OPCPA用关键硼酸盐晶体材料研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在世界化石能源即将枯竭,而新能源进展缓慢的情况下,惯性约束核聚变(Inertial Confinement Fusion, ICF)的发展就承载了人类的清洁能源之梦。传统的惯性约束核聚变主要通过对氘氚靶丸的均匀向心压缩、加热而产生的中心点火来实现。随着CPA(啁啾脉冲放大)技术在1985年前后由美国罗切斯特大学发明,该技术使得激光的脉宽大幅度缩短到皮秒和飞秒量级,据此人们提出了快点火这种低阈值、高增益、高效率的激光点火方案。1986年A. Piskarakas等人又首次提出了结合OPO和CPA技术的光参量啁啾脉冲放大(OPCPA)技术的概念,1992年A. Dubictis在实验上验证了OPCPA技术的可行性并对其概念进行了完善。相比CPA技术,OPCPA技术具有更高的单通增益,低的热效应影响,高的信噪比,低的B积分,宽的增益带宽,且在放大过程中克服了增益带宽窄化现象等优点。目前,OPCAP技术已经成为获得高峰值/高平均功率激光的最有效手段之一。Nd:glass和钛宝石飞秒激光器常作为OPCPA系统的种子源,但是钛宝石激光器装置一般比较昂贵与繁琐,而Nd:glass激光器因热性能差而限制了其在高功率激光系统中进一步的应用,因此探索热性能优异的激光材料就成为必要。Nd:M3Re2(BO3)4(M=Ca, Sr; Re=Y, La, Gd)系列晶体因在结构上的无序性导致其光谱产生非均匀加宽,是潜在的产生飞秒脉冲的激光晶体材料。另外,我们知道非线性光学晶体材料作为OPCPA技术中的放大介质,是利用OPCAP技术实现高峰值/高平均功率的关键。目前,所使用的非线性光学材料主要有KDP或DKDP, BBO, LBO等晶体。其中BBO和LBO晶体都是采用助溶剂方法生长,目前的加工口径一般还限于2cm,只能应用与中等功率的OPCPA系统中。KDP晶体的口径目前已经可以达到40cm,但是小的非线性系数及相对较差的热光性能限制了其在高功率OPCPA中的应用。近年来,YCa4O(BO3)3(YCOB)晶体引起了人们的广泛注意。和其他非线性晶体相比,其有效非线性系数和热学性能适中,重要的是YCOB t晶体不但可以采用提拉法在较短时间生长出大尺寸和高光学质量的单晶,而且相比于采用助溶剂方法生长的BBO和LBO晶体,生长周期更是大大缩短。目前我们国家大尺寸YCOB晶体生长尚处于起步阶段,严重制约了我们国家高功率激光器水平。因此自主研制大尺寸高质量YCOB晶体,提高我们国家的高功率激光的水平,具有十分重大的意义。
     基于以上考虑,我们同时开展了Nd:M3Re2(BO3)4(M=Ca, Sr; Re=Y, La, Gd)系列晶体的生长与表征以及大尺寸YCOB晶体的生长与表征。主要研究内容与结果如下:
     首先针对OPCPA技术中种子源的问题,我们开展了无序Nd:M3Re2(BO3)4(M=Ca, Sr; Re=Y, La, Gd)系列晶体的生长和性能表征问题,希望能探索潜在的飞秒脉冲激光晶体。针对该系列晶体我们开展了以下工作:
     (1)采用提拉法生长了高质量的0.5at.%Nd掺杂Ca3La2(BO3)4、Ca3Gd2(BO3)4、 Sr3La2(BO3)4和Sr3Y2(BO3)4四种晶体。
     (2)采用X射线粉末衍射(XRPD)对Nd:Ca3La2(BO3)4、Nd:Ca3Gd2(BO3)4、 Nd:Sr3La2(BO3)4和Nd:Sr3Y2(BO3)4四种晶体进行了物相和结构研究,并精确计算了它们的晶胞参数。采用高分辨x射线衍射法检验了所生长Nd:M3Re2(BO3)4系列品体的晶格完整性,结果显示其摇摆曲线没有出现宽化和劈裂,晶体具有良好的晶格完整性。利用锥光干涉法检验了晶体的光学均匀性,得到的锥光干涉条纹完整平滑,未有扭曲及杂纹出现,表明所生长的Nd:M3Re2(BO3)4系列晶体具有良好的光学均匀性。
     (3)首次对Nd:Ca3La2(BO3)4、Nd:Ca3Gd2(BO3)4、Nd:Sr3La2(BO3)4和Nd:Sr3Y2(BO3)4四种晶体进行了系统性的热学性能的表征,包括晶体的热膨胀、热扩散及比热。利用密度、比热和热扩散系数乘积的方法计算了上述四种晶体的热导率,结果表明这四种晶体的热导率随温度升高而升高,表现出一种玻璃特性。四种晶体的热导率在室温条件下分别为:k11=1.08Wm-1K-1,0,85Wm-1K-1,1.38Wm-1K-1,0.74Wm-1K-1;k22=1.12Wm-1K-/-,0.89Wm-1K-1,1.41Wm-1K-1,1.00Wm-1K-1; k33=1.03Wm-1K-1,0.84Wm-1K-1,1.30Wm-1K-1,0.67Wm-1K-1其中Nd:Sr3La2(BO3)4晶体表现出更好的热学性能,且热导率优于Nd:glass,使得该晶体有应用于高功率激光系统中的可能。
     (4)对Nd:Ca3La2(BO3)4、Nd:Ca3Gd2(BO3)4、Nd:Sr3La2(BO3)4和Nd:Sr3Y2(BO3)4四种晶体进行了光学性能的表征,以Nd:Sr3La2(BO3)4为例,采用最小偏向角法测量了该晶体在多波长下的折射率,并拟合了色散方程。另外测量了四种晶体的偏振吸收光谱,采用J-O理论对四种晶体的光谱参数进行了计算。同时也测量了四种晶体的偏振发射谱,并以Nd:Ca3La2(BO3)4晶体为例,测量了该晶体低温下的偏振发射谱。得出了该晶体无论是在低温还是室温条件下,晶体的谱线加宽都主要由晶体无序性导致的非均匀加宽造成。该系列晶体在1060nm处的半峰宽与Nd:glass相当,说明该系列晶体是潜在的获得飞秒脉冲的激光基质晶体。
     (5)首次实现了Nd:Ca3La2(BO3)4. Nd:Ca3Gd2(BO3)4. Nd:Sr3La2(BO3)4和Nd:Sr3Y2(BO3)4四种晶体的连续激光输出。最大输出功率分别为1.08W、603mW、533mW和905mW。
     另外针对目前应用于OPCPA技术的关键性硼酸盐晶体材料YCOB晶体,我们开展了相应的工作,主要包括如下几个方面:
     (1)针对大尺寸YCOB晶体的生长,我们首先开展了数值模拟的工作。我们采用CGSim软件模拟了各生长参数对生长系统中传质和传热过程的影响,包括晶体转速、轴向温梯以及晶体直径的大小对晶体生长过程中的作用和影响。
     (2)以高纯原料Y2O3, H3BO3, CaCO3通过固相反应合成了晶体生长用多晶料。选取适当的工艺参数,采用提拉法进行了大尺寸YCOB晶体的生长,生长过程采用自动等径技术控制。分析了影响YCOB晶体生长的各种囚素,提出了解决晶体生长过程中遇到的各种问题的办法。总结如下:
     1. YCOB晶体的生长需要采用高纯的原料来进行多晶料的合成。由于B203在原料合成和晶体生长的过程中都有一定程度的挥发,我们在初期配料的时候将H3BO3的量过量总质量的1%,防止组分的偏析。并在每一次长完晶体之后,再额外补充一部分的硼酸。
     2.选用合适的坩埚尺寸和较好的保温措施,以降低晶体的较大尺寸对生长系统内传质和传热过程的影响。
     3.减小液而之上的轴向温度梯度,避免晶体生长和降温过程中因为梯度过大造成的晶体开裂。
     4.在高于熔点附近的温度下,对熔体进行一定时间的过热处理,使得熔体中的气泡减少及YCOB多晶料的充分反应。
     5.平放肩晶体过程中,由于晶体肩部直接裸露与较低温的生长环境中而增加了晶体的热散失,进而造成晶体肩部存在较大的温度梯度,易引起开裂,因此我们采用合适的放肩角,以保证晶体的斜放肩生长,避免平放肩导致的肩部开裂。选定适当的转速,在温场一定的情况下,保证晶体的微凸界面生长。另外拉速尽量小,使得晶体生长过程中的排杂充分,减少晶体缺陷的产生。
     6.设计合理的保温层及生长工艺参数,降低界面处径向的温度梯度,以使得YCOB晶体的螺旋生长降到最低。
     7.晶体提脱之后,采用分段、缓慢降温的程序,以使热冲击和热应力降到最低,避免降温过快造成的晶体开裂。
     通过采取以上措施,我们实现了大尺寸、高光学质量YCOB晶体的斜放肩、微凸界面生长。获得了2英寸、4英寸和5英寸的高光学质量的YCOB晶体。
     (3)通过对YCOB样品进行锥光干涉的试验,表明所生长的YCOB晶体有很好的光学均匀性,为了进一步验证晶体的光学均匀性,我们又采用D PhaseCam2000干涉仪测量了YCOB晶体的均匀性。结果表明,YCOB晶体的均匀性达到1.35×10-5量级,说明晶体均匀性良好,与之前做的锥光干涉实验相吻合。
