu Hui, Dai Rong, Su Xia. Application of numerical analysis principles and key technology for high fidelity simulation to 3-D physical model tests for underground caverns[J]. Tunnelling and Underground Space Technology,2005,20:390-399.
    [69]张强勇,李术才,李勇,王汉鹏.大型分岔隧道围岩稳定与支护三维地质力学模型试验研究[J].岩石力学与工程学报,2007,26(supp.2),4051-4059.
    [70]王汉鹏,李术才,张强勇,李勇.地质力学模型试验过程中关键技术研究[J].实验科学与技术,2006,3:4-8.
    [71]李勇,张强勇等.八字岭分岔式隧道的三维地质力学模型试验研究[J].岩土力学,2006,27(supp.):586-590.
    [72]王汉鹏.分岔式隧道设计施工的关键技术研究[D].济南:山东大学博士学位论文,2007.
    [73]朱维申,李勇,张磊等.高地应力条件下洞群稳定性的地质力学模型试验研究[J].岩石力学与工程学报,2008,27(7):1308-1314.
    [74]田尚志.近接隧道施工技术模型试验研究[D].西南交通大学硕士论文,2000.
    [75]刘洪波.广州地铁越秀公园站近接隧道施工力学行为模型试验研究[D].西南交通大学硕士论文,2001.
    [76]周生国,黄伦海,蒋树屏等.黄土连拱隧道施工方法模型试验研究[J].地下空间与工程学报.2005,1(2):188-191.
    [77]刘涛,沈明荣,陶履彬等.连拱隧道动态施工模型试验与三维数值仿真模拟研究[J]岩石力学与工程学报,2006,(09):1802-1808.
    [78]林刚,连拱隧道施工力学行为研究[D],成都:西南交通大学,2005.
    [79]陈秋南,非对称连拱隧道动态施工力学模拟研究[D],重庆:重庆大学,2005.
    [80]肖林萍,赵玉光,申玉生.双连拱隧道结构内力样式及围岩稳定性模型试验研究[J]岩石力学与工程学报,2005,(23):4346-4351.
    [81]申玉生,赵玉光.双连拱隧道围岩稳定性模型试验研究[J].公路隧道,2006,(01):1-4.
    [82]郑国江.不同应力场软弱围岩连拱隧道力学性状试验研究[D].西安.长安大学硕士学文论文,2006.
    [83]吴梦军,连晋兴,黄伦海等.连拱隧道围岩稳定性模型试验[J].地下空间,2004,(04):461-464+564.
    [84]何川.公路双连拱隧道[M].北京.大民交通出版社.2005.
    [85]覃庆通.大跨度连拱隧道围岩与结构力学特性的现场测试与数值分析[D].长沙.中南大学硕士学位论文,2007
    [86]夏才初,刘金磊.相思岭连拱隧道中墙应力研究[J].岩石力学与工程学报,2000,(S1):1115-1119.
    [87]袁勇,王胜辉,杜国平等.双连拱隧道支护体系现场监测试验研究[J].岩石力学与工程学报,2005,(03):480-484.
    [88]李德宏,连拱隧道施工监测与分析.现代隧道技术,2003,40(1):59-64.
    [89]周玉宏,赵燕明,程崇国.偏压连拱隧道施工过程的优化研究[J].岩石力学与工程学报,2002,21(5):679-683.
    [90]铁道部第十四工程局.城市地下超浅埋双连拱结构三导洞施工工法(TLEJGF-97.98-23)[M].济南:铁道部第十四工程局
    [91]王先堂.浅埋暗挖隧道穿越既有管线施工技术[J].隧道建设,2002,22(2):23—25
    [92]刘新荣,孙辉,陈晓江等.黄土连拱隧道二次衬砌的结构分析与监测研究[J].岩土工程学报,2005,27(6):695-697.
    [93]王军,夏才初,朱合华等.不对称连拱隧道现场监测与分析研究[J].岩石力学与工程学报,2004,23(2):267-271.
