一氧化氮处理提高肥城桃和猕猴桃果实贮藏性能生理机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分别用一氧化氮(NO)气体和外源乙烯熏蒸肥城桃果实以及NO溶液对猕猴桃果实浸果,研究了不同浓度NO处理对肥城桃和猕猴桃果实乙烯产生、可溶性蛋白、糖酸含量、丙二醛、超氧自由基、叶绿素含量和ACC含量,以及ACS、ACO、LOX、SOD、CAT、POD等果实软化过程相关酶活性的影响。
     结果表明,1000μl·L~(-1)外源乙烯熏蒸3 h促进了肥城桃果实乙烯释放、提高了果实中ACS和ACO的活性,而10μl·L~(-1) NO熏蒸3 h明显抑制了果实内源乙烯释放,降低了果实中ACS和ACO活性。外源乙烯和NO协同处理(1000μl·L~(-1)乙烯/10μl·L~(-1) NO熏蒸3 h)后,桃果实的ACS和ACO活性以及乙烯释放量等显著低于外源乙烯单独处理,而高于NO单独处理,表明NO处理可以降低外源乙烯对桃果实内源乙烯生物合成的催化作用。
     20μl L~(-1) NO熏蒸处理保持了猕猴桃果实较低的可溶性糖含量和较高的可滴定酸、Vc含量,其果实中丙二醛和超氧自由基含量低于其他浓度的NO熏蒸处理(10和30μlL~(-1) NO)。20μl L~(-1) NO熏蒸降低了猕猴桃果实中LOX和POD活性,延缓了猕猴桃果实采后期间CAT活性的降低,显著提高了猕猴桃果实SOD活性,降低了猕猴桃果实中氢过氧化物的含量。用NO溶液浸果处理猕猴桃果实,也得到了类似的实验结果。
     气体熏蒸处理对猕猴桃果实叶绿素含量的影响不大。1μmol L~(-1) NO溶液浸果处理后,叶绿素含量显著高于对照。0.5和2μmol L~(-1) NO溶液浸果后叶绿素含量无显著差异,而两者均显著低于1μmol L~(-1) NO处理。20μl L~(-1) NO气体熏蒸后,猕猴桃果实中类胡萝卜素含量低于对照;1μmol L~(-1.)NO溶液浸果后内类胡萝卜素含量低于对照,且均低于其他浓度的NO处理。
     NO溶液与ACO的最佳反应时间是30 min,底物ACC的最佳浓度为2 mmol L~(-1),作为酶促反应的辅因子,抗坏血酸钠和Fe~(2+)的最适浓度分别为20 mmol L~(-1)和20μmolL~(-1),碳酸氢钠的最适浓度为20 mmol L~(-1)。Lineweaver-Burk图显示NO是一种非竞争性抑制剂。NO与ACO反应的米氏常数K_m为3.4 mmol L~(-1),抑制常数K_i为2.34μmol L~(-1)。
The peach fruits(Prunus persica(L.) Batsch.,cv.Feicheng) were fumigated with 1000μl L~(-1) ethylene,10μl L~(-1) NO and 1000μl L~(-1) ethylene/10μl L~(-1) NO for 3 h,then stored at 1℃.Parts of Chinese gooseberry(Actinidia chinensis Planch.) were fumigated with 0,10,20 and 30μl·L~(-1) NO for 3 h,then stored at 4 and 22℃.Other Chinese gooseberry were dipped with 0,0.5,1 and 2μmol L~(-1) NO solutions for 10 min,then dried with wind,and stored at 4 and 22℃.
     The effects of different concentrations and ways of NO treatments on physiological indices of post-harvest fruit,including ethylene production rate,soluble protein,contents of sugar and acid,MDA,superoxide rdicals,chlorophyll and ACC contents,and activities of relevant enzymes from the fruits,including ACS,ACO,LOX,SOD,CAT,POD,were investigated.
     The results showed that fumigation with 1000μl·L~(-1) exogenous ethylene promoted ethylene production,increased activities of ACS and ACO.Treatment with 10μl·L~(-1) NO significantly inhibited the production of endogenous ethylene in fruit,reduced activities of ACS and ACO.The activities of ACS and ACO and ethylene production in fruit treated with 1000μl·L~(-1) ethylene/10μl·L~(-1) NO were significantly lower than those in fruit treated with exogenous ethylene,and higher than those in fruit treated with NO,suggesting that there were antagonistic actions between NO and exogenous ethylene.NO could inhibit biosynthesis of ethylene and catalysis of exogenous ethylene during ethylene biosynthesis in peach fruits.
