淀粉/聚乳酸/壳聚糖共混抗菌材料制备中若干基础科学问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
抗菌活性包装是上世纪90年代提出的一种新型包装理念,它是将抗菌剂混入一种或几种高聚物包装材料中,通过抗菌剂的缓慢溶出释放产生抗菌活性,逐渐减少或代替向食品中加入盐、糖或防腐剂等,在包装内部维持长期稳定的抗菌剂浓度而达到抗菌防腐的目的,使食品能够较长时间保存。抗菌活性包装材料具有传统包装材料不可比拟的优势,应用和发展前景十分广阔,是目前食品及材料领域研究的一个前沿和热点。
     本论文是在高水分活度食品抗菌的需求下,在抗菌活性包装材料发展趋势的基础上,选择环境友好型的淀粉/聚乳酸共混材料作为基材,选择水溶性壳聚糖作为抗菌剂,深入研究淀粉在甘油/水混合溶液中的相变、直链/支链淀粉对热塑性淀粉玻璃化转变的影响、以及抗菌材料的抗菌活性等基础理论问题,为制备出环境友好的、能够用于高水分活度食品的淀粉/聚乳酸/壳聚糖共混抗菌活性包装材料提供理论和工艺支持。
     本论文在制备热塑性淀粉时,选用甘油/水混合溶液作为增塑剂,深入研究了淀粉在甘油/水混合溶液中的相变,发现甘油/水混合溶液是作为一个整体来影响淀粉的相变,甘油不是“反增塑剂”,只要混合溶液中有“足量的”自由羟基存在,淀粉相变的发生就只受温度的影响,与甘油含量无关,且相变吸热焓值不会随混合溶液中甘油比例的不同发生变化。另一方面,在富甘油相混合液(甘油摩尔分数高于0.8)增塑时,由直链淀粉分子和脂类所形成的络合物吸热熔融产生的M2峰消失,这是由于甘油会抽提淀粉中的脂类物质,破坏直链淀粉分子和脂类所形成的络合物。这些研究结果,尤其是不同甘油含量的甘油/水混合溶液对高直链含量的淀粉在高温下(~180°C)多重相变的影响尚未见报道,且这些研究结果可以用来指导甘油/水混合溶液增塑条件下的热塑性淀粉的制备。
     对热塑性淀粉玻璃化转变温度(T_g)的准确测定,以及直链/支链淀粉对T_g的影响,这些是热塑性淀粉材料领域里尚未解决的问题。本论文针对这些问题,首先建立了合适的方法测量热塑性淀粉的玻璃化转变温度,发现高速升温DSC通过提高升温速率,能将玻璃化转变和结晶熔融两个热事件分离开,能够消除水分蒸发对T_g的影响,并且能够放大热信号,提高仪器灵敏度,避免基线噪音的干扰,而通过一定的校正方法,又可以消除升温速率过快带来的温度滞后效应,因此最适用于测量热塑性淀粉的T_g;然后在此基础上研究了直链/支链淀粉对热塑性淀粉玻璃化转变温度的影响,发现相同水分含量的热塑性玉米淀粉,其T_g随着直链淀粉含量的增大而升高,并从重结晶、热塑性淀粉的相变模型等角度进行了解释。上述研究成果有助于丰富和充实淀粉科学理论,并且由于T_g是高分子材料加工的重要参数,决定了材料的加工温度,因此这些结果也可以用来指导热塑性淀粉的制备。对不同直链/支链淀粉含量的热塑性淀粉T_g的研究,尚未见报道。
     本论文选用淀粉/聚乳酸共混材料为基材制备抗菌材料。在制备过程中,利用配有密炼机的Haake转矩流变仪研究甘油/水混合溶液增塑时,不同甘油比例对热塑性淀粉流变性质的影响,发现富甘油相混合液增塑时,样品的喂料峰很微弱,相变峰很明显;富水相混合液增塑时情况相反,喂料峰很大,相变峰很微弱;而当混合溶液中甘油和水的比例达到一定时(70:30和80:20,甘油/水),由于甘油和水的相互作用降低了混合溶液的润滑效果和增塑活性,使得样品的喂料峰和相变峰都很明显。此外还利用接触角评价了共混材料的亲疏水性,发现聚乳酸的亲水性差,水对聚乳酸的浸润速度很缓慢;而加入淀粉后,材料的亲水性增强,且水对材料的润湿速度随着淀粉含量的增加而增大,这就为壳聚糖的溶出迁移提供了依据。
     本论文将壳聚糖与淀粉/聚乳酸共混粒料一同挤出,制备抗菌材料。通过测定壳聚糖从抗菌材料中的溶出迁移,发现壳聚糖的溶出分为快速溶出阶段和缓慢溶出阶段,前者是分散于材料表面的壳聚糖遇水后的溶出迁移,后者是分散在共混材料内部的壳聚糖在水分子的渗透下,逐渐从材料内部迁移溶出。通过定性、定量考察不同壳聚糖含量的抗菌材料的抗菌活性发现,当壳聚糖在材料中的含量达到10%后,材料具有显著的抗菌实效性;并且由于壳聚糖的溶出是一个缓慢的过程,能够使抗菌活性在一定时间内维持。
     综上,本论文深入探讨了淀粉/聚乳酸/壳聚糖共混抗菌材料制备中的若干基础科学问题。通过对这些问题的深入研究,为制备出环境友好的、能够用于高水分活度食品的抗菌活性包装材料提供理论和工艺支持,将淀粉和淀粉基材料在包装材料领域中的应用推进更深层次。
The notion of antimicrobial active packaging has been put forward in 1990s. The antimicrobial active packaging is prepared by adding antimicrobial agents into packaging materials. Through the release of antimicrobial agents from packaging material, it can change the condition of the packed food to extend shelf-life and to improve safety, without the change of taste quality of food. Furthermore, using antimicrobial active packaging, the antimicrobial additives in food can be reduced gradually or instead thoroughly. The antimicrobial active packaging is superior to traditional packaging, and has brilliant application and development foreground. Consequently, it attracts researchers’attentions.
     In this thesis, with the maintenance requirement of high-water-activity food, and based on the development direction of packaging materials, it chose water-soluble chitosan as antimicrobial agents and starch/PLA blends as substrate materials to prepare antimicrobial active packaging material. Furthermore, it studied the basic scientific problems in the preparation, which include the influence of glycerol/water mixture on the phase transition and rheological property of starch, the influence of amylose/amylopectin on the glass transition of thermoplastic starch, and the antimicrobial and releasing property of chitiosan from substrate.
     In this thesis, it chose glycerol as plasticizer to prepare thermoplastic starch. Former researchers have studied the effect of glycerol concentration on the gelatinisation parameters of starch before; but the results were not consistent with each other. Consequently, it studied the influence of glycerol/water mixture on the phase transition of starch with different amylose/amylopectin ratio. It found that glycerol–water solution as a whole affected the gelatinisation behaviour, and glycerol was not“anti-plasticiser”. When solution has“abundant”free hydroxy, the phase transition and the enthalpy of phase transition of starch can only be affected by temperature, and is independent with glycerol content. On the other hand, when plasticized by glycerol-rich solution, the M2 phase transition peak, which was caused by the phase transition within amylose–lipid complex, disappeared. The reason for this is that glycerol can extract lipid in starch and destroy amylose-lipid complex, so M2 disappeared. These results, especially the phase transition of amylose-rich starch in glycerol/water solution with different glycerol content in high temperature (~180°C), have not been reported before, and these results can be used to guide the preparation of thermoplastic starch under the plasticization of glycerol.