    [94]王文通.象山大跨四联拱隧道施工监测及分析[J].西部探矿工程,2000,(1):57-60.
    [95]郑凯,刘保国.复杂地质条件下大跨度双连拱隧道监控量测技术的运用[J].隧道建设,2006,26(2):53-56.
    [96]郝行舟,马海君.大跨度连拱隧道围岩监控量测在施工中的应用[J].交通科技,2006,(1):25-27.
    [97]赵玉光,张焕新,林志远等.高速公路双连拱隧道施工信息化管理技术[J].岩石力学与工程学报,2004,23(增2):5104-5110.
    [98]刘招伟,何满潮,肖红渠.浅埋大跨连拱隧道施工中变形的监测与控制措施[J].岩土工程学报,2003,25(3):339-342
    [99]肖红渠.五龙岭大跨连拱隧道施工监测及变形特性分析[J].隧道建设,2001,21(1):1-6.
    [100]徐干成,白洪才,郑颖人,刘朝.地下工程支护结构[M].北京:中国水利水电出版社,2002.
    [101]中华人民共和国行业标准,JTGD 70-2004公路隧道设计规范。
    [102]冯卫星,吴康保.铁路隧道设计.成都.西南交通出版社.1998.84—93
    [103]谢家杰,浅埋隧道的地层压力[J],土木工程学报,1964
    [104]彭立敏,刘小兵.隧道工程[M].长沙:中南大学出版社,2003.
    [105]张国样,刘宝琛.潜在滑移线法分析边坡滑动面及稳定性[J].土木工程学报,2002,35(6):82-85
    [106]孔位学,邓楚键,芮勇勤,郑颖人.滑移线场理论中不同流动法则的极限分析有限元解[J],东北大学学报(自然科学版),2007,28(3):430-433,453
    [107]郑颖人,邓楚键,王敬林.基于非关联流动法则的滑移线场及上限法研究[J],中国工程科学,2010,12(8):56-69
    [108]朱以文,吴春秋,蔡元奇.基于滑移线场理论的边坡滑裂面确定方法[J],岩石力学与工程学报,2005,24(15):2610-2616
    [109]Klar A,Osman A S,Bolton M.2D and 3D upper bound solutions for tunnel excavation using elastic flow fields[J].International Journal for Numerical and Analytical Methods in Geomechanics,2007,31:1367-1374
    [110]黄阜,隧道围岩塌落机理与锚杆支护结构的上限分析研究[D],中南大学,2012.
    [111]F. Varas, E. Alonso, L.R. Alejano. Study of bifurcation in problem of unloading a circular excavation in a strain-softening material[J]. Tunnelling and Underground Space Technology,2005,20(5):311-322.
    [112]Davis E H, Gunn M J, Mair R J, Seneviratne H N. The stability of shallow tunnels and underground openings in cohesive material[J]. G60technique,1980,30(4):397,-,416
    [113]Seneviratne H N. Deformations and pore pressure variations around shallow tunnel in soft clay. [Ph. D. thesis], Cambridge Univercity.1979
    [114]Sloan S WAssadi A. Stability of shallow tunnels in soft ground. In Predictive soil mechanics, Proceedings of the Wroth Mernodal Symposium(eds G T Houlsby, Schofield AN), PP.644---663. London:Thomas Telford.1993
    [115]Kentaro Yamamoto, Andrei V. Lyamin, Daniel W. Wilson, Scott W. Sloan, Andrew J. Abbo, Stability of a circular tunnel in cohesive-frictional soil ubjected to surcharge loading[J]. Computers and Geotechnics,2011(38):504-514.
    [116]M. Caia, P.K. Kaisera, Y. Tasakab, M. Minamic. Determination of residual strength parameters of jointed rock masses using the GSI system[J]. International Journal of Rock Mechanics & Mining Sciences,2007,44(2):247-265.