     Chinese gooseberry fumigated with 20μl L~(-1) NO had low content of soluble sugar and high content of titratable acids and Vc.Contents of MDA and superoxide radicals in Chinese gooseberry fumigated with 20μl L~(-1) NO were lower than those in Chinese gooseberry fumigated with 10 and 30μl L~(-1) NO.Fumigation with 20μl L~(-1) NO reduced activities of LOX and POD in Chinese gooseberry,delayed the decrease of CAT activity during the late period of storage,significantly increased SOD activity,and decreased the content of hydrogen peroxide.Similar results were also found in Chinese gooseberry treated with NO solution.
     There were no significant differences in chlorophyll content in Chinese gooseberry fumigated with different concentrations of NO gas.However,the chlorophyll content in Chinese gooseberry soaked with 1μmol L~(-1) NO was higher than that of the control.There were no differences in chlorophyll content in Chinese gooseberry soaked with 0.5 and 2μmol L~(-1) NO,which were significant lower than treatment with 1μmol L~(-1) NO.The carotenoid content in Chinese gooseberry fumigated with 20μl L~(-1) NO was lower than that of the control, ande that in Chinese gooseberry soaked with 1μmol L~(-1) NO were also lower than those of the control and treatments with other concentrations of NO。
     The optimal time of reaction between NO and ACC was 30 min,and proper concentration of ACC is 2 mmol L~(-1).As cofactors of the enzymic reaction,the proper concentrations of Vc,NaHCO_3 and Fe~(2+) were 20 mmol L~(-1),20 mmol L~(-1) and 20μmol L~(-1), respectively.The inhibition kinetics of NO analyzed by Based on Lineweaver-Burk' theory, we demonstrated that the inhibition kinetics of NO for the oxidation of ACC in the catalysis of ACCO was expressed as a noncompetitive inhibition model and NO was called a noncompetitive inhibitor.The apparent Michaelis constant K_m and the inhibition constant of noncompetitive reversible inhibitor K_i were determined to be 3.4 mmol L~(-1) and 2.34μmol L~(-1), respectively.
引文
[1] Adams DO, Yang SF (1979) Ethylene biosynthesis: Identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proceedings of the National Academy of Sciences, USA 76: 170-174
    [2] Alexander L, Grierson D (2002) Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening. Journal of Experimental Botany 53: 2039-2055
    [3] Barroso JB, Corpas FJ, Carreras A, Sandalio LM, Valderrama R, Palma JM, Lupianez JA, del Rio LA (1999) Localization of nitric-oxide synthase in plant peroxisomes. Journal of Biological Chemistry 274: 36729-36733
    [4] Bates TE, Loesch A, Burnstock G, Clark JB (1995) Immunocytochemical evidence for a mitochondrially located nitric oxide synthase in brain and liver. Biochemical and Biophysical Research Communications 213: 896-900
    [5] Beevers L (1976) Nitrogen Metabolism in Plant. Elsevier, New York
    [6] Beligni MV, Lamattina L (1993) Nitric oxide protects against cellular damage produced by methylviologen herbicides in potato plants. Nitric Oxide 3: 199-288
    [7] Beligni MV, Lamattina L (2000) Nitric oxide stimulates seed germination and de-etiolation, and inhibits hypocotyl elongation, three light -inducible responses in plants. Planta 210: 215-221
    [8] Ben-Arie R, Sonego L (1980) Pectolytic enzyme activity involved in woolly breakdown of stored peaches. Phytochemistry 19: 2553-2555