     (4)对YCOB晶体样品进行了透过谱的测量,得出YCOB晶体在1030nm附近的透过率约为85%。通过计算其折射率引起的反射损耗,得到在该波段的吸收系数小于0.002cm-1,YCOB晶体具有高的透过率。
     (5)对YCOB晶体样品进行了抗光损伤阈值的测量,发现在能量密度大于20J/cm2时,晶体未见损伤,已经达到了工程需要,具备输出高功率密度激光的能力
     (6)测量了YCOB晶体的热学性质,得出YCOB晶体在主轴方向的热膨胀系数用张量表示为:热导率沿主轴方向用张量表示为:
As the imminent exhaustion of the fossil energy and the slow progress of new energy, the development of inertial confinement fusion (ICF) carries the human dream of the clean energy. The traditional inertial confinement fusion is ususlly realized by the central hot spot (CHS) ignition. With the Chirped Pulse Amplification (CPA) technology invented in1985by the University of Rochester in the United States, the technology makes the laser pulse width significantly shorten to the picosecond and femtosecond level, according to which people proposed the fast ignition (FI) inertial fusion concept. Compared with the CHS, the FI has the potential for higher gain, lower ignition threshold and less stringent implosion symmetry requirements. In1986, the Optical Parametric Chirped Pulse Amplification (OPCPA) technique, a combination of the CPA and OPA (optical parametric amplification) techniques, was first mentioned by A. Piskarakas. In1992, A. Dubictis refined the concept and proved the feasibility of the OPCPA technique. Compared with CPA technique, the OPCPA technique has higher gain per single pass, a broader gain bandwidth, a higher output beam quality, a lower heat deposition and a smaller B integral.and SNR, wider bandwidth and the advantages of small thermal effect. And now the OPCPA technique has become the most efficient way to abtain the ultrashort pules and higher power. The OPCPA system is usually based on the Ti:sapphire of Nd:glass femtosecond oscillator. However, the Ti:sapphire femtosecond oscillator is very expensive and complicated, and the Nd:galss femtosecond oscillator was limited by the poor thermal performance in the high power application. Thus, it is necessary to explor the potential laser materials with good thermal performance. The borate family with the formula Nd:M3Re2(BO3)4(M=Ca, Sr; Re=Y, La, Gd) have attracted a great deal of attention. The absorption and emission spectra are strongly inhomogeneously broadened due to its disordered structure. This feature of broad spectra facilitates production of ultrashort pulses, which could be a substitute for Ti:sapphire of Nd:glass. Additionally, we know that the nonlinear crystal material as amplifying medium in the OPCPA technique is key requirement to achieve high average/peak power. At present, there are several nonlinear optical crystals have been utilized in OPCPA applications:KH2PO4or KD2PO4(KDP or DKDP), LBO and BBO, LBO and BBO are all grown by flux method and are currently limited to2cm apertures due to intrinsic growth issues. And they are only used in the moderate-average-power OPCPA system. While KDP crystal growth has been demonstrated in apertures exceeding40cm, a small nonlinear coefficient and poor thermo-optic properties make this crystl relatively unattractive for high-average-power OPCPA use. A crystal that has received more attention in the past few years is yttrium calcium oxyborate (YCOB). It possesses several prominent properties, including high fracture strength, moderate thermal conductivity and nonlinear coupling. More importantly, lagre aperture YCOB crystal can be grown by CZ method in a shorter period. At present, the growth of the large aperture YCOB crystal is just at the very beginning, which is a serious constraint to the high power laser level in our country. Thus, carrying the growth of large aperture YCOB crystal is of great significance to improve the high power laser level in our country.
