淀粉基干燥剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玉米粉可再生可生物降解,主要由淀粉组成,淀粉对水有特殊的亲和力,可以从乙醇及其它有机溶剂中选择性地吸收水。主要成分为淀粉的玉米粉仍然保留这种吸附特性,且可在改变颗粒大小和结构的同时仍保持对水的亲和力。基于淀粉的这种性能,人们研究了许多淀粉基的材料的吸水性能,如:玉米淀粉、玉米粉、酶解玉米粉、化学改性玉米淀粉等。
     本文以玉米粉为主要原料,分别对玉米粉进行酶改性、化学改性以及酶,化学联合改性得到了三种改性淀粉基干燥剂。研究了各改性方法的条件,并将改性产品的性质与原玉米粉进行比较。酶改性可以增加玉米粉的比表面积,通过对α-淀粉酶,葡萄糖淀粉酶及复合酶进行选择,以水解率、吸水率、颗粒度为评价指标得到α-淀粉酶改性玉米粉的反应条件:酶解温度为45℃、体系pH为6.5、α-淀粉酶添加量为95u/g、酶解时间为60h。得到的酶解玉米粉的水解率为11.1%、过筛率为26%、吸水率达到115.53%,是原玉米粉吸水率的2.1倍。在玉米粉表面接枝共聚丙烯酸单体,在接枝温度为60℃、引发剂用量占玉米粉干基质量的0.5%、丙烯酸单体中和至pH为6.5、接枝时间为3h、丙烯酸单体与玉米粉干基质量比为5:1时,得到接枝率为3.3%、吸水率达93%的接枝玉米粉。吸水率比原玉米粉提高了69%。以上述接枝条件对酶解率分别为4.8%、9.7%、17%的玉米粉进行接枝改性,所得产品的接枝率分别为4.02%、4.53%、5.2%,与之对应的吸水率分别为125%、134%、142%。通过10次再生实验表明:对比原玉米粉,酶解玉米粉、接枝玉米粉、接枝酶解玉米粉的吸水率分别减少了4.3%、6.5%、11%。扫描电镜观察表明α-淀粉酶处理后样品的表面形成了很多孔洞,接枝玉米粉的表面也发生了较大的变化。
     在实验室内模拟工业乙醇液相脱水,考察自制干燥剂的应用性能得出:四种淀粉基干燥剂均能够将乙醇浓度为95.5mass%(乙醇-水溶液共沸点)的乙醇-水溶液进一步脱水至97.5mass%。干燥剂对水的吸附量随着溶液中乙醇含量的升高而减小。在干燥剂与溶液质量比为1:5时α-淀粉酶改性玉米粉和接枝酶解改性玉米粉可以将乙醇浓度为90mass%乙醇-水溶液浓度提高至mass96%以上。
Corn grits (a form of ground corn) are biodegradable and derived from a renewable resource. A major component of the corn grits, starch, is the primary adsorptive material in the corn grits. Starch has affinity for water and selectively adsorbs water vapor from air, alcohols and other organic vapors. The combinations are useful for increasing the particle size and structural stability of the materials while maintaining the water adsorptive capacity. The adsorption properties have been studied for many types of these materials, specifically, corn starch, corn grits, enzyme modified corn grits, and chemical modified corn starch .
     In this paper, three new starch based desiccants are produced. Corn grits were modified by enzyme and chemistry. The research involved the processing and properties of the enzyme and chemistry modified corn grits and the combination modified corn grits by chemistry and enzymes. All of the results had been compared with native corn grits.
     The goal of the modification of the corn grits was to create pores and increase the surface area per gram of corn grits without radically reducing the size of the particles. The enzymatic method had been applied to modification of corn grits. The enzymes tested includedα-amylase and gluco-amylase.α-amylase was selected as one of the enzymatic modifying agents because of its action on starch polymers. The corn grits were hydrolyzed byα-amylase (95u/g) at 450C, pH 6.5for 60h. The hydrolysis rate of corn grits was 11.1%, and the rate of adsorb water was115.53 mass%. Sieve size analysis was conducted to determine if a change in the mean particle size had occurred during the enzyme modification. The mean particle sizes were 74% in 22 sieve size for modified corn grits and 100% in 18/20 sieve size for native corn grits. Compared with native corn grits, the adsorb water of modified crone grits was increased to 2.1 times.
