溴化锂吸收式制冷机的新型缓蚀剂研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
溴化锂吸收式制冷机具有热效率高、热源广泛、能耗低以及零排放等优点,近年来得到广泛的应用。为了进一步提高溴化锂吸收式制冷机的热效率,制冷业研究发展三效式和多效式制冷循环。在优化设计的三效式制冷循环中,制冷机最高工作温度达到180℃,溴化锂溶液浓度也更高。而作为强腐蚀性介质,高浓度溴化锂溶液在三效式和多效式循环条件下会引起碳钢、铜以及铜合金等金属材料严重的腐蚀。这一问题制约了溴化锂吸收式制冷机技术的发展,已引起人们的重视。
     采用化学浸泡实验、电化学测试技术和扫描电镜(SEM)、X射线衍射(XRD)、电子探针(EPMA)以及红外光谱(IR)等检测技术,对Li_3[PMo_(12)O_(40)]与SbBr_3复合缓蚀剂(PMA/SbBr_3)、强化溶解Li_2MoO_4缓蚀剂(E-Mo)、Na_3[PW_(12)O_(40)](PWA)、H_4[PW_(11)VO_(40)](PWVA)和PWVA/Sb_2O_3复合缓蚀剂在高温55%LiBr+0.07mol/L LiOH溶液中对SS41碳钢、磷脱氧铜和白铜的缓蚀行为进行研究,并探讨了缓蚀机理。结果表明,PMA/SbBr_3、PWA、PWVA和PWVA/Sb_2O_3缓蚀剂能够同时抑制碳钢、铜和白铜在55%LiBr+0.07mol/L LiOH溶液中的阴极和阳极反应过程,属于混合型缓蚀剂。E-Mo只能抑制阳极反应过程,而对阴极反应过程无影响,属于阳极型缓蚀剂。
     PMA/SbBr_3缓蚀剂对碳钢在55%LiBr+0.07mol/L LiOH溶液中具有优异的高温缓蚀性能,对铜和白铜的腐蚀也具有较高的缓蚀效率。实验温度范围内,碳钢在含PMA/SbBr_3缓蚀剂的55%LiBr溶液中腐蚀反应的动力学方程式为lnk=11.447-3561.4/T,反应表观活化能E_a=29.61kJ/mol。PMA/SbBr_3缓蚀剂使碳钢在55%LiBr+0.07mol/L LiOH溶液中的反应表观活化能增大,腐蚀反应进行的难度增大。
     55%LiBr溶液中添加20m/L 2-聚丙烯酸调聚物,Li_2MoO_4在55%LiBr溶液中的溶解度提高到850mg/L,得到E-Mo缓蚀剂。E-Mo缓蚀剂对碳钢在55%LiBr+0.07mol/LLiOH溶液中的腐蚀具有优异的缓蚀性能,尤其是溶液温度超过180℃时仍具有很高的缓蚀效率。溶液温度为240℃时,碳钢的腐蚀速度仅33.07μm/a,缓蚀效率仍高达91.5%。E-Mo对铜和白铜的腐蚀也具有一定程度的抑制作用。55%LiBr溶液中,碳钢的腐蚀电流密度i_(corr)与腐蚀电势E_(corr)之间的关系方程为lgi_(corr)=-2.66-3.54E_(corr),阴极析氢反应塔菲尔常数β_c=282mV。
     在55%LiBr+0.07mol/L LiOH溶液中,PWA缓蚀剂浓度为300mg/L时,对碳钢和白铜具有优异的缓蚀性能,对铜的腐蚀也具有一定程度的抑制作用。溶液温度为180℃时,碳钢腐蚀速度仅24.55μm/a,缓蚀效率为86.4%。PWA具有强氧化性,在55%LiBr+0.07mol/L LiOH溶液中使碳钢表面生成完整致密的Fe_2O_3钝化膜,铜表面沉积CuO和
Lithium bromide absorption chiller has been applied widely in recent years, since it has many excellent characteristics, such as high thermal efficiency, wide heat sources, low energy consumption and zero release. To increase the thermal efficiency, triple-effect and multi-effect refrigeration cycles have been developed. In the triple-effect chiller, the maximum working temperature is 180℃ and the concentration of lithium bromide solution is concentrated. Lithium bromide solution is an aggressive medium, and may cause serious corrosion on carbon steel, copper and cupronickel under conditions of triple-effect and multi-effect cycles. This problem has limited the development of lithium bromide absorption chiller.
    The inhibition effects of PMA/SbBr_3, E-Mo, PWA, PWVA and PWVA/Sb_2O_3 on corrosion resistance of carbon steel, copper and cupronickel in 55%LiBr+0.07mol/L LiOH solution are studied by weight loss test, electrochemical measurements and physical detection technologies, such as SEM, XRD, EPMA and IR. The results indicate that PMA/SbBr_3, PWA, PWVA and PWVA/Sb_2O_3 can retard both anodic and cathodic reactions of carbon steel, copper and cupronikel in 55%LiBr+0.07mol/L LiOH solution, and behave as mixed inhibitors. E-Mo just inhibit anodic reactions, and can be classified as anodic inhibitor.