     In this thesis, based on the above thoughts, the disordered borate family of Nd:M3Re2(BO3)4(M=Ca, Sr; Re=Y, La, Gd) were grown and systematically studied. More importantly, the work on large aperture YCOB crystal growth and properties characterization were also systematically studied. The main contents are as follows:
     Firstly, aiming for new potential seed sources of OPCPA system, the Nd:M3Re2(BO3)4(M=Ca, Sr; Re=Y, La, Gd) crystals were grown and studied. The outline is shown as follows:
     (1) High quality single crystals of Nd:Ca3La2(BO3)4, Nd:Ca3Gd2(BO3)4, Nd:Sr3La2(BO3)4and Nd:Sr3Y2(BO3)4were grown using the Czochralski technique.
     (2) The phase purity of the as-grown crystal was first checked by X-ray powder diffraction (XRPD). The accurate unit cell parameters were further calculated using the Pawley fitting of the whole powder pattern. The rocking curves were measured by using the high resolution X-ray diffraction method to test the lattice integrity of the as-grown crystals, the results indicated that the rocking curves were without broadening and splitting, the as-grown crystals are of perfect lattice integrity. The optical uniformity of these crystals were tested by the conoscopic interference method, the patterns of the interference were complete and smooth, indicating that the as-grown crystals are of good optical uniformity.
     (3) The variation of thermal expansion, specific heat and thermal diffusion with temperature of Nd:Ca3La2(BO3)4, Nd:Ca3Gd2(BO3)4, Nd:Sr3La2(BO3)4and Nd:Sr3Y2(BO3)4crystals were determined for the first time to our knowledge. Thermal conductivities of the four crystals were calculated with the measured datas of specific heat, thermal diffusion coefficient and density. It was found that the thermal conductivities of all the four crystals increase with increasing temperature, indicating a glass-like behavior. The thermal conductivities values of Nd:Ca3La2(BO3)4, Nd:Ca3Gd2(BO3)4, Nd:Sr3La2(BO3)4and Nd:Sr3Y2(BO3)4were k11=1.08Wm-1K-1,0.85Wm-1K-1,1.38Wm-1K-1,0.74Wm-1K-1; k22=1.12Wm-1K-1,0.89Wm-1K-1,1.41Wm-1K-1,1.00Wm-1K-1;k33=1.03Wm-1K-1,0.84Wm-1K-1,1.30Wm-1K-1,0.67Wm-1K-1, respectively. It was found that the values of Nd:Ca3La2(BO3)4is larger than Nd:glass, making it suitable for such applications in the high laser system.
     (4) The optical properties of all the four crystals were measured. Take Nd:Sr3La2(BO3)4for example, the refractive indices were measured by the minimum-deviation method. Sellmeier's equations were fitted by the least-squares. We measured the polarized absorption of Nd3+, and calculated the spectral parameters based on the J-O theory. The polarized fluorescence spectra of all the four crystals were also measured at room temperature. In addition, take Nd:Ca3La2(BO3)4crystal for example, the polarized fluorescence spectra at low temperature (77.3K) were also measured for comparison. It was found that the inhomogeneous broadening behavior plays a decisive role, not only in the room temperature, but also in the low temperature. The values of FWHM at1060nm of these crystals are nearly the same with Nd:glass, which make them capable for generating femtosecond pulse.
     (5) The continuous-wave laser performance of Nd:Ca3La2(BO3)4, Nd:Ca3Gd2(BO3)4, Nd:Sr3La2(BO3)4and Nd:Sr3Y2(BO3)4crystals have been demonstrated for the first time, and the maximum output power was obtained to be1.08W,603mW,533mW and905mW at1.06μm.
     Secondly, we carried out the corresponding work about the YCOB crystal, which was a key material in the OPCPA system. The outline is shown as follows:
     (1) In this work, the numerical simulation work for the growth of large aperture YCOB crystal was first carried out by using the CGSim software. Various physical effect on the mass and heat transfer, including influence of crystal rotation rate on the growth interface, crystal size and axial thermal gradient on the behavior of melt flow were systematically simulated.
     (2) Polycrystalline material of YCOB was synthesized by solid-phase reaction with99.999%purified starting reagents of Y2O3, H3BO3and99.99%purified reagent of CaCO3. Large aperture YCOB crystal was grown by Czoahralski method with auto diameter control (ADC) technique. In this work, we deeply analysed various influencing factors on the crystal growth, and gave some corresponding measures to resolve them. The details are summarized as follows:
     1. The raw materials with high purity were needed to synthesize the YCOB polycrystalline. An excess quality of1wt%H3BO3was added to compensate for the evaporation of B2O3during growth. In addition, the right amount H3BO3was also added after the crystal growth process to avoid the deviation of the composition.
     2. We know that the larger the size of the crystal, the greater the effect on the mass and heat transfer. In order to reduce the effect, choosing the suitable size of the crucible and right thermal field is necessary.
     3. In order to avoid the cracks that caused by the large gradient, the axial temperature gradient above the liquid surface should be reduced.
     4. Usually, in order to emit the bubbles in the melt and avoid the formation of the polycrystal in the crystal growth process, a temperature of30-50℃higher than its melting point was required.
     5. During the period of crystal growth with flat shouldering, the shouder part of crystal was exposed directly upward to the coolest portion of growth enclosure; this increases the heat loss through crystal, which results in larege thermal gradient in the shoulder part of the crystal, corresponding the crack. Thus, the crystal shoulder must have a certain angle which can avoid the cracks. In addition, the solid/liquid interface should be kept at a slightly convex interface in order to take the impurities out fully.6. By designing the suitable thermal field and technological parameters and reducing the radial temperature gradient in the furnace, the spiral growth of YCOB could be avoided.
     7. After the YCOB crystal pulled out off the melt, by using a variable rate and several step cooling procedure and by extending the separation time to minimize thermal shock and excess stress, the crack problem was fully solved.
     Through the above measures, the large size and high optical quality of YCOB crystal with slightly convex interface were obtained, including2inch,4inch and5inch.
     (3) The optical uniformity of YCOB crystal was tested by the conoscopic interference method, the patterns of the interference were complete and smooth, indicating that the as-grown crystals are of good optical uniformity. To further quantify the optical homogeneity, a commercial D PhaseCam2000interferometer was used. The homogeneity value is calculated to be1.35×10-5, with an RMS-deviation of1.797×10-6, indicating that the YCOB crystal is also of good optical homogeneity.