     Glass transition temperature is the key parameter for polymer materials, and determines the application of materials. But former researchers’results about the glass transition temperature for thermoplastic starch contradicted with each other. In this thesis, it set up a new method to detect glass transition temperature of thermoplastic starch. Specifically, using high-speed DSC, which the linearity heating rate can reach 500°C/min, the signal of glass transition can be separated from crystalline melting, and the influence of water evaporation on glass transition can also be eliminated. Furthermore, the high heating rate can also enlarge thermal signal, increase sensitivity, and avoid the disturbance of baseline noise. Moreover, through an adjusting method, the temperature-lag effect that is caused by high heating rate can be solved. Consequently, high-speed DSC is the most suitable method to detect glass temperature of thermoplastic starch. After that, it also studied the influence of amlylose/amylopectin ratio on T_g, and found that T_g became higher with the increasing of amylose content. This has been explained by re-crystallization, and the phase transition model of thermoplastic starch. This is the first time to detect T_g from natural thermoplastic starch, and proofs former researcher’s deduction from acetate starch material.
     In this thesis, it used Haake Rheometer with Mixer to study the rheological property of starch under the plasticization of glycerol/water mixture. It found that under the plasticization of glycerol-rich mixture, the loading peak was weak, but the phase transition peak was obvious. Under the plasticization of water-rich mixture, the situation was on the opposite, namely loading peak was obvious, and phase transition peak was weak. Besides, when glycerol and water ratio reached 7:3 or 8:2 in mixture, because of the interaction between glycerol and water, both the lubrication and plasticization effect of solution were impaired, so both loading peak and phase transition peak were strong. On the other hand, it also evaluated the hydrophilic property of starch/PLA blends by contact angle. It found that the hydrophilic property of PLA material was poor and the soaking rate of water into material was very slow. When added with thermoplastic starch, the hydrophilic property of blends was improved and the soaking rate of water increased with more starch content.
     In this thesis, the chitosan was extruded with starch/PLA blend pellets to prepare antimicrobial materials. By detecting the releasing rate of chitosan from substrate materials, it found that the releasing rate was high at the beginning, which was caused by the releasing of chitosan from the surface of materials, and then the rate became slow, which was cause by the embedded chitosan in materials. On the other, from the qualitative and quantitative detection, it found that when the concentration of chitosan in materials reached 10%, the materials can have notable antimicrobial activity, and the antimicrobial activity can last for a peirod.
     All in all, through studying on the basic scientific problems in the preparation of starch/PLA blend antimicrobial materials, which include the influence of glycerol/water mixture on the phase transition and rheological properties of starch, the influence of amylose/amylopectin on the glass transition of thermoplastic starch, and the antimicrobial and releasing property of chitiosan from substrate, it prepared the environment friendly antimicrobial packaging materials , which can be used for the maintenance of high-water-active food. It improves the application range of starch based and starch/PLA material.
引文
[1]. Vermeiren, L., Devlieghere, F., van Beest, M., et al. Developments in the active packaging of foods [J]. Trends in Food Science & Technology, 1999, 10: 77-86.
    [2].白丽.基于食品安全的行业管制与企业行动研究[D].长春:吉林大学生物与农业工程学院,2005.
    [3]. Sloan A.E., Waletzko P.T., and Labuza T.P. Effect of order-ofmixing on aw lowering ability of food humectants [J]. Journal of Food Science, 1976, 41: 536-540.
    [4]. Veronique, C. Bioactive packaging technologies for extended shelf life of meat-based products [J]. Meat Science, 2008, 78: 90-103.
    [5]. Suppakul P., Miltz J., Sonneveld K., et al. Active Packaging Technologies with an Emphasis on Antimicrobial Packaging and its Applications [J]. Journal of food science, 2003, 68(2): 408-420.
    [6]. Cooksey, K. Effectiveness of antimicrobial food packaging materials [J]. Food Additives and Contaminants, 2005, 22(10): 980-987.
    [7]. Cutter C. N. Opportunities for bio-based packaging technologies to improve the quality and safety of fresh and further processed muscle foods [J]. Meat Science, 2006, 74: 131-142.
    [8]. Weber C. J., Haugaard V., and Festersen R. Production and applications of biobased packaging materials for the food industry [J]. Food Additives and Contaminants, 2002, 19: 172-177.
    [9]. Borch E., Kant-Muermans M.L., and Blixt Y. Bacterial spoilage of meat and cured meat products [J]. International Journal of Microbiology, 1996, 33(1): 103-120.
    [10]. Samelis J., Managing microbial spoilage in the meat industry, in Food spoilage organism [M]: 213-286. Blackburn C.D.W., Editor. 2006, Woodhead Piblishing Limited.
    [11].任艳丽.天然防腐剂在熟肉制品防腐中的应用[D].成都:西华大学食品科学专业, 2007.
    [12].蔡惠平,陈黎敏.肉制品包装[M].北京:化学工业出版社, 2004: 5-6.
    [13]. Kaniou, I., Samouris, G., Mouratidou, T., et al. Determination of biogenic amines in fresh and unpacked and vacuum-packed beef during storage at 4℃[J]. Food Chemistry, 2001, 74(4): 515-519.
    [14]. EC Regulation No. 853/2004, 226, Laying down specific hygiene rules for food of animal origin [S], Official Journal of the European Union. 2004.
    [15]. Stolzenbach S., Leisner J.J., and Byrne D.V. Sensory shelf life determination of a processed meat product‘rullepolse’and microbial metabolites as potential indicator [J]. Meat Science, 2009, 83: 285-292.
    [16]. Smiddy, M., Papkovsky, D.B., and Kerry, J.P. Evaluation of oxygen content in commercial modified atmosphere packs (MAP) of processed cooked meats [J]. Food Research International, 2002, 35(6): 571-575.
    [17]. Skandamis P.N. and Hychas G.J.E. Preservation of fresh meat with active and modified atmosphere packaging conditions [J]. International Journal of Food Microbiology, 2002, 79: 35-45.
    [18]. Krishnamurthy K., Demirci A., Puri V.M., et al. Effect of packaging materials on inactivation of pathogenic microorganisms on meat during irradiation [J]. Transactions of the ASAE, 2004, 47(4): 1141-1149.
    [19].张向前,徐宝才,李海松等.生物活性包装技术在肉制品保鲜中的应用[J].肉类工业, 2008, 8: 23-27.
    [20]. Kerry, J.P., O'Grady, M.N., and Hogan, S.A. Past, current and potential utilisation of active and intelligent packaging systems for meat and muscle-based products: A review [J]. Meat Science, 2006, 74: 113-130.
    [21]. Moy G.G. Healthy market places: an approach for ensuring food safety and environmental health [J]. Food Control, 2001, 12: 499-504.
    [22]. Quintavalla, S. and Vicini, L. Antimicrobial food packaging in meat industry [J]. Meat Science, 2002, 63: 373-380.
    [23]. Floros J.D., Dock L.L., and Han J.H. Active packaging technologies and applications [J]. Food Cosmetics and Drug Packaging , 1997, 20(1): 10-17.
    [24]. Joerger R. D. Antimicrobial Films for Food Applications: A Quantitative Analysis of Their Effectiveness [J]. Packaging Technology & Science, 2007, 20: 231-273.
    [25]. Siragusa, G.R., Cutter, C.N., and Willett, J.L. Incorporation of bacteriocin in plastic retains activity and inhibits surface growth of bacteria on meat [J]. Food Microbiology, 1999, 16: 229-235.
    [26]. Scannell, A.G.M., Hill, C., Ross, R.P., et al. Development of bioactive food packaging materials using immobilised bacteriocins Lacticin 3147 and Nisaplin [J]. International Journal of Food Microbiology, 2000, 60: 241-249.
    [27]. Ha J.U., Kim Y.M., and Lee D.S., Multilayered Antimicrobial Polyethylene Films Applied to the Packaging of Ground Beef [J]. Packaging Technology and Science, 2001, 14(2): 55-62.