    [9] Bethke PC, Badger MR, Jones RL (2004) Apoplastic synthesis of nitric oxide by plant tissues. Plant Cell 16: 332-341
    [10] Butt YK, Lum JH, Lo SC (2003) Proteomic identification of plant proteins probed by mammalian nitric oxide synthase antibodies. Planta 216: 762-771
    [11] Butt YKC, Lum JHK, Lo SCL (2003) Proteomic identification of plant proteins probed by mammalian nitric oxide synthase antibodies. Planta 216: 762-771
    [12] Carimi F, Zottini M, Costa A, Cattelan I, De Michele R, Terzi M, Lo Schiavo F (2005) NO signalling in cytokinin-induced programmed cell death. In, Vol 28, pp 1171-1178
    [13] Caro A, Puntarulo S (1999) Nitric oxide generation by soybean embryonic axes: Possible effect on mitochondrial function. Free Radical Research 31: S205-212
    [14] Chandok MR, Ytterberg AJ, Wijk KJ, al. e (2003) The pathogen-inducible nitric oxide synthase (iNOS) in plants id a variant of the P protein of the glycine decarbpsylase complex. Cell 113:469-482
    [15] Chen QX, Song KK, Wang Q, Huang H (2003) Inhibitory effects on mushroom tyrosinase by some alkylbenzaldehydes. Journal of Enzyme Inhibition and Medicinal Chemistry 18:491-496
    [16] Conney RV, Harwood PJ, Marocco Aea (1996) Light-mediated conversion of nitrogen dioxide to nitric oxide synthase activity in roots and modules of Lupinus albus. FEBS Letters 398: 159-164
    [17] Crawford NM (1995) Nitrate: nutriant and signal for plant growth. Plant Cell 7: 859-868
    [18] Crawford NM (2006) Mechanisms for nitric oxide synthesis in plants. Journal of Experimental Botany 57: 471-478
    [19] Cueto M, Herna ndez-Perera O, Martin R, Bentura ML, Rodrigo J, Lamas S, Golvano MP (1996) Presence of nitric oxide synthase activity in roots and nodules of Lupinus albus. FEBS Lett. 398:159-164
    [20] Dean JV, Harper JE (1986) Nitric oxide and nitrous oxide production by soybean and winged bean during the in vivo nitrate reductase assay. Plant Physiology 82: 718-723
    [21] Delledonne M, Xia YJ, Dixon RA, Lamb C (1998) Nitric oxide function as a signal in plant disease resistance. Nature 394: 585-588
    [22] Desikan R, Grifths R, Hancock Jea (2002) A new role for an old enzyme: Nitrate reductase-mediate nitric oxide generation is required for abscisic acid - induced stomatal closure in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, USA 99: 16314-16318
    [23] Dong L, Lurie S, Zhou HW (2002) Effect of 1-methylcyclopropene on ripening of 'Canino' apricots and 'Royal Zee' plums. Postharvest Biology and Technology 24: 135-145
    [24] Dong L, Zhou H-W, Sonego L, Lers A, Lurie S (2001) Ethylene involvement in the cold storage disorder of 'Flavortop' nectarine. Postharvest Biology and Technology 23: 105-115
    [25] Donna Beer Stolz RZYVPALTRBY-MKRLSSCW (2002) Peroxisomal localization of inducible nitric oxide synthase in hepatocytes. Hepatology 36: 81-93
    [26] Douce R, Bourguignon J, Neuburger M, Rebeille F (2001) The glycine decarboxylase system: a fascinating complex. Trends in Plant Science 6: 167-176
    [27] Duan X, Su X, You Y, Qu H, Li Y, Jiang Y (2007) Effect of nitric oxide on pericarp browning of harvested longan fruit in relation to phenolic metabolism. Food Chemistry 104: 571-576