     The graft copolymerization of acrylic acid onto native corn grits under the initiation of ammonium ceric nitrate was investigated. This was done to maximize the graft rate and rate of adsorb water. The major factors affecting the graft copolymerization reaction such as concentration of ammonium ceric nitrate, pH and concentration of acrylic acid liquor, reaction time (duration) and temperatures had been studied. Based on the results obtained, appropriate conditions for grafting acrylic acid onto native corn grits was established and the graft yield (3.3%) and rate of adsorb water (93%) were higher under the following conditions: using 0.5 mass% ammonium ceric nitrate, the ratio of acrylic acid (pH 6.5) and corn grits (5:1), reaction time, 90 min; and polymerization temperature, 35°C. Compared with native corn grits, the adsorb water of chemical modified corn grits was increased by 69%.
     At the same condition of the graft copolymerization modification, three enzyme modified corn grits with different hydrolysis rates (4.8%, 9.7% and 17%) had been chemically modified by acrylic acid. The results show that the graft rate of three enzyme modified corn grits are 4.02% (4.8%), 4.53% (9.7%), and 5.2% (17%) respectively; and the rates of adsorb water were 125% (4.8%), 134% (9.7%), and 142% (17%) respectively.
     After tem times regeneration testing, compared with native corn grits the rates of adsorb water of three modified corn grits were cut down 4.3% (enzyme modified corn grits), 6.5% (chemistry modified corn grits) and 11% (enzyme and chemistry modified corn grits) respectively. Scanning electron microscope observations show that, there were significant changed on the surface of three desiccants after handling.
     The four desiccants were tested the capability of removal water from ethanol/water liquor. Four desiccants were shown to selectively adsorb water from 95.5 mass% ethanol/water liquor at room temperature which giving a resulting ethanol/water of 97.5% dryness. When the ratio of desiccant and ethanol/water liquor was 1:5, enzyme modified corn grits and combination modified corn grits removed water from 90 mass% of ethanol/water to 96 mass% of ethanol/water.
引文
1马晓建,吴勇,牛青川.无水乙醇制备的研究进展.现代化工. 2005, 25(1):26-29
    2钟健.从无水乙醇的制取略谈干燥剂的选择与分类.实验与教具改革. 1999, 1:8
    3 A. H. Al-Muhtaseb, W. A. M. McMinn, T. R. Mage. Water Sorption Isotherms of Starch Powders. Journal of Food Engineering. 2004,62(2):135-142