     (4) The transmission spectrum of YCOB crystal was measured at room temperature. The result shows that the YCOB crystal has a high and wide spectral transparency range. The transmittance of YCOB can reach85%in the whole wavelength range, and the absorption coefficient was calculated to be0.002cm-1.
     (5) The laser damage threshold was measured, and no demage was found that when the energy density is greater than20J/cm2. Thus, it can be concluded that the YCOB crystal has reached the project need and has the ability to use in the high power application.
     (6) Thermal expansion coefficients along the a, b, c, a*and c*of YCOB crystal were measured by thermal-mechanical analyzer. We also calculated the thermal expansion coefficients along the principal axes, the results can be represented as and the thermal conductivities along the principal axes can also be represented as
引文
[1]王淦昌,取之不尽用之不竭的理想能源——激光惯性约束核聚变,现代物理知识,1996,S1,1-4.
    [2]王淦昌,新科技革命的趋势与对策——慢性约束核聚变(ICF)物理研究的进展与展望,物理实验,1992,12,107-118.
    [3]张杰,浅谈惯性约束核聚变,物理,1999,28,143-152.
    [4]林华顺,21世纪新能源的曙光——激光惯性约束核聚变,能源研究与利用,1993,3,46-47.
    [5]胡仁宇,王淦昌老师——我国惯性约束聚变研究的开创者与奠基人——纪念王淦昌老师诞辰100周年,物理,2007,36,346-349.
    [6]刘红,惯性约束核聚变,现代物理知识,2002,14,13-15.
    [7]林尊琪,激光核聚变的发展,中国激光,2010,37,2202-2207.
    [8]范滇元,张小民,激光核聚变与高功率激光:历史与进展,物理,2010,39,589-595.
    [9]江少恩,丁永坤,缪文勇等,我国激光惯性约束聚变实验研究进展,中国科学,2009,39,1571-1583.
    [10]D. Strickland, G. Mourous, Compression of amplified chirped optical pulse, Opt. Commun.,1985,56,219-221.
    [11]P. Maine, D. Strickland, P. Bado, Pessot. M, Mourou. G. Generation of ultrahigh peak power pulses by chirped pulse amplification, IEEE J. Quantum Electron., 1988,24,398-403.
    [12]M. D. Perry, D. Pennington, B. C. Stuart, G. Tietbohl, J. A. Britten, C. Brown, S. Herman, B. Golick, M. Kartz, J. Miller, H. T. Powell, M. Vergino, and V. Yanovsky, Patawatt laser pulses, Opt. Lett.,1999,24,160-162.
    [13]M. Perry, Crossing the Petawatt Threshold, Sci. Tech. Rev.1996,12,4-11.
    [14]M. D. Perry, D. Pennington, B. C. Stuart, G. Tietbohl, J. A. Britten, C. Brown, S. Herman, B. Golick, M. Kartz, J. Miller, H. T. Powell, M. Vergino, and V. Yanovsky, Petawatt laser pulses, Opt. Lett.,1999,24,160-162.
    [15]i. N. Ross, P. Matousek, M. Towrie, A. J. Langley, and J. L. Collier, The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers, Opt. Commun.,1997',144,125-133.
    [16]J. Collier, C. Hernandez-Gomez, I. N. Ross, P. Matousek, C. N. Danson, and J. walczak, Evaluation of an Ultrabroadband High-gain Amplification Technique for Chirped Pulse Amplification Facilities, Appl. Optics,1999,38,7486-7493.
    [17]N. M. Kroll, Parametric amplification in spatially extended media and application to the design of tuneable oscillators at optical frequencies, Phys. Rev.1962,127, 1207-1211.
    [18]R. H. Kingston, Parametric amplification and oscillation at optical frequencies, Proc. IRE,1962,50,472-474.
    [19]S. A. Akhmanov, and R. V. Khokhlov, Concerning one possibility of amplification of light waves, Sov. Phys. JETP,1963,16,252-257.
    [20]A. Piskarskas, A. Stabinis, and A. Yankauskas, Phase phenomena in parametric amplifiers and generators of ultrashort light pulses, Sov. Phys. Usp.,1986,29, 869-879.
    [21]R. Danielius, A. Piskarskas, A. Stabinis, G. P. Banfi, P. Di Trapani, R. Righini, Traveling-wave parametric generation of widely tunable, highly coherent femtosecond light pulses, J, Opt. Soc. Amer. B,1993,10,2222-2232.
    [22]G. Cerullo and S. De Silvestri, Ultrafast optical parametric amplifiers, Rev. Sci. Instrum.,2003,74,1-18.
    [23]A. Piskarskas, Optical parametric tunable generators:powerful & ultrafast, Opt. Photon. News,1997,7,25-28
    [24]A. Dubietis, G. jonusauskas, A. Piskarskas, Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal, Opt. Commun.,1992,88,437-440.
    [25]A. Dubietis, R. Butkus, A. Piskarskas, Trends in chirped pulse optical parametric amplification, IEEE J. Sel. Top. Quantum Electron.,2006,12.163-172.
    [26]M. Guardalben, J. Keegan, L. Waxer, V. Bagnoud, I. Begishev, J. Puth, and J. Zuegel, Design of a highly stable, high-conversion-efficiency, optical parametric chirped-pulse amplification system with good beam quality, Opt. Express,2003, 11,2511-2524.
    [27]O. V. Chekhlov, J. L. Collier, I. N. Ross, P. K. Bates, M. Notley, C. Hernandez-Gomez, W. Shaikh, C. N. Danson, D. Neely, P. Matousek, S. Hancock, and L. Cardoso,35 J broadband femtosecond optical parametric chirped pulse amplification system, Opt. Lett.,2006,31,3665-3667.
    [28]V. Bagnoud, I. A. Begishev, M. J. Guardalben, Jason Puth, and Jonathan D. Zuegel,5 Hz,>250 mJ optical parmetric chirped-pulse amplifier at 1053 nm, Opt. Lett.,2005,30,1843-1845.
    [29]O. Chekhlov, J. L. Collier, I. N. Ross, Bates. P, Notley M, Shaikh W, Danson C.N, Neely D, Matousek P, Hancock S, High energy optical parametric chirped pulse amplification system, Lasers and Electro-Optics Europe,2005. CLEO/Europe. 2005 Conference on. IEEE,2005,406.
    [30]V. V. Lozhkarev, G. I. Freidman, V. N. Ginzburg, E.V. Katin, E.A. Khazanov, A.V. Kirsanov, G. A. Luchinin, A. N. Mal'shakov, M. A. Martyanov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, I. V. Yakovlev, Compact 0.56 Petawatt laser system based on optical parametric chirped pulse amplification in KD*P crystals, Laser Phys. Lett.,2007,4,421-427.