    [117]Yang Xiao-Li, Huang Fu.Collapse mechanism of shallow tunnel based on nonlinear Hoek-Brown failure criterion. Tunneling and Underground Space Technology,2011,26(6): 686-691.
    [118]钟正强,隧道围岩非线性特征描述及其稳定性的数值计算研究[D],中南大学,中国长沙。
    [119]沈泰.地质力学模型试验技术的进展[J].长江科学院院报,2001,18(5):32-36.
    [120]张强勇,李术才,焦玉勇.岩体数值分析方法与地质力学模型试验原理及工程应用[M].北京:中国水利水电出版社,2005.
    [121]王琦,深部厚顶煤巷道围岩破坏控制机理及新型支护系统对比研究[D],中国济南:山东大学,2012.
    [122]袁超.浅埋连拱隧道上覆围岩变形破坏特性试验及现场应用研究[D],济南:山东大学,2012.
    [123]张强勇,王汉鹏,李勇等.铁晶砂胶岩土相似材料及其制备方法:中国,ZL2005101045814[P].2007-09-12.
    [124]王闯.大跨度地下岩石工程压力拱的研究[C].徐州:中国矿业大学,2003
    [125]SONG Hong wei, ZHAO J ian, WANG Chuang. Study on concep t and characteristics of stress rock arch around a cavern un2 derground[C]. Proceddings of Underground Singapore 2003 andWorkshop Updating the engineering geology of Singapore,Singapore, 2003:44-51.
    [126]李英勇,冯现大,李术才,李树忱,袁超,李新志,徐饮健.极浅埋连拱隧道中隔墙顶部岩体塌方演化过程分析[J]岩土力学2011,32(9)2747-2752.
    [127]Itasca Consulting Group, Inc. UDEC (Universal Distinct Element Code)概述.2010,
    [128]关宝树.隧道工程施工要点集[M].北京:人民交通出版社,2003.
    [129]周顺华,董新平.管棚工法的计算原理及其应用[M].上海:同济大学出版社,2007.
    [130]姜子良.国道306线经棚隧道穿越风积砂地层的综合施工技术探讨[J].水利与建筑工程学报,2008,6(4):67-73.
    [131]王梦恕.北京地铁浅埋暗挖施工法[J].岩石力学与工程学报,1989,8(1):52—-62.
    [132]吴军民 ,管棚注浆法在浅埋破碎地层隧道开挖中的加固机理及效用研究[J],国外建材科技,2004,25(2):106-108。
    [133]Coulter, S.2004. Influence of tunnel jet-grouting on ground deformations at the Aeschertunnel, Switzerland. MSc thesis, University of Alberta.
    [134]Gioda, G., Locatelli., L.1999. Back analysis of the measurement performed during the excavation of a shallow tunnel in sand. International Journal for Numerical and Analytical Methods in Geomechanics 23(13):pp.1407-1425.
    [135]王海涛,隧道管棚预支护体系的力学机理与开挖面稳定性研究[D],辽宁大连:大连理工大学,2009.
    [136]何修仁.注浆加固与堵水[M8.沈阳:东北工业学院出版社,1990年
    [137]毕露成.双液注浆锚管加固在渗水软弱围岩浅埋偏压隧道中的应用.广州大学学报(综合版).2001年Vol(15).8
    [138]张乾兵.大型地下洞室群劈裂破坏现场监测和三维地质力学模型试验研究[D].济南.山东大学,2010.
    [139]张流,黄建国,高平.水对岩石变形过程中电阻率变化的影响[J].地震,2003,23(1):8-14.
    [140]邓少贵,范宜仁,段兆芳,等.多温度多矿化度岩石电阻率实验研究[J].石油地球物理勘探,2000,35(6):763-767.
    [141]Shemyakin E I, Fisenko G L, Kurlenya M V, et al. Zonal disintegration of rocks around underground workings, part I:data of in-situ observations[J]. Journal of Mining Science, 1986,22(3):157-168.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700