    [28]. Seydim, A.C. and Sarikus, G. Antimicrobial activity of whey protein based edible films incorporated with oregano, rosemary and garlic essential oils [J]. Food Research International, 2006, 39: 639-644.
    [29]. Vargas M., Albors A., Chiralt A., et al. Quality of cold-stored strawberries as affected by chitosan-oleic acid edible coatings, [J]. Postharvest biology and technology, 2006, 41(2): 164-171.
    [30]. Marcos B., Aymerich T., Monfort J.M., et al. Use of antimicrobial biodegradable packaging to control Listeria monocytogenes during storage of cooked ham [J]. International Journal of Food Microbiology, 2007, 120(1-2): 152-158.
    [31]. Eraricar S. and Muhammad I.I., Starch-based antimicrobial films incorporated with lauric acid and chitosan [C], in 10th ASEAN Food Conference. 2007: Kuala Lumpur, Malaysia.
    [32]. Millettea, M., Tien, C.L., Smoragiewicz, W., et al. Inhibition of Staphylococcus aureus on beef by nisin-containing modified alginate films and beads [J]. Food Control, 2007, 18(7): 878-884.
    [33]. Jin, T. and Zhang, H. Biodegradable polylactic acid polymer with nisin for use in antimicrobial food packaging [J]. Journal of Food Science, 2008, 73(3): 127-134.
    [34]. Beverly R. L., Janes M.E., Prinyawiwatkul W., et al. Edible chitosan films on ready-to-eat roast beef for the control of Listeria monocytogenes [J]. Food Microbiology, 2008, 25(3): 534-537
    [35]. Vasconez M.B., Flores S.K., Campos C.A., et al. Antimicrobial activity and physical properties of chitosan-tapioca starch based edible films and coatings [J]. Food Research International, 2009, 42(7): 762-769.
    [36]. Han, J.H. Antimicrobial Food Packaging [J]. Food Technology, 2000, 54(3): 56-65.
    [37]. Weng, Y.M. and Hotchkiss, J.H. Anhydrides as antimycotic agents added to polyethylene films for food packaging [J]. Packaging Technology & Science, 1993, 6: 123-128.
    [38]. Han, J.H. Modelling the inhibition kinetics and the mass transfer of controlled releasing potassium sorbate to develop an antimicrobial polymer for food packaging [D]. West Lafayette, Indiana: Purdue University, 1996.
    [39]. Han, J.H. and Floros, J.D. Simulating diffusion model and determining diffusmty of potassium sorbate through plastics to develop antimicrobial packing films [J]. Journal of Food Processing and Preservation, 1998, 22: 107-122.
    [40]. Chung, D.H., Papadakis, S.E., and Yam, K.L. Release of propyl paraben from a polymer coating into water and food simulating solvents for antimicrobial packaging applications [J]. Journal of Food Processing and Preservation, 2001, 25: 71-87.
    [41]. Buonocore, G.G., Del Nobile, M.A., Panizza, A., et al. A general approach to describe the antimicrobial agent release from highly swellable films intended for food packaging applications [J]. Journal of Controlled Release, 2003, 90(1): 97-107.
    [42]. Weng Y.M., Chen M.J., and Chen W. Antimicrobial food packaging materials from poly(ethylene-comethacrylic acid) [J]. Lebensmittel-Wissenschaft und-Technologie, 1999, 32(4): 191-195.
    [43]. An D.S., Kim Y.M., Lee S.B., et al. Antimicrobial low density polyethylene film coated with bacteriocins in binder medium [J]. Food Science Biotechnology, 2000, 9(1): 14-20.
    [44]. Natrajan, N. and Sheldon, B.W. Efficacy of nisin-coated polymer films to inactivate Salmonella typhimurium on fresh broiler skin [J]. Journal of Food Protection, 2000, 63: 1189-1196.
    [45]. Mucha M., Ludwiczak S., and Kawinska M. Kinetics of water sorption by chitosan and its blends with poly(vinyl alcohol) [J]. Carbohydrate Polymers, 2005, 62: 42-49.
    [46]. Liu, L.S., Finkenstadt, V.L., Liu, C.K., et al. Preparation of poly(lactic acid) and pectin composite films intended for applications in antimicrobial packaging [J]. Journal of Applied Polymer Science, 2007, 106(2): 801-810.
    [47]. Tripathi S., Mehrotra G. K., Tripathi C. K. M., et al. Chitosan based bioactive film: Functional properties towards biotechnological needs [J]. Asian Chitin Journal, 2008, 4:29-36.
    [48]. Zhang Y., Yam K.L., and Chikindas M.L. Effective control of Listeria monocytogenes by combination of nisin formulated and slowly released into a broth system [J]. International Journal of Food Microbiology, 2004, 90: 15-22.
    [49].季君晖.国外用抗菌剂及抗菌塑料[J].国外塑料, 2004, 22(3): 39-42.
    [50]. Michele A.W.W., Christine M.B., and F.., B.D. Novel Piperidinyloxy Oxazolidinone Antibacterial Agents Diversification of the N-Substituent [J]. Bioorganic & Medicinal Chemistry, 2002, 10: 2345-2351.
    [51]. Chillo S., Flores S., Mastromatteo M., et al. Influence of glycerol and chitosan on tapioca starch-based edible film properties [J]. Journal of Food Engineering, 2008, 88(2): 159-168.
    [52]. Rinaudo M. Chitin and chitosan: Properties and applications [J]. Progress in Polymer Science, 2006, 31: 603-632.
    [53]. Liu, X.F., Guan, Y.L., Yang, D.Z., et al. Antibacterial action of chitosan and carboxymethylated chitosan [J]. Journal of Applied Polymer Science, 2001, 79(7): 1324-1335.
    [54]. Solomakos N, Govaris A, Koidis P, et al. The antimicrobial effect of thyme essential oil, nisin, and their combination against Listeria monocytogenes in minced beef during refrigerated storage [J]. Food Microbiology, 2008, 25(1): 120-127.
    [55]. Cagri A., Ustunol Z., and Ryser E.T. Antimicrobial Edible Films and Coatings [J]. Journal of Food Protection, 2004, 67(4): 833-848.
    [56]. Park S. Antimicrobial activity of chitosan impregnated into packaging films and chitosan in solution [D]. America: Clemson University, 2001.
    [57].赵亮,冯利平,侯绍刚.抗菌塑料的研究与应用[J].安阳工学院学报, 2006, 22: 14-17.
    [58]. Shipra Tripathi, Mehrotra, G.K., and Dutta, P.K. Chitosan based antimicrobial films for food packaging applications [J]. e-Polymers, 2008, no. 093: 1-7.
    [59]. Min S., Rumsey T.R.R., and Krochta J.M. Diffusion of the antimicrobial lysozyme from a whey protein coating on smoked salmon [J]. Journal of Food Engineering, 2008, 84: 39-47.
    [60]. Rabea, E.I., Badawy, M.E.-T., Stevens, C.V., et al. Chitosan as Antimicrobial Agent:Applications and Mode of Action [J]. Biomacromolecules, 2003, 4(6): 1457-1465.
    [61]. Nguyen S., Hisiger S., Jolicoeur M., et al. Fractionation and characterization of chitosan by analytical SEC and 1H NMR after semi-preparative SEC [J]. Carbohydrate Polymers, 2009, 75: 636-645.
    [62]. Prashanth, K.V.H. and Tharanathan, R.N. Chitin/chitosan: modifications and their unlimited application potential--an overview [J]. Trends in Food Science & Technology, 2007, 18: 117-131.
    [63]. Allan, C.R. and Hadwiger, L.A. The fungicidal effect of chitosan on fungi of varying cell wall composition [J]. Experimental Mycology, 1979, 3: 285-287.
    [64]. Liu, H., Du, Y., Wang, X., et al. Chitosan kills bacteria through cell membrane damage [J]. International Journal of Food Microbiology, 2004, 95(2): 147-155.