    PMA/SbBr_3 complex inhibitor shows excellent inhibition performance on carbon steel in 55%LiBr+0.07mol/L LiOH solution at high temperature. It can also inhibit the corrosion of copper and cupronickel effectively. At experimental temperatures, the thermodynamic equation of corrosion reaction of carbon steel in 55%LiBr+0.07mol/L LiOH solution with PMA/SbBr_3 inhibitor is lnk=11.447-3561.4/T and the apparent activation energy of the corrosion reaction is 29.61 kJ/mol. The apparent activation energy of the corrosion reaction is increased by the addition of PMA/SbBr_3 inhibitor, which means that the corrosion of carbon steel is retarded in the presence of PMA/SbBr_3 inhibitor.
    E-Mo inhibitor can be obtained by adding 20 mg/L 2-propenoic telomer into 55% LiBr solution, in which the solubility of Li_2MoO_4 can be increased to 850 mg/L. E-Mo inhibitor has excellent inhibition performance on carbon steel in 55%LiBr+0.07mol/L LiOH solution. Especially, when solution temperature is higher than 180 ℃, the inhibition efficiency is still very high. Even when the solution temperature is 240 ℃, the corrosion rates of carbon steel is only 33.07 μm/a, and inhibition efficiency is 91.5%. E-Mo can also inhibit the corrosion of copper and cupronickel. Under experimental condition, the relationship between corrosion
引文
[1] 戴永庆,耿惠彬,陆震,等.溴化锂吸收式制冷技术及应用.北京:机械工业出版社,2000.
    [2] 郭庆堂,吴进发.简明空调用制冷设计手册.北京:中国建筑工业出版社,1996.
    [3] Richard S. Levine. Avoiding problem from lithium bromide in absorption chillers. Plant Engineering, 1978, 10: 157.
    [4] 植村正,伊与木茂树.吸收式冷冻机,吸收式调湿装置对腐食抑制剂.技,1984,41:21-27.
    [5] 郭建伟,梁成浩.溴化锂吸收式制冷机的腐蚀与常用缓蚀剂.制冷,1999,18(2):22-26.
    [6] 梁成浩,郭建伟.溴化锂吸收式制冷机中缓蚀剂的应用与发展.腐蚀与防护,2000,21(5):206-209.
    [7] 郭建伟,梁成浩.碳钢在高温高浓度溴化锂溶液中的腐蚀行为.大连理工大学学报,2000,40(5):554-556.
    [8] 郭建伟,梁成浩.高温高浓度溴化锂溶液对低合金钢的电化学行为作用.电化学,2000,6(4):451-457.
    [9] 郭建伟,梁成浩.不锈钢在高温高浓度溴化锂溶液中的腐蚀行为研究.材料科学与工艺,2001,9(4):413-416.
    [10] 神足勝英,小向茂,笠原晃明.各种含臭化水溶液中炭素钢孔食电位.东京技术研究所报告,1990,35:197-205.
    [11] 马渕勝美,菊池智子,相沢道彦.高温浓厚塩水溶液中异种金属间腐食.材料环境,1997,46(5):293-296.
    [12] 浜元隆夫.吸收式冷温水器材料耐食性.材料环境,1990,39(2):57-63.
    [13] Igual-Munoz A M T, Garcia-Anton J, Guinon J L, Perez-Herranz V. Corrosion Studies of Cu-Ni Alloys in Aqueous LiBr Solutions. EUROCORR 2000, Queen Mary and Westfield College, University of London, London, 2000: 00040803.
    [14] 朱祖芳.有色金属的耐腐蚀性及其应用.北京:化学工业出版社,1994:135-138.
    [15] Igual Munoz A, Garcia Anton J, Guinon J L, et al. Corrosion behavior and galvanic studies of brass and bronzes in aqueous lithium bromide solutions. Corrosion, 2002, 58 (7) : 560-569.
    [16] Munoz-Portero M J, Garcia Anton J, Guinon J L, et al. Anodic polarization behavior of copper in concentrated aqueous lithium bromide solutions and comparison with pourbaix diagrams. Corrosion, 2005, 61 (5) : 464-472.
    [17] 浜元隆夫.吸收式冷温水机材料耐食性.第81回腐食防食,东京,1990:57-63.
    [18] Sequeira C A C. Inorganic, physicochemical and microbial aspects of copper corrosion: literature surrery. British Corrosion Journal, 1995, 30 (2) : 137-153.
    [19] 山田丰,渥美哲郎,森明久,等.开放式蓄热槽中冷温水下空调机用铜管孔食.第44回材料环境讨论会,东京,1997:381-382.
    [20] 伊藤雅彦,丹野和夫.浓厚LiBr水溶液中腐食抑制.第81回腐食防食,东京,1990:11-20.