    [28] Durner J, Klessig DF (1999) Nitric oxide as a signal in plants. Curr Opin Plant Biol 2: 369-374
    
    [29] Durner J, Wendehenne D, Klessig DF (1998) Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose. Proceedings of the National Academy of Sciences, USA95: 10328-10333
    [30] Echeverria E (1990) Developmental transition from enzymatic to acid hydrolysis of sucrose in acid limes (Citrus aurantifolia). Plant Physiology 92: 168-171
    [31] Fan X, Argenta L, Mattheis JP (2002) Interactive effects of 1-MCP and temperature on 'Elberta' peach quality. HortScience 37: 137-138
    [32] Fernandez-Trujillo JP, Cano A, Artes F (1998) Physiological changes in peaches related to chilling injury and ripening. Postharvest Biology and Technology 13: 109-119
    [33] Funamoto Y, Yamauchi N, Shigyo M (2003) Involvement of peroxidase in chlorophyll degradation in stored broccoli (Brassica oleracea L.) and inhibition of the activity by heat treatment. Postharvest Biology and Technology 28: 39-46
    [34] Furchgott RF, Zawadzki JV (1980) The obligatory of endothelial cells in the relaxation of arterial smooth muscle by acethylcholine. Nature 288: 373-376
    [35] Garcia-Mata C, Lamattina L (2002) Nitric oxide and abscisic acid cross talk in guard cells. Plant Physiology 128: 790-792
    
    [36] Giba Z, Grubisic D, Todorovic Sea (1998) Effect of nitric oxide-releasing compounds on phytochrome-controlled germination of Empress tree seeds. Plant Growth Regulation 26: 175-181
    [37] Gong Y, Mattheis JP (2003) Effect of ethylene and 1-methylcyclopropene on chlorophyll catabolism of broccoli florets. Plant Growth Regulation 40: 33-38
    [38] Gouvea CMCP, Souza JF, Magalhaes ACN, Martins IS (1997) NO-releasing substances that induce growth elongation in maize root segments. Plant Growth Regulation 21: 183-187
    [39] Guo FQ, Okamoto M, Crawford NM (2003) Identification of a plant nitric oxide synthase gene involved in hormonal signaling. Science 302: 100-103
    [40] Harper JE (1981) Evolution of nitrogen oxide[s] during in vivo nitriate reductase assay of soybean leaves. Plant Physiology 68: 1488-1493
    
    [41] Hortensteiner S (2006) Chlorophyll degradation during senescence. Annual Review of Plant Biology 57: 55-77
    [42] Huai Q, Xia Y, Chen Y, Xallahan B, Li N, Ke H (2001) Crystal structures of 1-aminocyclopropane-1-carboxylate (ACC) synthase in complex with aminoethoxyvinylglycine and pyridoxal-5'-phosphate provide new insight into catalytic mechanisms. The Journal of Biological Chemistry 276: 38210-38216
    [43] Ignarro LI, Buga GM, Wsood KS, Byrns RE, Chaudhuri G (1987) Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proceedings of the National Academy of Sciences, USA 84:9265-9269
    [44] Jeffery D, Smith C, Goodenough P, Prosser I, Grierson D (1984) Ethylene-independent and ethylene-dependent biochemical changes in ripening tomatoes. Plant Physiology 74: 32-38
    [45] Ju Z, Duan Y, Ju Z (1999) Combinations of GA3 and AVG delay fruit maturation, increase fruit size and improve storage life of 'Feicheng' peaches. Journal of Horticultural Science and Biotechnology 74: 579-583
    [46] Kaiser W, Gupta K, Planchet E (2007) Higher Plant Mitochondria as a Source for NO. In Nitric Oxide in Plant Growth, Development and Stress Physiology, 1-14