    [65]. Jumaa M., Furkert F.H., and Muller B.W. A new lipid emulsion formulation with high antimicrobial efficacy using chitosan [J]. European Journal of Pharmaceutics and Biopharmaceutics, 2002, 53: 115-123.
    [66]. Helander I.M., Nurmiaho-Lassila E.L., Ahvenainen R., et al. Chitosan disrupts the barrier properties of the outer membrane of Gram-negative bacteria [J]. International Journal of Food Microbiology 2001, 71: 235-244.
    [67]. Chung Y.C. and ChenC.Y. Antibacterial characteristics and activity of acid-soluble chitosan [J]. Bioresource Technology, 2008, 99: 2806-2814.
    [68]. Yang, T.-C., Chou, C.-C., and Li, C.-F. Antibacterial activity of N-alkylated disaccharide chitosan derivatives [J]. International Journal of Food Microbiology, 2005, 97: 237-245.
    [69]. Zheng, L.Y. and Zhu, J.F. Study of antimicrobial activity of chitosan with different molecular weight [J]. Carbohydrate Polymers, 2003, 54(4): 527-530.
    [70]. Tokura, S., Miuray, Y., Johmen, M., et al. Induction of drug specific antibody and the controlled released of drug by 6-O-carboxymethyl-chitin [J]. Asian Chitin Journal, 1994, 4: 29-36.
    [71]. Park S. Y., Marsh K. S., and W., R.J. Characteristics of different molecular weight chitosan films affected by the type of organic solvents [J]. Journal of Food Science, 2002, 67(1): 194-197.
    [72]. Dutta, P.K., Tripathi, S., Mehrotra, G.K., et al. Perspectives for chitosan basedantimicrobial films in food applications [J]. Food Chemistry, 2009, 114: 1173-1182.
    [73]. Li Z., Zhuang X. P., Liu X. F., et al. Study on antibacterial O-carboxymethylated chitosan/cellulose blend film from LiCl/N, N-dimethylacetamide solution [J]. Polymer, 2002, 43(4): 1541-1547.
    [74]. Moller, H., Grelier, S., and Pardon, P. Antimicrobial and Physicochemical Properties of Chitosan-HPMC-Based Films [J]. Agricultural and Food Chemistry, 2004, 52: 6585-6591.
    [75]. Pranoto Y., Rakshit, S.K., and Salokhe V.M. Enhancing antimicrobial activity of chitosan films by incorporating garlic oil, potassium sorbate and nisin [J]. LWT - Food Science and Technology, 2005, 38(8): 859-865.
    [76]. Li B., Kennedy J.F., Peng J.L., et al. Preparation and performance evaluation of glucomannan-chitosan-nisin ternary antimicrobial blend film [J]. Carbohydrate Polymers, 2006, 65(4): 488-494.
    [77]. Kanatt S.R., Chander R., and Sharma A. Chitosan glucose complex-A novel food preservative [J]. Food Chemistry, 2008, 106: 521-528.
    [78]. Joerger R.D., Sabesan, S., Visioli D., et al. Antimicrobial Activity of Chitosan Attached to Ethylene Copolymer Films [J]. Packaging Technology and Science, 2009, 22: 125-138.
    [79]. Tripathi S., Mehrotra G.K., and Dutta P.K. Preparation and physicochemical evaluation of chitosan/poly(vinyl alcohol)/pectin ternary film for food-packaging applications [J]. Carbohydrate Polymers, 2010, 79(3): 711-716.
    [80]. Yu, L., Dean, K., and Li, L. Polymer blends and composites from renewable resources [J]. Progress in Polymer Science, 2006, 31(6): 576-602.
    [81]. Xie, F.W., Yu, L., Chen, L., et al. A new study of starch gelatinization under shear stress using dynamic mechanical analysis [J]. Carbohydrate Polymers, 2008, 72: 229-234.
    [82].杨斌.绿色塑料聚乳酸[M].北京:化学工业出版社. 2007.
    [83]. Zhai M., Zhao L., Yoshii F., et al. Study on antibacterial starch/chitosan blend film formed under the action of irradiation [J]. Carbohydrate Polymers, 2004, 57: 83-88.
    [84]. Suzuki S., Shimahashi K., Takahara J., et al. Effect of addition of water-soluble chitin on amylose film [J]. Biomacromolecules, 2005, 6(6): 3238-3242.
    [85]. Xu Y.X., Kim K.M., Hanna M.A., et al. Chitosan-starch composite film: preparation and characterization [J]. Industrial Crops and Products, 2005, 21: 185-192.
    [86]. Durango A.M., Soares N.F.F., Benevides S., et al. Development and Evaluation of An Edible Antimicrobial Film Based on Yam Starch and Chitosan [J]. Packaging Technology and Science, 2006, 19: 55-59.
    [87]. Bangyekan C., Aht-Ong D., and Srikulkit K. Preparation and properties evaluation of chitosan-coated cassava starch films [J]. Carbohydrate Polymers, 2006, 63: 61-71.
    [88]. Mathew S. and Abraham T.E. Characterisation of ferulic acid incorporated starch-chitosan blend films [J]. Food Hydrocolloids, 2008, 22: 826-835.
    [89].聂柳慧,韩永生.壳聚糖-淀粉共混薄膜的制备与研究[J].包装工程, 2005, 26(6): 73-75.
    [90].钟秋平,夏文水.壳聚糖木薯淀粉明胶复合可食抗菌保鲜膜性能的研究[J].食品科学, 2006, 27(6): 59-64.
    [91].薛琼,向贤伟,黄曦平.碘化壳聚糖-淀粉复合膜对芒果保鲜效果的研究[J].包装工程, 2009, 30(2): 12-30.
    [92].田春美,钟秋平.木薯淀粉/壳聚糖可食性复合膜对鲜切菠萝蜜的保鲜研究[J].重庆工贸职业技术学院学报, 2008, 9(1): 48-51.
    [93]. Liu H., Xie F., Yu L., et al. Thermal processing of starch-based polymers [J]. Progress in Polymer Science, 2009, 34(12): 1348-1368.
    [94]. Hartmann, M.H. High Molecular Weight Polylactic Acid Plymers, in Biopolymers from Renewable Resources [M], Kaplan D.L. Editor.. 1998, Berlin: Springer-Verlag Berlin Heidelberg.
    [95]. Garlotta, D. A literature review of poly(lactic acid) [J]. Journal of Polymers and the Environment, 2001, 9(2): 63-84.
    [96]. Wang, N., Yu, J.G., Chang, P.R., et al. Influence of formamide and water on the properties of thermoplastic starch/poly(lactic acid) blends [J]. Carbohydrate Polymers, 2008, 71(1): 109-118.
    [97]. Garlotta, D., Doane, W.M., Shogren, R.L., et al. Mechanical and thermal properties of starch-filled poly(D,L-lactic acid)/poly(hydroxy ester ether) biodegradable blends [J]. Journal of Applied Polymer Science, 2003, 88(7): 1775-1786.
    [98]. Hideto T. and Kimika S. Poly(L-lactide): v. effects of storage in swelling solvents on physical properties and structure of poly(L-lactide) [J]. Journal of Applied Polymer Science,2001, 79(9): 1582-1589.
    [99]. Jacobsen, S. and Fritz, H.G. Filling of poly(lactic acid) with native starch [J]. Polymer Engineering and Science, 1996, 36(22): 2799-2804.
    [100]. Conn R.E., Kolstad J.J., J.F., B., et al. Safety assessment of polylactide (PLA) for use as a food-contact Polymer [J]. Food Chemistry Toxicology, 1995, 33(4): 273-283.
    [101]. Sinclair R.G. The case for polylactic acid as a commodity packaging plastic [J]. Journal of Macromolecular Science Part A: Pure and Applied Chemistry, 1996, 33: 585-597.