    [31]M. Martinez. E. Gaul, T. Ditmire, S. Douglas, W. Henderson, J. Blakeney, J. Caird, A. Erlandson, I. Iovanovic, C. Ebbers, and B. Molander, The Texas Petawatt Laser, Boulder Damage Symposium XXXVII:Annual Symposium on Optical Materials for High Power Lasers. International Society for Optics and Photonics,2005:59911N-59911N-9.
    [32]F. Giambruno, C. Radier, G. Rey, and G.Cheriaux, Design of a 10 PW (150J/15fs) peak power laser system with Ti:sapphire medium through spectral control, Appl. Optics,2011,50,2617-2621.
    [33]I. N. Ross, P. Matousek, M. Towrie, A. J. Langley, J. L. Collier, C. N. Danson, C. Hernandez-Gomez, D. Neely, and K. Osvay, Prospects for a multi-PW source using optical parametric chirped pulse amplifiers, Laser Part. Beams,1999,17, 331-340.
    [34]S. Adachi, H. Ishii, T. Kanai, N. Ishii, A. Kosuge, and S. Watanabe,1.5 mJ,6.4 fs parametric chirped-pulse amplification system at 1 KHz, Opt. Lett.,2007,32, 331-340.
    [35]S. Adachi, H. Ishii, T. Kanai, A. Kosuge, J. Itatani, Y. Kobayashi, D. Yoshitomi, K. Torizuka, and S. Watanabe,5-fs, multi-mJ, CEP-locked parametric chirped-pulse amplifier pumped by a 450-nm source at 1 KHz, Opt. Express,2008,16, 14341-14352.
    [36]M. Schultze, T. Binhammer, A.Steinmann, Guido Palmer, Moritz Emons, and Uwe Morgner, Few-cycle OPCPA system at 143 kHz with more than 1 μJ of pulse energy. Opt. Express,2010,18,2836-841.
    [37]I. Jovanovic, C. G. Brown, C. A. Ebbers, C. P. J. Barty, Nicolas Forget, and Catherine Le Blanc, Generation of high-contrast millijoule pulse by optical parametric chirped-pulse amplification in periodically poled KTiOPO4, Opt. Lett., 2005,30,1036-1038.
    [38]G. Q. Xie, L. J. Qian, P. Yuan, D. Y. Tang, W. D. Tan, H. H. Yu, H. J. Zhang, J. Y. Wang, Generation of 534 fs pulses from a passively mode-locked Nd:CLNGG-CNGG disordered crystal hybrid laser, Laser phys. Lett.,2008,33, 1872-1874.
    [39]G. Q. Xie, D. Y. Tang, W. D. Tan, H. Luo, H. J. Zhang, H. H. Yu, and J. Y. Wang, Subpicosecond pulse generation from a Nd:CLNGG disordered crystal laser, Opt. Lett.,2009,34,103-105,
    [40]Y. F. Chen, H. C. Liang, J. C. Tung, et al., Spontaneous subpicosecond pulse formation with pulse repetition rate of 80 GHz in a diode-pumped Nd:SrGdGa3O7 disordered crystal laser. Opt. lett.,2012,37,461-463.
    [41]Y. Zhang, Z. B. Lin, Z. S. Hu, and G. F. Wang. Growth and spectroscopic properties of Nd3+-doped Sr3Y2 (BO3)4 crystal, J Solid State Chem.2004,177, 3183-3186.
    [42]B. V. Mill, A. M. Tkachuk. E. L. Belokoneva, G. I. Ershova, D. I. Mironov and I. K. Razumova, Spectroscopic studies of Ln2Ca3B4O12-Nd3+(Ln=Y, La, Gd) crystals, J. Alloys Compd.1998,275-277,291-294.
    [43]Y. Wang, C. Y. Tu, Z. Y. You, J. F. Li, Z. J. Zhu, G. H. Jia, X. A. Lu and B. C. Wu, Optical spectroscopy of Ca3Gd2(BO3)4:Nd3+ laser crystal, J Mod. Optic. 2006,53,1141-1148.
    [44]Z. B. Pan, H. J. Zhang, H. H. Yu, M. Xu, Y. Y. Zhang, S. Q. Sun, J. Y. Wang, Q. Wang, Z. Y. Wei and Z. G. Zhang, Growth and characterization of Nd-doped disordered Ca3Gd2(BO3)4 crystal, Appl. Phys. B..2012,106,197-209.
    [45]P. Ma, J. T. Chen, Z. S. Hu, Z. B. Lin and G. F. Wang, "Structure of Ba3Y2(BO3)4 crystal," Mat Res Innovat.2005,9,63-64.
    [46]C. Y. Tu, Y. Wang. Z. Y. You, J. F. Li, Z. J. Zhu and B. C. Wu. "Growth and spectroscopic characteristics of Ca3Gd2(BO3)4:Yb3+laser crystal,"J. Cryst. Growth 2004,265,154-158.
    [47]A. Brenier, C. Y. Tu, Y. Wang, Z. Y. You, Z. J. Zhu and J. F. Li, "Diode-pumped laser operation of Yb3+ -doped Y2Ca3B4O12 crystal," J. Appl. Phys.,2008,104, 013102.
    [48]A. Kokh. N. Kononova, G. Mennerat, et al., Growth of high quality large size LBO crystals for high energy second harmonic generation,J. Cryst. Growth, 2010,312,1774-1778.
    [49]Z. G. Hu, Y. Zhao, Y. C. Yue, and X. S. Yu, Large LBO crystal growth at 2 kg-level,J Cryst. Growth,2011,335,133-137.
    [50]Y. Mori, I. Kuroda, S. Nakajima. et al., New nolinear optical crystal:Cesium lithium borate, Applied Phys. Lett.,1995,67,1818-1820.
    [51]Y. Mori, S. Nakajima, A. Taguchi, A. Miyamoto, M. Inagaki, T. Sasaki, H. Yoshida, and S. Nakai, New nonlinear optical crystal CsLiB6O10 for laser fusion, AIP Conf. Proc.,1995,369,998-1003.
    [52]R. Norrestam, M. Nygren, J. O. Bovin, Structural investigations of new calcium rare earth (R) oxyborates with the composition Ca4RO(BO3)3, Chew Mater,1992, 4,737-743.