    [47] Kato M, Hayakawa Y, Hyodo H, Ikoma Y, Yano M (2000) Wound-induced ethylene and expression and formation of 1-aminocyclopropane-1-carboxylate synthase, ACC oxidase, phenylalaninne ammonia lyase and peroxidase in wounded mesocarp tissue of Cucurbita maxima. Plant Cell Physiology 41: 440-447
    [48] Klessig DF, Dinner J, Noad R, Navarre DA, Wendehenne D, Kumar D, Zhou JM, Shah J, Zhang S, Kachroo P, Trifa Y, Pontier D, Lam E, Silva H (2000) Nitric oxide and salicylic acid signaling in plant defense. PNAS 97: 8849-8855
    [49] Kwak SH, Lee S (1997) The requirements for Ca2+, protein phosphorylation and dephosphorylation for ethylene signal transduction in Pasum sativum L. Plant Cell Physiology 38: 1142-1149
    [50] Leshem YY (2000) Nitric oxide in plants: Occure, function and use. Kluwer Academic Publisher, Boston
    [51] Leshem YY, Haramaty E (1996) The characterization and contrasting effects of the nitric oxide free radical in vegetative stress and senescence of Pisum sativum Linn. foliage. Journal of Plant Physiology 148: 258-263
    [52] Leshem YY, Haramaty E (1996) Plant aging: the emission of NO and ethylene and the effect of NO-releasing compounds on growth of pea (Pisum sativum) foliage. J Plant Physiol 148: 258-263
    [53] Leshem YY, Haramaty E, Iluz D, Malik Z, Sofer Y, Roitman L, Leshem Y (1997) Effect of stress nitric oxide (NO): Interaction between chlorophyll fluorescence, galactolipid fluidity and lipoxygenase activity. Plant Physiology and Biochemistry 35: 573-579
    
    [54] Leshem YY, Pinchasov Y (2000) Non-invasion photoacustic spectroscopic determination of relative endogenous nitric oxide and ethylene content stoichiometry during the ripening of strawberries Fragaria anannasa (Duch) and avocados Persea americana (Mill.). Journal of Experimental Botany 51: 1471-1473
    [55] Leshem YY, Wills RBH (1998) Harnessing senescence delaying gases nitric oxide and nitrous oxide: a novel approach to postharvest control of fresh horticultural produce. Biologia Plantarum 41:1-10
    [56] Leshem YY, Wills RBH, Ku VVV (1998) Evidence for the function of the free radical gas-nitric oxide (NO(?))-as an endogenous maturation and senescence regulating factor in higher plants. Plant Physiology and Biochemistry 36: 825-833
    [57] Liguori G, Weksler A, Zutahi Y, Lurie S, Kosto I (2004) Effect of 1-methylcyclopropene on ripening of melting flesh peaches and nectarines. Postharvest Biology and Technology 31: 263-268
    [58] Lizada MCC, Yang SF (1979) A simple and sensitive assay for 1-amino cyclopropane-1-carboxylic acid. Analytical Biochemistry 100: 140-145
    [59] Magalhaes JR, Monte DC, Durzan D (2000) Nitric oxide and ethylene emissopnm in Arabidopsis thaliana. Physiol Mol Biol Plant 6: 117-127
    [60] Mason MG, Nicholls P, Wilson MT, Cooper CE (2006) Nitric oxide inhibition of respiration involves both competitive (heme) and noncompetitive (copper) binding to cytochrome c oxidase. Proceedings of the National Academy of Sciences of USA 103: 708-713
    [61] Moya-Leon MA, John P (1994) Activity of 1-aminocyclopropane-1-carboxylate (ACC) oxidase (ethylene-forming enzyme) in the pulp and peel of ripening bananas. J. Hort. Sci. 69: 243-250
    [62] Moya-Leon MA, John P (1995) Purification and biochemical characterization of 1-aminocyclopropane-1-carboxylate oxidase from banana fruit. Phytochemistry 39: 15-20