    [102]. Haugaard V.K., Weber C.J., Danielsen B., et al. Quality changes in orange juice packaged in materials based on polylactate [J]. European Food Research and Technology, 2002, 214: 423-428.
    [103]. Frederiksen C.S., Haugaard V.K., Poll L., et al. Light-induced quality changes in plain yogurt packaged in polylactate and polystyrene [J]. European Food Research and Technology, 2003, 217: 61-69.
    [104]. Rhim J.W., Hong S.I., and Ha C.S. Tensile, water vapor barrier and antimicrobial properties of PLA/nanoclay composite films [J]. LWT - Food Science and Technology, 2009, 42: 612-617.
    [105]. Sebastien F., Stephane G., Copinet A., et al. Novel biodegradable films made from chitosan and poly(lactic acid) with antifungal properties against mycotoxinogen strains [J]. Carbohydrate Polymers, 2006, 65: 185-193.
    [106]. Jin T., Liu L.S., Zhang H., et al. Antimicrobial activity of nisin incorporated in pectin and polylactic acid composite films against Listeria monocytogenes [J]. International Journal of Food Science and Technology, 2009, 44: 322-329.
    [107]. Ke, T.Y. and Sun, X.Z. Physical properties of poly(lactic acid) and starch composites with various blending ratios [J]. Cereal Chemistry, 2000, 77(6): 761-768.
    [108]. Park, J.W., Im, S.S., Kim, S.H., et al. Biodegradable polymer blends of Poly(L-lactic acid) and gelatinized starch [J]. Polymer Engineering and Science, 2000, 40(12): 2539-2550.
    [109]. Ke, T.Y. and Sun, X.Z. Melting behavior and crystallization kinetics of starch and poly(lactic acid) composites [J]. Journal of Applied Polymer Science, 2003, 89(5): 1203-1210.
    [110]. Ke, T.Y. and Sun, X.Z. Effects of moisture content and heat treatment on the physicalproperties of starch and poly(lactic acid) blends [J]. Journal of Applied Polymer Science, 2001, 81(12): 3069-3082.
    [111]. Pan, H. and Sun, X.S. Effects of moisture content and extrusion parameters on tensile strength of starch and poly(lactic acid) blends [J]. Applied Engineering in Agriculture, 2003, 19(5): 573-579.
    [112]. Ke, T.Y., Sun, S.X.Z., and Seib, P. Blending of poly(lactic acid) and starches containing varying amylose content [J]. Journal of Applied Polymer Science, 2003, 89(13): 3639-3646.
    [113]. Kozlowski, M., Masirek, R., Piorkowska, E., et al. Biodegradable blends of poly(L-lactide) and starch [J]. Journal of Applied Polymer Science, 2007, 105(1): 269-277.
    [114]. Ke T. and Sun X.Z. Thermal and mechanical properties of poly(lactic acid) and starch blends with various plasticizers [J]. Transactions of the Asae, 2001, 44(4): 945-953.
    [115]. Wang, N., Yu, J.G., Chang, P.R., et al. Influence of citric acid on the properties of glycerol-plasticized dry starch (DTPS) and DTPS/poly(lactic acid) blends [J]. Starch-Starke, 2007, 59(9): 409-417.
    [116]. Wang, N., Yu, J.G., and Ma X.F., Preparation and characterization of compatible thermoplastic dry starch/poly(lactic acid) [J]. Polymer Composites, 2008, 29(5): 551-559.
    [117]. Xie, F.W., Xue, T., Yu, L., et al. Rheological properties of starch-based materials and starch/poly(lactic acid) blends [J]. Macromolecular Symposia, 2007, 249: 529-534.
    [118]. Acioli-Moura, R. and Sun, X.S. Thermal degradation and physical aging of poly(lactic acid) and its blends with starch [J]. Polymer Engineering and Science, 2008, 48(4): 829-836.
    [119]. Sun, X.S., Acioli-Moura, R., and Li, W. Effects of starch types on mechanical properties of poly(lactic acid)/starch composites [J]. International Polymer Processing, 2007, 22: 410-417.
    [120]. Huneault, M.A. and Li, H.B. Morphology and properties of compatibilized polylactide/thermoplastic starch blends [J]. Polymer, 2007, 48(1): 270-280.
    [121]. Jang, W.Y., Shin, B.Y., Lee, T.X., et al. Thermal properties and morphology of biodegradable PLA/starch compatibilized blends [J]. Journal of Industrial and Engineering Chemistry, 2007, 13(3): 457-464.
    [122]. Wang, N., Yu, J.G., and Ma, X.F. Preparation and characterization of thermoplasticstarch/PLA blends by one-step reactive extrusion [J]. Polymer International, 2007, 56(11): 1440-1447.
    [123]. Wu C.S. Improving polylactide/starch biocomposites by grafting polylactide with acrylic acid - Characterization and biodegradability assessment [J]. Macromolecular Bioscience, 2005, 5(4): 352-361.
    [124]. Wu C.S. Characterizing biodegradation of PLA and PLA-g-AA/starch films using a phosphate-solubilizing bacillus species [J]. Macromolecular Bioscience, 2008, 8(6): 560-567.
    [125]. Liao H.T. and Wu C.S. New biodegradable blends prepared from polylactide, titanium tetraisopropylate, and starch [J]. Journal of Applied Polymer Science, 2008, 108(4): 2280-2289.
    [126]. Ma, X.F., Yu, J.G., and Ma, Y.B., Urea and formamide as a mixed plasticizer for thermoplastic wheat flour [J]. Carbohydrate Polymers, 2005, 60(1): 111-116.
    [127]. Hulleman S.H.D., Janssen F.H.P., and Feil H. The role of water during plasticization of native starcher [J]. Polymer, 1998, 39: 2043-2048.
    [128]. Liu, P., Yu, L., Liu, H., et al. Glass transition temperature of starch studied by a high-speed DSC [J]. Carbohydrate Polymers, 2009, 77: 250-253.
    [129]. Long Yu, Steven Petinakis, Katherine Dean, et al. Green polymeric blends and composites from renewable resources [J]. Macromolecular Symposia, 2007, 249-250(1): 535-539.
    [130]. Lu, D.D., Zhang, X.W., Zhou, T.H., et al. Biodegradable poly(lactic acid) copolymers [J]. Progress in Chemistry, 2008, 20(2-3): 339-350.
    [131]. Perry, P.A. and Donald, A.M. The Role of Plasticization in Starch Granule Assembly [J]. Biomacromolecules, 2000, 1: 424-432.
    [132]. Perry P.A. and Donald A.M. The effect of sugars on the gelatinisation of starch [J]. Carbohydrate Polymers, 2002, 49: 155-165.
    [133]. Tan, I., Wee, C.C., Sopade, P.A., et al. Investigation of the starch gelatinisation phenomena in water-glycerol systems: application of modulated temperature differential scanning calorimetry [J]. Carbohydrate Polymers, 2004, 58(2): 191-204.
    [134]. Ebewele, R.O. Polymer science and technology [M]. 2000, New York, Washington, D.C.: CRC Press, Baca Raton London.
    [135]. Stevens, M.P. Polymer Chemistry [M]. 1999, New York: Oxford University Press.
    [136]. Jansson, A. and Thuvander, F. Influence of thickness on the mechanical properties for starch films [J]. Carbohydrate Polymers, 2004, 56(4): 499-503.
    [137]. Yang J.H. and Yu J.G. Preparation and properties of ethylenebisformamide plasticized potato starch (EPTPS) [J]. Carbohydrate Polymers, 2006, 63: 218-223.
    [138]. Yang, J.H., J.G. Yu, and X.F. Ma. Study on the properties of ethylenebisformamide and sorbitol plasticized corn starch (ESPTPS) [J]. Carbohydrate Polymers, 2006, 66(1): 110-116.