    4 R. M. Ladisch. Biobased adsorbents for drying of gases. Enzyme and Microbial Technology. 1997, 20:162-164.
    5赵淑芳,刘宗章,张敏华.节能型乙醇脱水技术研究进展.酿酒科技. 2006, 1:111-113
    6刘宗宽,顾兆林,贺延龄等.燃料乙醇热泵恒沸精馏新工艺的研究.化工进展. 2003, 22(11):1147-1149
    7林军,顾正桂.加碱萃取精馏制取无水乙醇.化学研究与应用. 2004, 16(2):282-283
    8李立硕.共沸精馏分水新技术制备无水乙醇.广西大学硕士论文. 2005
    9 M. R. Ladisch, K. Dyck. Dehydration of Ethanol: New Approach Gives Positive Energy Balance. Science. 1979,205:898-900
    10 E. K Beery, R. Michael, Ladisch. Adsorption of Water from Liquid-Phase Ethanol-Water Mixtures at Room Temperature Using Starch-Based Adsorbents. Ind. Eng. Chem. Res. 2001, 40:2112-2115
    11吴晓莉,靖恋,尹卓容.加盐萃取蒸馏生产无水乙醇.酿酒. 2003, 30(6):74-75
    12 G. H. Robertson, L. R. Doyle, A. E. Pavlath. Intensive Use of Biomass Feedstock in Ethanol Conversion. The Alcohol-Water, Vapor-Phase Separation. 1983,25(12):3133-3148
    13 M. Jackson, M. M. Morales. Ethanol Fuel Use-Promising Prospects for the Future, Renewable Energy for Development. 2004, 17(1):1-4
    14田华,袁钢.用于乙醇脱水的玉米粉吸附性能实验研究.天津大学硕士学位论文. 2006
    15马心如,赵芙荣.恒沸精馏法生产无水酒精.酿酒科技. 2002, 2:57-58
    16李春云.无水乙醇生产工艺的探讨.浙江工业大学学报. 2001, 29(2):210~212
    17 F. A. Farhadpour, B. A. Sorptive. Separation of Ethanol-Water Mixtures With a Bi-dispersed Hydrophobic Molecular Sieve, Silicalite: Determination of the Controlling Mass Transfer Mechanism. Chem. Eng. Process. 1996, 35:141-142
    18 D. P. Roelofsen. Simple Technique to Determine Vapor Adsorption Capacities of Molecular Sieves. Analytical Chemistry. 1971, 43(4):631-632
    19 S. S. Madaeni, A. Khodabakhshi. Dehydration of Alcohols Using Osmotic Concentration-Dehydration of Aqueous Glycerol Solution. Food Engineering. 2008, 86:49-54
    20张久恺,刘大中.玉米淀粉脱水剂制备无水乙醇研究进展.山东轻工业学院学报. 1998, 12(3):1-3
    21常华,袁钢.乙醇-水两组分体系在生物质上的气相吸附过程研究.天津大学博士论文. 2006
    22 P. J. Westgate, M. R. Ladisch. Sorption of Organics and Water on Starch. Industrial and Engineering Chemistry Research. 1993, 32(8):1676-1680
    23 D. J. Manners. Some Aspects of the Structure of Starch. Cereal Foods World. 1985, 30:461-463.
    24梁萌,张建安,刘德华.无水酒精制备的研究进展.酿酒. 2002, 29(5):3-5
    25 L. M. Aderson, Gulatim. Synthesis and optimization of a new starch based adsorbent for dehumidification of air in a pressure swing drier. Ind Eng Chem. 1996, 35:1180 -1187.
    26陈惜明,薛烽.超强吸水材料在无水酒精生产过程中的应用研究.安徽化工. 2004, (6): 16-18
    27 S. A. Asheh, F. Banat, N. A. Lagtah. Separation of Ethanol-Water Mixtures Using Molecular Sieves and Biobased Adsorbents, Chemical Engineering Research and Design. 2004, 82(7): 855-864
    28孟庆红.淀粉酶的作用机理及在面包和饲料中的应用.粮食与饲料工业. 1997, 6:34-35
    29王立刚,胡晨俊,李安东.α-淀粉酶降解淀粉性能研究.辽宁化工. 2008, 37(4): 223-226
    30 A. Tsiapouris, L. Linke. Water Vapor Sorption Determination of Starch Based Porous Packaging Materials. Starch. 2000, 52(2):53-57
    31张莉娜.天然高分子改性材料及应用.化学工业出版社. 2006:216-222
    32王怀硕,商平.淀粉接枝丙烯酰胺与丙烯酸的实验研究.橡塑资源利用. 2006,6: 15-18
    33 D. V. Athawale. Recent Trends in Hydrogels Based on Srarch graft Acid. 2001, 53:7-13.
    34温怀宇,顾正彪.淀粉接枝丙烯酸高吸水性树脂的制备.江南大学硕士学位论文. 2005
    35张光旭.用玉米物作吸附剂制取无水酒精的研究进展.食品与发酵工业. 1997, 23(1):66-72.