    [63] Navarre DA, Wendehenne D, Durner J, Noad R, Klessig DF (2000) Nitric oxide modulates the activity of tobacco aconitase. Plant Physiol. 122: 573-582
    [64] Neill S, Desikan R, Clarke A, Hancock JT (2002) Nitric oxide is a novel component of abscisic acid signaling in stomatal guard cells. Plant Physiology 128: 13-16
    [65] Neill SJ, Desikan R, Clarke A, Hurst RD, Hancock JT (2002) Hydrogen peroxide and nitric oxide as signalling molecular in plants. Journal of Experimental Botany 53: 1237-1247
    [66] Ninnemann H, Maier J (1996) Indication for occurrence of nitric oxide synthases in fungi and plants and involvement in photoconidiation of Neuropara crassa. Photochemistry and Photobiology 64: 393-398
    [67] Onoue T, Mikami M, Yoshioka T, Hashiba T, Satoh S, Satoh S (2000) Characteristics of the inhibitory action of l,l-dimethyl-4-(phenylsulfonyl)semicarbazide (DPSS) on ethylene production in carnation (Dianthus caryophyllus L.) flowers. Plant Growth Regulation 30: 201-207
    [68] Palmer RM, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327: 524-526
    [69] Paula FB, Gouvea CM, Alfredo PP, Salgado I (2005) Protective action of a hexane crude extract of Pterodon emarginatus fruits against oxidative and nitrosative stress induced by acute exercise in rats. BMC Complement Altern Med 5:17
    [70] Pedroso MC, Durzan DJ (2000) Effect of different gravity environments on DNA fragmentation and cell death in Kalanchoe leaves. Annals of Botany 86: 938-944
    [71] Pedroso MC, Magalhaes JR, Durzan D (2000) A nitric oxide burst precedes apoptosis in angiosperm and gymnosperm callus cells and foliar tissues. J. Exp. Bot. 51: 1027-1036
    [72] Pedroso MC, Magalhaes JR, Durzan D (2000) Nitric oxide induces cell death in Taxus cells. Plant Science 157: 173-180
    
    [73] Podmore ID (1998) Vitamin C exhibits pro-oxidatant properties. Nature 392: 559
    [74] Pristijono P, Wills RBH, Golding JB (2006) Inhibition of browning on the surface of apple slices by short term exposure to nitric oxide (NO) gas. Postharvest Biology and Technology 42: 256-259
    [75] Ribeiro EAJ, Cunha FQ, Tamashiro WMSC, Martins IS (1999) Growth phase dependent subcellular localization of nitric oxide synthase in maize cells. FEBS Letters 445: 283-286
    [76] Ribeiro JEA, Cunha FQ, Tamashiro WMSC, Martins IS (1999) Growth phase-dependent subcellular localization of nitric oxide synthase in maize cells. FEBS Lett. 445: 283-286
    [77] Rodriguez FI, Esch JJ, Hall AE, Binder BM, Schaller GE, Bleecker AB (1999) A copper cofactor for the ethylene receptor ETR1 from Arabidopsis. Science 283: 996-998
    [78] Sen S, Cheema IR (1995) Nitric oxide synthase and calmodulin immunoreactivity in plant embryonic tissue. Biochemical Archives 11: 221-227
    [79] Simontacchi M, Jasid S, Puntarulo S (2004) Nitric oxide generation during early germination of sorghum seeds. Plant Science 167: 839-847
    [80] Soegiarto L, Wills RBH, Seberry JA, Leshem YY (2003) Nitric oxide degradation in oxygen atmospheres and rate of uptake by horticultural produce. Postharvest Biology and Technology 28: 327-331
    [81] Song SQ, Yip WK (2001) Effect of O2, ACC and CO2 concentration on the activity of partially purified ACC oxidase from papaya. Acta Phytophysiologica Sinica 27: 387-392