    [139]. Ma, X.F., Yu, J.G.., and Wan, J.J., Urea and ethanolamine as a mixed plasticizer for thermoplastic starch [J]. Carbohydrate Polymers, 2006, 64(2): 267-273.
    [140]. Yang, J.H., Yu, J.G., and Ma, X.F., Preparation of a novel thermoplastic starch (TPS) material using ethylenebisformamide as the plasticizer [J]. Starch-Starke, 2006, 58(7): 330-337.
    [141]. Liu, X., Yu, L., Liu, H., et al. Thermal decomposition of cornstarch with different amylose/amylopectin ratios in open and sealed systems [J]. Cereal Chemistry, 2009, 86(4): 383-385.
    [142]. Yu, L., and Christie, G., Microstructure and mechanical properties of orientated thermoplastic starches [J]. Journal of Materials Science, 2005, 40(1): 111-116.
    [143]. Evans I.D., and Haisman D.R., The Effect of Solutes on the Gelatinization Temperature Range of Potato Starch [J]. Starch - St?rke, 1982, 34: 224-231.
    [144]. van Soest, J.J.G., Bezemer, R.C., de Wit, D., et al. Influence of glycerol on the melting of potato starch [J]. Industrial Crops and Products, 1996, 5: 1-9.
    [145]. Gunaratne A., Ranaweera S., and Corke H. Thermal, pasting, and gelling properties of wheat and potato starches in the presence of sucrose, glucose, glycerol, and hydroxypropyl [beta]-cyclodextrin [J]. Carbohydrate Polymers, 2007, 70: 112-122.
    [146]. A.M.B.Q. Habitante, P.J.A. Sobral, R.A. Carvalho, et al. Phase transitions of cassava starch dispersions prepared with glycerol solutions [J]. Journal of Thermal Analysis and Calorimetry, 2008, 93(2): 599-604.
    [147]. Nashed G., Rutgers R.P.G., and Sopade P.A. The Plasticisation Effect of Glycerol and Water on the Gelatinisation of Wheat Starch [J]. Starch - St?rke, 2003, 55: 131-137.
    [148]. Li G., Sarazin P., and Favis B.D. The Relationship between Starch Gelatinization andMorphology Control in Melt-Processed Polymer Blends with Thermoplastic Starch [J]. Macromolecular Chemistry and Physics, 2008, 209: 991-1002.
    [149]. Van Soest J.J.G. and Knooren N. Influence of glycerol and water content on the structure and properties of extruded starch plastic sheets during aging [J]. Journal of Applied Polymer Science, 1997, 64(7): 1411~1422.
    [150]. Marcus Y. Some thermodynamic and structural aspects of mixtures of glycerol with water [J]. Physical Chemistry Chemical Physics, 2000, 2(21): 4891-4896.
    [151]. D'Errico G., Ortona O., Capuano F., et al. Diffusion Coefficients for the Binary System Glycerol + Water at 25°C. A Velocity Correlation Study [J]. Journal of Chemical & Engineering Data, 2004, 49: 1665-1670.
    [152].刘宏生.玉米淀粉糊化和重结晶行为及其机理的研究[D].广州:华南理工大学轻工与食品学院, 2008.
    [153].谢丰蔚.淀粉及其可降解聚酯共混物的流变性能研究[D].广州:华南理工大学轻工与食品学院, 2009.
    [154].薛涛.淀粉在剪切力作用下糊化和相变过程的研究[D].中国,广州:华南理工大学轻工与食品学院, 2008.
    [155].苏兵.淀粉挤出成膜性能的研究[D].中国,广州:华南理工大学轻工与食品学院, 2009.
    [156]. Yu, L. and Christie, G. Measurement of starch thermal transitions using differential scanning calorimetry [J]. Carbohydrate Polymers, 2001, 46(2): 179-184.
    [157]. Lund D.B. Influence of time, temperature, moisture, ingredients and processing conditions on starch gelatinization [J]. Critical Reviews in Food Science and Nutrition, 1984, 2: 249-273.
    [158]. Zeleznak, K.L. and Hoseney, R.C. The Glass transition in starch [J]. Cereal Chemistry, 1987, 64: 121-124.
    [159]. Slade L. and Levine H., Recent advances in starch retrogradation, in Industrial Polysaccharides [M]: 387-430. Stivala S.S., Crescenzi V., and Dea I.C.M. Editor.1987, Gordon and Breach Science: New York.
    [160]. Stepto R.F.T. and Tomka I. Injection moulding of natural hydrophilic polymers in the presence of water [J]. Chimia, 1987, 41: 76-81.
    [161]. Van Soest, J.J.G., Benes, K., and de Wit, D. The influence of starch molecular mass on the properties of extruded thermoplastic starch [J]. Polymer International, 1996, 37(16): 3543-3552.
    [162]. Lourdin, D., Coignard, L., Bizot, H., et al. Influence of equilibrium relative humidity and plasticizer concentration on the water content and glass transition of starch materials [J]. Polymer International, 1997, 38(21): 5401-5406.
    [163]. Rindlava, A., Hulleman, S.H.D., and Gatenholma, P. Formation of starch films with varying crystallinity [J]. Carbohydrate Polymers, 1997, 34(1-2): 25-30.
    [164]. Shogren, R.L. Effect of moisture-content on the melting and subsequent physical aging of cornstarch [J]. Carbohydrate Polymers, 1992, 19(2): 83-90.
    [165]. Biliaderis, C.G. Structures and phase transitions of starch in food systems [J]. Food Technology, 1992, 6: 98-109.
    [166]. Maurice T.J., Slade L., Sirett R.R., et al., Polysaccharide-water interactions- Thermal behavior of rice starch. in Properties of Water in Foods [M]: 211-227, Simatos D. and Multon S.L. Editor., 1985, Nilhoff Dordrecht: Netherlands..
    [167]. Chinachoti P. Characterization of thermomechanical properties in starch and cereal products [J]. Journal of Thermal Analysis, 1996, 47: 195-213.
    [168]. Gowie, J.M.G. and Henshall, S.A.E. The influence of chain length and branching on the glass transition temperature of some polyglucosans [J]. European Polymer Journal, 1976, 12: 215-218.
    [169]. Oford, P.D., Parker, R., Ring, S.G., et al. Effect of water as a diluent on the glass transition behavior of malto-oligosaccharides, amylose and amylopectin [J]. International Journal of Biological Macromolecules, 1989, 11: 91-96.
    [170]. Bizot, H., LeBail, P., Leroux, B., et al. Calorimetric evaluation of the glass transition in hydrated, linear and branched polyanhydroglucose compounds [J]. Carbohydrate Polymers, 1997, 32(1): 33-50.
    [171]. ISO No. 11357-1, Plastics: differential scanning calorimetry (DSC) [S], Part 1: general principles. 1997.
    [172]. Zobel, H.F. Molecules to granules: A comprehensive starch review. [J]. Starch/St?rke, 1988, 40: 44-50.
    [173]. Stevens, D.J. and Elton, G.A.H. Thermal properties of the starch water system [J]. Starch-Starke, 1971, 23: 8-11.
    [174]. Russell P.L. Gelatinisation of starches of different amylose/amylopectin content, A study by differential scanning calorimetry. [J]. Journal of Cereal Science, 1987, 6: 133-145.
    [175]. Sahai D. and Jackson D.S. Enthalpic transitions in native starch granules [J]. Cereal Chemistry, 1999, 76: 444-448.
    [176]. Wootton M. and Bamunuarachchi A. Application of Differential Scanning Calorimetry to Starch Gelatinization. I. Commercial Native and Modified Starches [J]. Starch - St?rke, 1979, 31: 201-204.
    [177]. Liu, X.X., Yu, L., Liu, H.S., et al. In situ thermal decomposition of starch with constant moisture [J]. Polymer Degradation and Stability, 2008, 93: 260-262.