    [53]G. Aka, L. Bloch, J. M. Benitez, P. Crochet, A. Kahn-Harari, D. Vivien, F.Salin, P. Coquelin and D. Colin, A New Nonlinear Oxoborate Crystal Characterized by using Femtsecond Broadband Pulses, OSA TOPS on Advanced Solid-State Lasers,1996,Vol. Ⅰ,336-340.
    [54]罗军,钟真武,范世马岂,王锦昌,新型非线性光学晶体Ca4RO(BCr3)3的研究进展,无机材料学报,2000,15,1-8
    [55]M. Iwai, T. Kobayashi, H. Furuya, Yusuke Mori and Takatomo Sasaki, Crystal Growth and Optical Characterization of Rare-earth (Re) Calcium Oxyborate ReCa4O(BO3)3(Re=Y or Gd) as New Nonlinear Optical Material, Jpn. Appl. Phys,1997,36,276-279.
    [56]M. Yoshimura, T. Kobayashi, H. Furuya, Y Mori, T Sasaki, Yttrium Calcium Oxyborate YCaO(BO3)3 for Blue and UV Generation. CWG2, CLEO' 98,1998, 270.
    [57]V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, Handbook of Nolinear Optical Crystals, Springer-verlag Berlin Heidelberg New York,1999,68-85.
    [58]Z. M. Liao, I. Jovanovic, C. A. Ebbers, Yiting Fei, and Bruce Chai, Energy and average power sclable optical parametric chirped-pulse amplification in yttrium calcium oxyborate, Opt. Lett.,2006,31,1277-1279.
    [59]Y. T, Fei, H. T. Bruce, C. A. Ebbers, Z.M. Liao, K.I. Schaffers, P. Thelin, Large-aperture YCOB crystal growth for frequency conversion in the high average power laser system,J. Cryst. Growth,2006,290,301-306.
    [60]Yetta,劳伦斯利弗莫尔实验室开发的波长转换器获奖,激光与光电子学进展, 2006,10,8.
    [61]W. G. Erhard, M. Martinez, J. Blakeney, et al., Demonstration of a 1.1 petawatt laser based on a hybrid optical parametric chirped pulse amplification/mixed Nd:glass amplifier, Appl. Opt.,2010,49,1676-1681.
    [62]M. Z. Sun, L. L. Ji, Q. Y. B, Nannan Wang, Jun Kang, Xinglong Xie. and Zunqi Lin, Analysis of ultra-broadband high-energy optical parametric chirped pulse amplifier based on YCOB crystal, Chin. Opt. Lett.,2011,9,101901-1-101901-4.
    [63]L. H. Yu, X. Y. Liang, J. F. Li, Anhua Wu, Yanqing Zheng, Xiaoming Lu, Cheng Wang, Yuxin Leng, Jun Xu, Ruxin Li, and Zhizhan Xu. Experimental demonstration of joule-level non-collinear optical parametric chirped-pulse amplification in yttrium calcium oxyborate, Opt. Lett.,2012,37,1712-1714.
    [64]李丽霞,王继扬,魏景谦,宫波,刘耀岗,掺钕三硼酸钙氧钇晶体的拉曼散射光谱,应用激光1999.19,148.
    [65]宫波,魏景谦,王继扬,刘耀岗,胡晓波,管庆才,蒋民华,高质量YCOB和Nd:YCOB晶体生长条件探讨,人工晶体学报,1999,28,31-36.
    [66]J. H. Liu, G. M. Li, S. J. Zhang, H. C. Chen, B. Gong, J. Y. Wang, Y. G. Liu, M. H. Jiang, and Z. S. Shao, Investigation of Effective Nonlinear Coefficient of Nd:GdCOB and YCOB, Chin. Phy. Lett,1999,16,729.
    [67]X. B. Hu, J. Y. Wang, B. Gong, J. Q. Wei, Y. G. Liu, S. S. Jiang, W. J. Liu, J. H. Jiang, and Y. L. Tian, Characterization of Growth Defects in Nd:YCa4O(BO3)3 Crystals by Transmission Synchrotron Topography, Phts.Stat.Sol.(a),1999,174, 183-187.
    [68]王继扬,魏景谦,宫波,胡小波,李丽霞,邵宗书,吕军华,李光明,侯学元,刘耀岗,刘恩泉,蒋民华,Nd:YCOB晶体的生长及其自倍频激光运转,自然科学进展,2000,10,410-415.
    [69]郭明,魏景谦,田丽莉,宫渡,夏海瑞,胡晓波,刘耀岗,王继扬,Cr:Nd:YCOB光谱参数的计算,人工晶体学报,2000,29,59-63.
    [70]J. Y. Wang, Z. S. Shao, J. Q. Wei, X. B. Hu, Y. G. Liu, B. Gong, G. M. Li, J. H. Lu, M. Guo, M. H. Jiang, Research on growth and SFD of Nd:ReCOB crystals, Progress. C. GCW,2000,40,17-31.
    [71]王正平,周广勇,王春,宋仁波,江怀东,傅琨,王长青,刘均海,王继扬,刘耀岗,魏景谦,邵宗书,YCOB晶体的1.064μm三倍频输出,光电子.激光2000,11,606.
    [72]S. J. Zhang, Z. X. Cheng, Z. P. Wang, J. Y. Wang, Z. S. Shao, Study on the Second-Harmonic Generation of YCa4O(Bo3)3 Crystal along Various Phase-Matching Directions, Phys.stat.sol.(a),2001,183,435-438.
    [73]J. H. Liu, C. Q. Wang, S. J. Zhang, C. L. Du, J. H. Lu, J. Y. Wang, H. C. Chen, Z. S. Shao, M. H. Jiang, Investigation on intracavity second-harmonic generation at 1.06μm in YCa4O(BO3)3 by using an end-pumped Nd:YVO4 laser, Opt. Commun., 2000,182,187-191.
    [74]L. X. Li, M. Guo, H. D. Jiang, X. B. Hu, Z. S. Shao, J. Y. Wang, J. Q. Wei, H. R. Xia, Y. G. Liu, M. H. Jiang, Growth and Spectra of YCOB and Nd:YCOB crystals, Cryst. Res. Technol,2000,35,1361-1371.
    [75]王正平,邵耀鹏,许心光,王继扬,刘耀岗,魏景谦,邵宗书,Nd:Ca4ReO(BO3)3(Re=Gd, Y)晶体最佳激光、最佳倍频及最佳自倍频方向的确定,物理学报,2002,51,2029-2033.