    36 C. Leszek, K. C. Ewa. Adsorptive Properties of Biobased Adsorbents. Adsorption. 2005, (11):757-761
    37 E. K. Beery, M. Gulati. Effect of Enzyme Modification of Corn Grits on their Properties as an Adsorbent in a Skarstrom Pressure Swing Cycle Dryer.Adsorption, 1998,4:321-335
    38 H. J. Voloch, M. Ladisch.. Biotechnology and Bioengineering. 1982, 24(3):725-730.
    39 V. Rebar, E.R. Rischback, D. Apostolophaulos. Biotechnol and Bioeng. 1984, 29:513-514
    40 G. H. Robertson, A. E. Pavlath. Biotechnol and Bioeng. 1983, 25:3133-3135
    41 M. J. Carmo, M. G. Adeodato, A. M. Moreira, E. J. S. Parente and R.S. Vieira. Kinetic and Thermodynamic Study on the Liquid Phase Adsorption by Starchy Materials in the Alcohol-Water System. Adsorption. 2004, 10:211-218
    42常华,袁钢,曾爱武.用于乙醇脱水的生物质吸附性能.化工学报. 2004, 55(2):309-312
    43马晓建,吴勇,赵银峰.含水乙醇蒸汽脱水的生物质吸附性能研究.酿酒科技. 2006, (1):39-42
    44赵常,于九皋.以天然物质为原料的干燥剂的研究进展.化学工业与工程. 2005, 22(1):56-60
    45 Y. M. Cao, X. S. Qing. Graft copolymerization of acrylamide onto carboxymethyl starch. European Polymer Journal. 2002, 38:1921-1924
    46郭红梅,蔡会武.新型高吸水树脂的制备及性能研究.西安科技大学硕士论文. 2006
    47曹红光,刘均洪.淀粉基干燥剂的化学性质与性能.化学工业与工程技术. 2003, 24(4):14-16
    48 H. Chang, X. G.. Yuan. Experimental Study on the Adsorption of Water and Ethanol by Cornmeal for Ethanol Dehydration. Ind. Eng. Chem. Res. 2006, 45: 3916-3921
    49 K. E. Beery, R. L. Michael. Chemistry and properties of starch based desiccants. Enzyme and Microbial Technology. 2001, 28:573-581
    50赵常,于九皋.以天然产物为原料的干燥剂的制备与性能研究.天津大学硕士论文. 2006
    51 J. E. Fannon, J. A. Gray, K. C. Huber et al. Heterogeneity of Starch Granules and the Effect of Granule Channelization on Starch Modification. Cellulose. 2004,(11):247-254
    52 T. Yamada, M. Hisamatsu, K. Teranishi et al. Components of the Porous Maize Starch Granule Prepared by Amylase Treatment. Starch. 1995, 47(9):358-361
    53马嫄,阚建全,陈宗道等.酶复合处理制备玉米多孔淀粉的研究.食品科学. 2004, 7:7-10
    54徐忠,王鹏.玉米多孔淀粉吸附性能研究.哈尔滨工业大学学报. 2007, 39(4):581-585
    55 H. K. Areenath. Studies on Starch Granules Digestion byα-Amylase. Starch. 1992, 44(2):61-63
    56江涛,刘国琴,钟洁明等.微孔性变性淀粉的研究.郑州粮食学院学报. 1999, 20(4):45-50
    57郭红梅,蔡会武.新型高吸水树脂的制备及性能研究.西安科技大学硕士论文. 2006
    58柳明珠,詹发禄,江洪申.超强吸水剂结构与性能研究.兰州大学学报:自然科学版. 2003, 39(3):46-49.
    59温怀宇,顾正彪.淀粉接枝丙烯酸高吸水性树脂的研究.粮食与饲料工业. 2005, 6:25-27
    60 K. Kaewtatip, V. Tanrattanakul. Preparation of cassava starch grafted with polystyrene by suspension polymerization Carbohydrate Polymers. 2008, 73:647-655

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700