    [82] Sozzi GO, Greve LC, Prody GA, Labavitch JM (2002) Gibberellic acid, synthetic auxins, and ethylene differentially modulate alpha-L-Arabinofuranosidase activities in antisense 1-aminocyclopropane-1-carboxylic acid synthase tomato pericarp discs. Plant Physiol 129: 1330-1340
    [83] Takamiya K-i, Tsuchiya T, Ohta H (2000) Degradation pathway(s) of chlorophyll: what has gene cloning revealed? Trends in Plant Science 5: 426-431
    [84] Tierney DL, Rocklin AM, Lipscomb JD, Que L, Jr., Hoffman BM (2005) ENDOR studies of the ligation and structure of the non-heme iron site in ACC oxidase. Journal of American Chemistry Society 127: 7005-7013
    [85] Tierney DL, Rocklin AM, Lipscomb JD, Que L, Jr., Hoffman BM (2006) ENDOR studies of the ligation and structure of the non-heme iron site in ACC oxidase. Journal of American Chemistry Society 127: 7005-7013
    [86] Wildt J, Kley D, Rockel A, Rockel P, Segschneider HJ (1997) Emission of NO from several higher plant species. Journal of Geophysical Research 102: 5919-5927
    [87] Wills RBH, Bowyer MC (2003) Use of nitric oxide to extend the postharvest life of horticultural produce. ISHS Acta Horticulturae 599: 519-521
    [88] Wills RBH, Ku VVV, Leshem YY (2000) Fumigation with nitric oxide to extend the postharvest life of strawberries. Postharvest Biology and Technology 18: 75-79
    [89] Wills RBH, Soegiarto L, Bowyer MC (2007) Use of a solid mixture containing diethylenetriamine/nitric oxide (DETANO) to liberate nitric oxide gas in the presence of horticultural produce to extend postharvest life. Nitric Oxide 17: 44-49
    [90] Wilson M, Torres J (2004) Reactions of nitric oxide with copper containing oxidases; Cytochrome c oxidase and laccase International Union of Biochemistry and Molecular Biology Life 56: 7-11
    [91] Wink DA, Mitchell JB (1998) Chemical biology of nitric oxide: Insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radical Biology and Medicine 25: 434-456
    [92]Wolff SP,Lester P(1994) Ferrous ion oxidation in presence of ferric ion indicator xylenol orange for measurement of hydroperoxides.Methods in Enzymology 233:182-189
    [93]Wright KP,Kader AA(1997) Effect of controlled-atmosphere storage on the quality and carotenoid Icontent of sliced persimmons and peaches.Postharvest Biology and Technology 10:89-97
    [94]Yamasaki H,Sakihama Y,Takahashi S(1999) An alternative pathway for nitric oxide production in plants:new features of an old enzyme.Trends in Plant Science 4:128-129
    [95]Zhang Z,Ren JS,Clifton IJ,Schofield CJ(2004) Crystal structure and mechanistic implications of 1-aminocyclopropane-1-carboxylic acid oxidase-The ethylene-forming enzyme.Chemistry and Biology 11:1383-1394
    [96]Zhao Z,Chen G,Zhang C(2001) Interaction between reactive oxygen species and nitric oxide in drought-induced abscisic acid synthesis in root tips of wheat seedlings.Australia Journal of Plant Physiology 28:1055-1061
    [97]Zhou H-W,Lurie S,Lers A,Khatchitski A,Sonego L,Arie RB(2000) Delayed storage and controlled atmosphere storage of nectarines:two strategies to prevent woolliness.Postharvest Biology and Technology 18:133-141
    [98]Zhu S,Zhou J(2007) Effect of nitric oxide on ethylene production in strawberry fruit during storage.Food Chemistry 100:1517-1522