    [76]W. W. Ge, H. J. Zhang, J. Y. Wang, M. H. Jiang, S. Q. Sun, D. G. Ran, H. R. Xia, and R. I. Boughton, Thermal properties of monoclinic crystal Er3+: Yb3+:Ca4YO(BO3)3, J. Appl. Crystallogr.,2007,40,125-132.
    [1]Y. Zhang, Z. B. Lin, Z. S. Hu, and G. F. Wang, Growth and spectroscopic properties of Nd3+-doped Sr3Y2 (BO3)4 crystal, J Solid State Chem.,2004,177, 3183-3186.
    [2]B. V. Mill, A. M. Tkachuk, E. L. Belokoneva, G. I. Ershova, D. I. Mironov and I. K. Razumova, Spectroscopic studies of Ln2Ca3B4O12-Nd3+(Ln=Y, La, Gd) crystals, J. Alloys Compd.,1998,275-277,291-294.
    [3]Y. Wang, C. Y. Tu, Z. Y. You, J. F. Li, Z. J. Zhu, G. H. Jia, X. A. Lu and B. C. Wu, Optical spectroscopy of Ca3Gd2(Bo3)4:Nd3+ laser crystal, J Mod. Optic. 2006,53,1141-1148.
    [4]Z. B. Pan, H. J. Zhang, H. H. Yu, M. Xu, Y. Y. Zhang, S. Q. Sun, J. Y. Wang, Q. Wang, Z. Y. Wei and Z. G. Zhang, Growth and characterization of Nd-doped disordered Ca3Gd2(BO3)4 crystal, Appl. Phys. B.,2012,106,197-209.
    [5]P. Ma, J. T. Chen, Z. S. Hu, Z. B. Lin and G. F. Wang, Structure of Ba3Y2(BO3)4 crystal, Mat Res Innovat,2005,9,63-64.
    [6]C. Y. Tu, Y. Wang, Z. Y. You, J. F. Li, Z. J. Zhu and B. C. Wu, Growth and spectroscopic characteristics of Ca3Gd2(BO3)4:Yb3+laser crystal, J. Cryst. Growth, 2004,265,154-158.
    [7]A. Brenier, C. Y. Tu, Y. Wang, Z. Y. You, Z. J. Zhu and J. F. Li, Diode-pumped laser operation of Yb3+-doped Y2Ca3B4O12 crystal, J. Appl. Phys.,2008,104, 013102.
    [8]江怀东,山东大学博士学位论文,2003.
    [9]W. Piekarzyk, M. Berkowski and G. Jasiotek, The czochalski growth of BaLaGa3O7 single crystals,j. Cryst. Growth,1985,71,395-398.
    [10]肖定全,王民,晶体物理学,四川大学出版社,1989.
    [11]闵乃本,晶体生长的物理基础,上海科学技术出版社,1982.
    [12]G. Wallez, N. Clavire, N. Dacheux, and D. Bregiroux, Negative thermal expansion in Th2O(PO4)2, Mater. Res. Bull.,2011,46,1777-1780.
    [13]V. Korthuis. N. Khosrovani, A. W. Sleight, N. Roberts, R. Dupree, and W. W. Warren, Negative Thermal Expansion and Phase Transitions in the ZrV2-xPxO7 Series, Chem. Mater.,1995,7,412-417.
    [14]H. J. Zhang, L. Zhu, X. L. Meng, Z. H. Yang, C. Q. Wang, W. T. Yu, Y. T. Chow, and M. K. Lu, Thermal and Laser Properties of Nd:YVO4 Crystal, Cryst. Res. Technol.34,1011-1016(1999).
    [15]C. Q. Wang, H. J. Zhang, X. L. Meng, L. Zhu, Y. T. Chow, X. S. Liu, R. P. Cheng, Z. H Yang, S. J. Zhang, and L. K. Sun, Thermal, spectroscopic properties and laser performance at 1.06 and 1.33μm of Nd:Ca4YO(BO3)3 and Nd:Ca4GdO(BO3)3 crystals, J. Cryst. Growth,2000,220,114-120.
    [16]C. L. Choy, W. P. Leung, T. G. Xi, Y. Fei, and C. F. Shao, Specific heat and thermal diffusivity of strontium barium niobate (Sr1-xBaxNb2O6) single crystals,J Appl. Phys.,1992,71,170-173.
    [17]W. Koechner, Solid-State Laser Engineering (Springer-Verlag,1998), Chap.2.
    [18]L. G. Deshazer and R. J. St. Piorro, Conference on Lasers and Electro-Optics (Optical Society of America,1992).
    [19]Y. Sato and T. Taira, Thermo-optical and -mechanical parameters of Nd:GdVO4 and Nd:YVO4, IEEE J. Sel. Top. Quantum Electron,2005,11,613-620.
    [20]B. R. Judd, Optical absorption intensities of rare-earth ions, Phys. Rev.,1962,127, 750-761.
    [21]G. S. Ofelt, Intensities of crystal spectra of rare-earth ions, J. Chem. Phys.,1962, 37.511-520.
    [22]H. R. Xia, X. L. Meng, M. Guo, L. Zhu, H. J. Zhang, and J. Y. Wang, Spectral parameters of Nd-doped yttrium orthovanadate crystals, J. Appl. Phys.,2000,88, 5134-5137.
    [23]W. F. Krupke. M. D. Shinn, J. E. Marion. J. A. Caird, and S. E. Stokowski, Spectroscopic, optical, and thermomechanical properties of neodymium- and chromium-doped gadolinium scandium gallium garnet, J. Opt. Soc. Amer. B, 1986,3,102-114.
    [24]Y. Y. Zhang, H. J. Zhang, H. H. Yu, J. Y. Wang, W. L. Gao, M. Xu, S. Q. Sun, M. H. Jiang and R. I. Boughton, Synthesis, growth, and characterization of Nd-doped SrGdGa3O7 crystal,J. Appl. Phys.,2010,108,063534.
    [25]F. Hanson, D. Dick, H.R. Verdun and M. Kokta, Optical properties and lasing of Nd:SrGdGa3O7, J. Opt. Soc. Am. B,1991,8,1668-1673.
    [26]E. Cavalli, E. Zannoni, A. Belletti, V. Carozzo, A. Toncelli, M. Tonelli and M. Bettinelli, Spectroscopic analysis and laser parameters of Nd3+ in Ca3Sc2Ge3O12 garnet crystals, Appl. Phys. B.,1999,68,677-681.
    [27]Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorge, N. Garnier, E. Descroix, M. Bon and P. Laporte, Excited-state-absorption and upconversion studies of Nd3+-doped single crystals Y3Al5O12, YLiF4, and LaMgAl11O19, Phy. Rev. B., 1995,51,784-799.