    [178]. Liu, H., Yu, L., Xie, F., et al. Gelatinization of cornstarch with different amylose/amylopectin content [J]. Carbohydrate Polymers, 2006, 65: 357-363.
    [179]. Donovan J.W. Phase transitions of the starch-water system [J]. Biopolymers, 1979, 18: 263-275.
    [180]. Biladeris C.G., Page C.M., Slade L., et al. Thermal behavior of amylose-lipid complexes [J]. Carbohydrate Polymers, 1985, 5: 367-389.
    [181]. Jovanovich G. and A?ón M.C. Amylose-lipid complex dissociation: A study of the kinetic parameters [J]. Biopolymers, 1999, 49: 81-89.
    [182]. Raphaelides S. and Karkalas J. Thermal dissociation of amylose-fatty acid complexes [J]. Carbohydrate Research, 1988, 172: 65-82.
    [183]. Chen, P., Yu, L., Kealy, T., et al. Phase transition of starch granules observed by microscope under shearless and shear conditions [J]. Carbohydrate Polymers, 2007, 68(3): 495-501.
    [184]. Dean, K., Yu, L., Bateman, S., et al. Gelatinized starch/biodegradable polyester blends: Processing, morphology, and properties [J]. Journal of Applied Polymer Science, 2007, 103(2): 802-811.
    [185]. Reading, M., Elliott, D., and Hill, V.L. A new approach to the calorimetric investigation of physical and chemical transitions [J]. Journal of Thermal Analysis, 1993, 40(3): 949-955.
    [186]. Reading, M., Luget, A., and Wilson, R. Modulated differential scanning calorimetry [J]. Thermochimica Acta, 1994, 238(C): 295-307.
    [187]. Schawe, J.E.K. Modulated temperature DSC measurements: the influence of the experimental conditions [J]. Thermochim. Acta, 1995, 270: 1-16.
    [188]. DiVito, M.P., Cassel, R.B., Margulies, M., et al. Dynamic differential scanning calorimetry [J]. American Laboratory, 1995, 8: 28-37.
    [189]. Wunderlich, B., Boller, A., Okazaki, I., et al. Heat-capacity determination by temperature-modulated DSC and its separation from transition effects [J]. Thermochimica Acta, 1997, 304/305: 125-136.
    [190]. Jones, K.J., Kinshott, I., Reading, M., et al. The origin and interpretation of the signals of MTDSC [J]. Thermochimica Acta, 1997, 304-305: 187-199.
    [191]. Verdonck, E., Schaap, K., and Thomas, L.C. A discussion of the principles and applications of Modulated Temperature DSC (MTDSC) [J]. International Journal of Pharmaceutics, 1999, 192(1): 3-20.
    [192]. Gill, P., Sauerbrunn, S., and Reading, M. Modulated differential scanning calorimetry [J]. Journal of Thermal Analysis and Calorimetry, 1993, 40(3): 931-939.
    [193]. Gallagher, P.K., Thermoanalytical instrumentation, techniques, and methodology, in Thermal Characterization of Polymeric Materials [M]: 2-203, Turi, E.A., Editor. 1997, Academic Press: New York.
    [194]. Lai, V.M.-F. and Lii, C.-Y. Effects of modulated differential scanning calorimetry (MDSC) variables on thermodynamic and kinetic characteristics during gelatinization of waxy rice starch [J]. Cereal Chemistry, 1999, 76(4): 519-525.
    [195]. Wunderlich, B., The basis of thermal analysis, in Thermal Characterization of Polymeric Materials [M]: 205-482, Turi, E.A. Editor. 1997, Academic Press: New York.
    [196]. Urbani, R., Sussich, F., Prejac, S., et al. Enthalpy relaxation and glass transition behavior of sucrose by static and dynamic DSC [J]. Thermal Acta, 1997, 304/305: 359-367.
    [197]. Royall, P.G., Craig, D.Q., and Doherty, C., Characterisation of moisture uptake effects on the glass transitional behaviour of an amorphous drug using modulated temperature DSC [J]. International Journal of Pharmaceutics, 1999, 192(1): 39-46.
    [198]. Craig, D.Q.M., Barsnes, M., Royall, P.G., et al. An evaluation of the use of modulatedtemperature DSC as a means of assessing the relaxation behavior of amorphous lactose [J]. Pharmaceutical Research, 2000, 17(6): 696-700.
    [199]. Izzard, M.J., Ablett, S., Lillford, P.J., et al. A modulated differential scanning calorimetry study: glass transitions occurring in sucrose solutions [J]. Journal of Thermal Analysis, 1996, 27: 1407-1418.
    [200]. Aubuchon, S.R., Thomas, L.C., Thuerl, W., et al. Investigations of the sub-ambient transitions in frozen sucrose by modulated differential scanning calorimetry [J]. Journal of Thermal Analysis, 1998, 52: 53-64.
    [201]. Rabel, S.R., Jona, J.A., and Maurin, M.B., Application of modulated scanning calorimetry in preformulation studies [J]. Journal of Pharmaceutical and Biomedical Analysis, 1999, 21: 339-345.
    [202]. De Meuter, P., Rahier, H., and Mele, B.V., Recrystallization of starch studied with MDSC, in The Nature of Biological Systems as Revealed by Thermal Methods [M], Lorinczy, D., Editor. 2004, Kluwer, Dordrecht.
    [203]. Liu, Y. and Shi, Y.-C. Phase and state transitions in granular starches studied by dynamic differential scanning calorimetry [J]. Starch/St?rke, 2006, 58(9): 433-442.
    [204]. Louaer, W., Meniai, A., and Grolier, J. Thermal analysis of the influence of water content on glass transitions [J]. Journal of Thermal Analysis and Calorimetry, 2008, 93(2): 605-610.
    [205]. ASTM D 3418 - 03, Standard Test Method for Transition Temperatures of Polymers By Differential Scanning Calorimetry [S]. 2003.
    [206]. ISO No. 11357-2, Plastics: Differential Scanning Calorimetry (DSC), Part 2: Determination of Glass Transition Temperature [S]. 1997.
    [207]. Bergo P.V.A., Carvalho R.A., Sobral P.J.A., et al. Physical properties of edible films based on cassava starch as affected by the plasticizer concentration [J]. Packaging Technology and Science, 2008, 21(2): 85-89.
    [208]. Lafargue, D., Pontoire, B., Buleon, A., et al. Structure and mechanical properties of hydroxypropylated starch films [J]. Biomacromolecules, 2007, 8: 3950-3958.
    [209]. Lafargue, D., Lourdin, D., and Doublier, J.L. Film-forming properties of a modified starch/kappa-carrageenan mixture in relation to its rheological behaviour [J]. CarbohydratePolymers, 2007, 70(1): 101-111.
    [210]. McGregor, C. and Bines, E. The use of high-speed differential scanning calorimetry (Hyper-DSC (TM)) in the study of pharmaceutical polymorphs. [J]. International Journal of Pharmaceutics, 2008, 350(1-2): 48-52.
    [211]. Saunders, M., Podluii, K., Shergill, S., et al. The potential of high speed DSC (Hyper-DSC) for the detection and quantification of small amounts of amorphous content in predominantly crystalline samples [J]. International Journal of Pharmaceutics, 2004, 274(1-2): 35-40.
    [212]. Katayama, D.S., Carpenter, J.F., Manning, M.C., et al. Characterization of amorphous solids with weak glass transitions using high ramp rate differential scanning calorimetry [J]. Journal of Pharmaceutical Sciences, 2008, 97: 1013-1024.
    [213]. Gramaglia, D., Conway, B.R., Kett, V.L., et al. High speed DSC (hyper-DSC) as a tool to measure the solubility of a drug within a solid or semi-solid matrix [J]. International Journal of Pharmaceutics, 2005, 301(1-2): 1-5.