    [99]Zhu SH,Liu MC,Zhou J(2006) Inhibition by nitric oxide of ethylene biosynthesis and lipoxygenase activity in peach fruit during storage.Postharvest Biology and Technology 42:41-48
    [100]Zhu SH,Zhou J(2006) Effects of nitric oxide on fatty acid composition in peach fruits during Storage.Journal of Agricultural and Food Chemistry 54:9447-9452
    [101]Zilkah S,Lurie S,Lapsker Z,Zuthi Y,David I,Yesseison Y,Antman S,Ben-Arie R(1997) The ripening and storage quality of nectarine fruits in response to preharvest application of gibberellic acid.Journal of Horticultural Science 72:355-362
    [102]王爱国,罗广华(1990)植物的超氧物自由基与羟胺反应的定量关系.植物生理学通讯 6:55-57
    [103]王赵改,马书尚,王瑞庆,赵政阳,高华(2005)1-MCP对粉红女士苹果采后生理的影响.西北农林科技大学学报 33:123-126
    [104]田春美,钟秋平(2005)超氧化物歧化酶的现状研究进展.中国热带医学5: 1730-1732
    [105]朱东兴,饶景萍,任小林,蒲鹏(2004)柿果实1-甲基环丙烯处理对成熟软化的影响.园艺学报 31:87-89
    [106]朱树华,周杰,束怀瑞(2005)一氧化氮对草莓果实衰老的影响.园艺学报32:589-593
    [107]朱树华,周杰,束怀瑞,王玲玲(2005)一氧化氮延缓草莓成熟衰老的生理效应.中国农业科学38:1418-1424
    [108]朱树华,刘孟臣,周杰(2006)一氧化氮熏蒸对采后肥城桃果实细胞壁代谢的影响.中国农业科学 39:1878-1884
    [109]庄军平,陈维信,吴振先,苏菁(2004)苹果采后软化研究进展.中国农学通报20:73-77
    [110]李合生(2000)植物生理生化实验原理和技术.高等教育出版社,北京
    [111]李敏,胡美姣,高兆银,杨凤珍(2005)芒果采后及贮藏生理研究进展.中国农学通报 21:400-404
    [112]汪沂,田世平,徐勇,范青(2000)北京33号桃在不同贮藏温度下乙烯释放和贮藏性的研究 江西农业大学学报 22:491-493
    [113]孟雪雁,岑涛(2001)桃低温贮藏中生理变化与冷害发生的关系.山西农业大学学报 3:268-270
    [114]林河通,陈莲,陈绍军,林娇芬,赵云峰(2005)橄榄果实采后生物学研究进展.福建农林大学学报 34:464-469
    [115]金昌海,阚娟,王红梅,索标,汪志君(2006)桃果实成熟软化过程中活性氧代谢的变化.扬州大学学报(农业与生命科学版) 27:85-89
    [116]段玉权,冯双庆,赵玉梅(2002)1-甲基环丙烯(1-MCP)对桃果实贮藏效果的影响 食品科学 9:105-108
    [117]胡小松,丁双阳(1993)桃采后呼吸和乙烯释放规律及多效唑的影响.北京农业大学学报 19:53-60
    [118]胡美姣,高兆银,李敏,杨凤珍,郑服丛(2005)热水和1-MCP处理对市亡果贮藏效果的影响 果树学报 22:243-246
    [119]茅林春,张上隆(2000)果胶酶与桃果实冷害的关系.植物生理学通讯 36:266-271
    [120]徐晓静,张培正(1994)桃、李果实耐贮性与呼吸、乙烯和脂质过氧化作用的关系.果树学报 11:38-40
    [121]秦巧平,张上隆,谢鸣,陈俊伟(2005)果实糖含量及成分调控的分子生物学研究进展.果树学报 22:519-525
    [122]常军,张平,王莉(2003)桃采后生理及贮藏研究进展.保鲜与加工 6:8-9
    [123]彭丽桃,蒋跃明,杨书珍,李月标,屈红霞,林文彬(2002)铜离子与乙烯受体关系研究进展.西北植物学报 22:1250-1254
    [124]冯云霄,及华,李丽梅(2007)保护酶与果蔬成熟衰老的关系.保鲜与加工 7:11-13
    [125]冯晓元(1998)桃果实在贮藏期发绵的机理和防治措施.北方果树 4:3-5
    [126]刘孟臣,宋卫红,朱树华,周杰(2007)一氧化氮和外源乙烯处理对肥城桃果实乙烯生物合成的影响.中国农业科学(已接受)
    [127]刘晓红,刘小兰,岳俊杰,尹宇新,孙云(2004)铁超氧化物歧化酶活性中心结构研究.结构化学 23:312-315
    [128]吴敏,陈昆松,张上隆(1999)桃果实采后成熟过程中脂氧合酶活性变化.园艺学报 26:227-231
    [129]孙文全(1988)联苯胺比色法测定果树过氧化物酶活性的研究.果树科学 5:105-108
    [130]孙丽娜,刘孟臣,朱树华,周杰,王明林(2007) 一氧化氮处理对冬枣贮藏期间乙醇代谢及相关品质的影响.中国农业科学(已接受)
    [131]张上隆,陶俊(2003)园艺植物类胡萝卜素的代谢及其调节.浙江大学学报(农业与生命科学版) 29:585-590
    [132]张少颖,任小林,饶景萍(2005)番茄果实采后一氧化氮处理对活性氧代谢的影响.园艺学报 32:818-822
    [133]张少颖,饶景萍,任小林(2007)氧化氮对瓶插月季呼吸作用及相关酶活性的影响.园艺学报 34:183-188
    [134]张杏芝,李梅(1996)不同温度处理对桃果品质及常温贮藏性的影响.湖北农业科学 4:54-56
    [135]张宪省,闰先喜(1994)乙烯调控果实成熟研究的进展.山东农业大学学报 25:487-490
    [136]张晓平,任小林,任亚梅,王小会,孙芳娟,白景祥(2007)NO处理对采后猕猴桃贮藏性及叶绿素含量的影响.食品研究与开发 28:145-148
    [137]杨书珍,任小林,彭丽桃,饶景萍(2001)GA_3处理对采后油桃果实膜脂过氧化的影响西北植物学报 21:575-578
    [138]杨剑平,韩涛,李丽萍,陈小宁(1996)热处理对桃贮藏期膜脂过氧化作用的影响.园艺学报 23:89-90
    [139]杨晓棠,张昭其,庞学群(2005)果蔬采后叶绿素降解与品质变化的关系.果树学报 22:691-696
    [140]赵文恩,黄进勇,王文峰,钱素平,姚思德(2006)类胡萝卜素与二氧化氮自由基(NO_2·)的反应.高等学校化学学报 27:556-558
    [141]郑荣梁,黄中洋(2001)自由基医学与农学基础.北京:高等教育出版社:63-64
    [142]陈克玲,刘建军,罗楠,卿尚模,杨兴义,陈绍炳,李洪雯,曾德英.(2005)脐橙挂树贮藏期间果实品质变化规律研究.西南农业学报 18:810-813
    [143]陈发兴,刘星辉,陈立松(2005)果实有机酸代谢研究进展.果树学报 22:526-531
    [144]韩涛,李丽萍,葛兴(2000)外源水杨酸对桃果实采后生理的影响.园艺学报27:367-368
    [145]黄万荣,白景云,韩涛(1993)短时升温对桃果实贮藏效应的影响.果树科学10:73-76

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700