    [28]A. A. Kaminskii, Crystalline Lasers:Physical Processes and Operating Schemes (CRC Press, New York,1996). pp 231-238.
    [29]J. M. Fan, Z. B. Lin, L. Z. Zhang, Z. S. Hu, G. F. Wang, Spectral parameters of Nd3+ in the Nd3+:GdMgB5O10 crystal, Chinese. J. Struct. Chem.,2005,24, 419-423.
    [30]C. Spielmann, F. Krausz, T. Brabec, E. Wintner, and A. Schmidt, Femtosecond passive mode locking of a solid-state laser by a dispersively balanced nonlinear interferometer,Appl. Phys. Lett.,1991,58,2470-2472.
    [31]F. X. Kartner, D. Kopf, and U. Keller, Ultrafast Phenomena IX (Springer-Verlag, 1994).
    [1]F. Dupret, P. Nicodeme, Y. Ryskmas, P. Wouters, and M. J. Crochet, Global modelling of heat transfer in crystal growth furnaces. Int. J. Heat Mass Tran., 1990,33,1849-1871.
    [2]G. Muller, A. Muhe, R. Backofen, E. Tomzig, W. V. Ammon, Study of oxygen transport in Czochralski growth of silicon, Microelectron. Eng.,1999,45, 135-147.
    [3]V. V. Kalaev, I. Yu. Evstratov, Yu. N. Makarov, Gas flow effect on global heat transport and melt convection in Czochralski silicon growth, J. Crystal Growth, 2003,249,87-99.
    [4]V. V. Kalaev, D. P. Lukanin, V. A. Zabelin, Yu. N. Makarov, J. Virbulis, E. Dornberger, W. von Ammon, Prediciton of bulk defects in CZ Si crystals using 3D unsteady calculations of melt convection, Mat. Sci. Semicon. Proc.,2003,5, 369-373.
    [5]D. P. Lukanin, V. V. Kalaev, Yu. N. Makarov, T. Wetzel, J. Virbulis, and W. von Ammon, Advance in the simulation of heat transfer and prediction of the melt-crystal interface shape in silicon CZ growth, J. Crystal Growth,2004,266, 20-27.
    [6]V. V. Kalaev, D. P. Lukanin, V. A. Zabelin, Yu. N, Makarov, J. Virbulis, E. Dornberger, and W. von Ammon, Calculation of bulk defects in CZ Si growth: impact of melt turbulent fluctuations, J. Crystal Growth,2003,250,203-208.
    [7]V. V. Kalaev, Combined effect of DC magnetic fields and free surface stresses on the melt flow and crystallization front formation during 400 mm diameter Si Cz crystal growth, J. Crystal Growth,2007,303,203-210.
    [8]S. E. Demina, E. N. Bystrova, M. A. Lukanina, V. M. Mamedov, V. S. Yuferev, E. V. Eskov, M. V. Nikolenko, V. S. Postolov, and V. V. kalaev, Numerical analysis of sapphire crystal growth by the Kyropoulos technique, Opt. Mater., 2007.30.62-65.
    [9]C. W. Lan, Recent progress of crystal growth modeling and growth control. Chem. Eng. Sci.,2004.59.1437-1457.
    [1]J. Czochralski, Measuring the velocity of crystallization of metals, Z Phys. Chem.,1918,92.219.
    [2]H.von. Wartenberg. Elastische Nachwirkung in Metallen, Deut. Phys. Gesell. 1918.20,113.
    [3]G. K. Teal and J. B. Litter, Growth of germanium single crystals, Phys Rev,1950, 78,647.
    [4]H. E. Buckley, Crystal Growth, Wiley, New York,1951,308.
    [5]W. C. Dash, Growth of Silicon Crystals free from Dislocations, J. Appl. Phys., 1959,30,459-474.
    [6]L. F. Johnson, K. Nassau. Infrared fluorescence and stimulated emission of Nd3+ in CaWO4, Proc. IRE,1961.49.1704-1705.
    [7]Y. T. Fei. B. H. T. Chai, C. A. Ebbers, Z. M. Liao, K. I. Schaffers, and P. Thelin. Large-aperture YCOB crystal growth for frequency conversion in the high average power laser system, J. Cryst. Growth,2006.290,301-306.
    [8]W. W. Ge, H. J. Zhang, J. Y. Wang, M. H. Jiang, S. Q. Sun, D. G. Ran, H. R. Xia, and R. I. Boughton, Thermal properties of monoclinic crystal Er3+ Yb3+:Ca4YO(BO3)3, J-Appl. Crystallogr,2007,40,125-132.
    [9]A. H. Wu, L. W. Jiang, G. X. Qian, Y. Q. Zheng, J. Xu, and E. Shi, Bridgman growth of large-aperture yttrium calcium oxyborate crystal, Mater. Res. Bull., 2012.47.2689-2691.
    [10]于永贵,几种氧化物晶体的数值模拟、生长及性质研究,山东大学博士学位论文,2009.
    [11]罗先正,YAG晶体开裂原因的分析与解决办法,人工晶体学报,1982,Z1,9-10。
    [12]C. H. Xu, S. H. Meng, M. F, Zhang, H. B. Zuo, and G. G. Wang, Thermal stress and cracks during the growth of large-sized sapphire with SAPMAC method, Chin. J. Aeronaut.,2007,20,475-480.
    [13]张仁化,张弘,王立华,刘景和,大尺寸BaF2晶体开裂的研究,硅酸盐学报,1984,12,483-489。
    [1]肖定全,王民,晶体物理学,四川大学出版社,1989。
    [2]周益春,郑学军,材料的宏观力学性能,高等教育出版社,2009。
    [3]W. W. Ge, H. J. Zhang, J. Y. Wang, M. H. Jiang, S. Q. Sun. D. G. Ran. H. R. Xia. and R. I. Boughton. Thermal properties of monoclinic crystal Er' Yb3+:Ca4YO(BO3)3,J. Appl Crystal/ogr.2007.40,125-132.
    [4]J. F. Nye, Physical Properties of Crystals (Oxford University Press, Oxford, 1985).
    [5]D. Xu, in:K. C. Zhang. L. H. Zhang (Ed.), Science and Technology of Crystal Growth, vol. Ⅰ, p.328(Chapter 12). (in Chinese).
    [6]A. Lupei. E. Antic-Fidancev, G. Aka. D.Vivien. Spectral and structural studies of GdCOB and YCOB crystals.J, Alloy Compel.,2004,380,235-240.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700