    [214]. McGregor, C., Saunders, M.H., Buckton, G., et al. The use of high-speed differential scanning calorimetry (Hyper-DSCTM) to study the thermal properties of Carbamazepine polymorphs [J]. Thermochim. Act, 2004, 417: 231-237.
    [215]. Chen, P., Yu, L., Kealy, T., et al. Phase transition of starch granules observed by microscope under shearless and shear conditions [J]. Carbohydrate Polymers, 2007, 68(3): 495-501.
    [216]. Lelievre, J. Starch gelatinization [J]. Journal of Applied Polymer Science, 1974, 18(1): 293-296.
    [217]. Atwell, W.A. and L. F. Hood. The terminology and methodology associated with basic starch phenomena [J]. Cereal Foods World, 1988, 33: 306-311.
    [218]. Zobel, H.F., Gelatinization of starch and mechanical properties of starch pastes, in Starch: Chemstry and Technology [M], Whistler, R.L., BeMiller, J.N., and Paschall, B.F., Editors. 1984, Academic Press: New York.
    [219]. Hai P.K., Garg S., and Grag S.K. Gelatinization of starch and modified starch [J]. Starch/St?rke, 1989, 41: 88-91.
    [220].黄峻榕. X射线衍射在测定淀粉颗粒结构中的应用[J].陕西科技大学学报, 2003,21(4): 90-93.
    [221].黄卫宁,张君慧, Hoseney R.C.. FT-Raman光谱与谷物化学研究的最新进展[J].食品科学, 2004, 25(1): 411-415.
    [222]. Xie, F., Liu, H., Chen, P., et al. Starch Gelatinization under Shearless and Shear Conditions [J]. International Journal of Food Engineering, 2006, 5(2, article 6): 1-29.
    [223]. Jeroen J.G. van Soest, Hubertus Tournois, Dick de Wit, et al. Short-range structure in (partially) crystalline potato starch determined with attenuated total reflectance Forier-transform IR spectroscopy [J]. Carbohydrate Research, 1995, 279: 201-214.
    [224].陈玲,黄嫣然,李晓玺等.红外光谱在研究改性淀粉结晶结构中的应用[J].中国农业科学, 2007, 40(12): 2821-2826.
    [225]. Ispas-Szabo P, Ravenelle F, Hassan I, et al. Structure-properties relationship in cross-linked high-amylose starch for use in controlled drug release [J]. Carbohydrate Research, 2000, 323: 163-175.
    [226].刘鹏,王静,刘钟栋等.糯质小麦淀粉理化特性研究[J].粮油加工, 2006, 11: 72-74.
    [227]. Krishnaswamy, R.K., Geibel, J.F., and Lewis, B.J. Influence of semicrystalline morphology on the physical aging characteristics of poly(phenylene sulfide) [J]. Macromolecules, 2003, 36: 2907-2914.
    [228]. Krishnaswamy R.K., and Kalika, D.S., Glass Transition characteristics of poly(aryl ether ketone ketone) and its copolymers [J]. Polymer International, 1996, 37: 1915-1923.
    [229]. Krishnaswamy R.K., and Kalika, D.S., Dynamic mechanical relaxation properties of poly(ether ether ketone) [J]. Polymer International, 1994, 35: 1157-1165.
    [230]. Oladiran, G.S. and Batchelor, H.K. Determination of ibuprofen solubility in wax: A comparison of microscopic, thermal and release rate techniques [J]. European Journal of Pharmaceutics and Biopharmaceutics, 2007, 67(1): 106-111.
    [231]. Silva, C.L., Nunes, S.C.C., Eusebio, M.E.S., et al. Thermal behaviour of human stratum corneum - A differential scanning calorimetry study at high scanning rates [J]. Skin Pharmacology and Physiology, 2006, 19(3): 132-139.
    [232]. Chen, P., Yu, L., Chen, L., et al. Morphology and microstructure of maize starches with different amylose/amylopectin content [J]. Starch-Starke, 2006, 58(12): 611-615.
    [233]. Liu, H., Yu, L., Chen, L., et al. Retrogradation of corn starch after thermal treatment at different temperatures [J]. Carbohydrate Polymers, 2007, 69(4): 756-762.
    [234]. French D., Organization of Starch Granules, in Starch: Chemistry and Technology [M: 183-256, Whistler R., Bemiller J.N., and Paschall E.F., Editors. 1984, Academic Press: Orlando.
    [235]. Bocayuva L.R., Oliveira C.M.F., Amorim M.C.V., et al. Rheological properties of blends of polycarbonate with poly(ethylene oxide) [J]. Polymer Testing, 2000, 19(3): 321-327.
    [236]. Hayakawa I., Sasaki N., and Hikichi K. Elongational flow field as a tool for investigating helix-coil transition: Observation of helix-coil transition in poly(L-glutamic acid) induced by pH change [J]. Journal of Applied Polymer Science, 1995, 56(6): 661-665.
    [237]. Xiao, J., Otaigbe, J.U., Polymer Bonded Magnets. II. Effect of Liquid Crystal Polymer and Surface Modification on Magneto-Mechanical Properties [J]. Polymer Composites, 2000, 21(2): 332-342.
    [238]. Kawai K., Satake M., Inoue Y., et al. Rotary Forming for the Straightening of Tubing [J]. Journal of Materials Processing Technology, 1995, 48(1-4): 135-141.
    [239]. Lee K.S., Lai M.O., and Chen C.M. Strengthening Polypropylene Pipes By Flow-forming Process With Anti-twist System [J]. Journal of Materials Processing Technology, 1997, 63(1-3): 494-500.
    [240]. Babbar I. and Mathur G.N. Rheological properties of blends of polycarbonate with poly(acrylonitrile-butadiene-styrene) [J]. Polymer, 1994, 35(12): 2631-2635
    [241]. Wang X, P., Chen L., Xiang H., et al. Influence of anti-washout agents on the rheological properties and inject ability of a calcium phosphate cement [J]. Journal of Biomedical Materials Research, 2006, 81B(2): 410-416.
    [242].唐康健.具有特殊润湿性的无机膜及低维纳米材料的制备及性质研究[D].长春:吉林大学化学系, 2006.
    [243]. Omata K., Watanabe Y., Umegaki T., et al. Catalyst development for methanol synthesis using parallel reactors for high-throughput screening based on a 96 well microplate system [J]. Journal of the Japan Petroleum Institute, 2003, 46(5): 328 - 334.
    [244]. Yang L., Portugal F., and Bentley W.E. Conditioned medium from listeria innocuastimulates emergence from a resting state: not a response to E. coli quorum sensing autoinducer AI-2 [J]. Biotechnology Progress, 2006, 22(2): 387-393.
    [245]. Lopez P., Sanchez C., and Batlle R. Vapor-phase activities of cinnamon, thyme, and oregano essential oils and key constituents against foodborne microorganisms [J]. Journal of Agricultural and Food Chemistry, 2007, 55(11): 4348-4356.
    [246]. Delvigne F., Destain J., and Thonart P. Toward a stochastic formulation of microbial growth in relation to bioreactor performances : case study of an E. col i fed-batch process [J]. Biotechnology Progress, 2006, 22(4): 1114-1124.
    [247]. ISO, Plastics-thermogravimetry (TG) of polymers-general principles [S]. 1997.
    [248]. Sell D.R. Ageing promotes the increase of early glycation Amadori product as assessed by e-N-(2-furoylmethyl)-L-lysine (furosine) levels in rodent skin collagen, The relationship to dietary restriction and glycoxidation [J]. Mechanisms of Ageing and Development, 1997, 95: 81-99.
    [249]. Reihl O., Lederer M.O., and Schwack W. Characterization and detection of lysine-arginine cross-links derived from dehydroascorbic acid [J]. Carbohydrate Research 2004, 339: 483-491.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700