    [21] 伊藤雅彦,湊昭,相沢道彦,等.高温浓厚臭化水溶液中酸塩炭素鋼及腐食抑制.Boshoku Gijutsu,1984,33(9):504-508.
    [22] Jiangzhou S, Wang R Z. Experimental research on characteristics of corrosion-resisting nickel alloy tube used in triple-effect LiBr/H_2O absorption chiller. Applied Thermal Engineering, 2001, 21 (11) : 1161-1173.
    [23] Felix Z. Recent developments and future prospects of sorption heat pump systems. International Journal of Thermal Science, 1999, 38 (3) : 191-208.
    [24] Felix Z. State of the art in sorption heat pumping and cooling technologies. International Journal of Refrigeration, 2002, 25 (4) : 450-459.
    [25] 张天胜.缓蚀剂.北京:化学工业出版,2002.
    [26] 杨文治.缓蚀剂.北京:化学工业出版,1989.
    [27] 刘景元.溴化锂溶液中缓蚀剂的防腐机理.制冷与空调,1997,(3):38-40.
    [28] 杨熙珍,杨武.金属腐蚀电化学热力学.北京:化学工业出版社,1991.
    [29] 曹琦,鱼剑琳,付明星,等.溴化锂冷水机组中溴化锂溶液pH值的理论计算方法.西安交通大学学报,1999,33(1):81-83.
    [30] 伊藤雅彦,伊藤和利,泉谷雅清,等.高温浓厚LiBr-CaCl_2混合水溶液中炭素鋼低合金鋼腐食举动.Boshoku Gijutsu,1989,38(12):645-649.
    [31] Anderko A, Young R D, Computer Modeling of Corrosion in Absorption Cooling Cycles. Corrosion' 99, San Antonio, TX, 1999: 243.
    [32] 郭建伟.溴化锂吸收式制冷系统中缓蚀机理研究:(博士学位论文).大连:大连理工大学,2000.
    [33] 黄乃宝. 溴冷机中碳钢、铜及其合金的腐蚀机理研究:(博士学位论文).大连:大连理工大学,2003.
    [34] Hitoshi Y, Akijiko S, Naoaki K, et al. Corrosion behavior of carbon steel in concentrated LiBr solution up to 473K. Zairyo-to-Kankyo, 1999, 48 (6) : 369-374.
    [35] Dockus K F, Krueger R H, Rush W F. Corrosion inhibition in lithium bromide absorption refrigeration system. Ashrae Journal, 1962, 4 (12) : 67-73.
    [36] Ahn M H, Back K K. Evaluation of combined effect of organic and inorganic inhibitors on the metals used in absorption refrigeration system. NACE99, 1999.
    [37] 伊藤雅彦,相沢道彦,丹野和夫.高温浓厚臭化水溶液中酸塩混合炭素鋼腐食抑制.Boshoku Gijutsu,1987,36(3):142-147.
    [38] 梁成浩,安晓雯.溴化锂溶液中铬酸锂的应用研究.制冷,2000,19(2):23-26.
    [39] Takahashi, Keryi. Absorbing liquids for absorption refrigerators. Japan: 0229688.
    [40] Wen T C, Lin S M. Corrosion inhibitors for the absorption refrigeration systems. Journal of Chin. I. Ch. E. , 1991, 22 (51) : 311-315.
    [41] 王文,纪祥.溴化锂溶液中缓蚀剂的应用研究.腐蚀与防护,1999,20(6):272-274.
    [42] 黄乃宝,梁成浩.溴化锂吸收式制冷机中铜及其合金的缓蚀剂研究发展.制冷技术,2002,(4):28-30.
    [43] Krueger R H, Dockus K F, Rush W F. Lithium chromate: Corrosion inhibitor for lithium bromide absorption refrigeration systems. Ashrae Journal, 1964, 6 (2) : 40-45.
    [44] 梁成浩,邵华,史维东,等.离子注入Cr、Mo、Al对碳钢缝隙腐蚀行为的影响.腐蚀科学与防护技术,1996,8(3):233-237.
    [45] 蒋伏广,陆柱.钼酸锂对碳钢在溴化锂溶液中腐蚀的影响.制冷,2003,22(4):24-26.
    [46] 蒋伏广,张根成,陆柱.钼酸锂的制备及其对碳钢在溴化锂溶液中的缓蚀作用.腐蚀科学与防护技术,2004,16(4):233-235.
    [47] 野中英正,西野益司,藤野利弘,等.LiBr水溶液中腐食抑制剂.第26回空气调和·冷凍連合講演會,东京,1992:205-208.
    [48] 菊池智子,馬渕勝美.浓厚塩水溶液中炭素鋼間腐食.环境材料’97,东京,1997:291-292.
    [49] 耿惠彬.钼酸锂在吸收式制冷机上的应用.机电设备,2001,(2):5-8.
    [50] 黄乃宝,梁成浩.高温高浓度溴化锂溶液中磷脱氧铜耐蚀性研究.大连理大学学报,2001,41(6):667-670.
    [51] 清水寬,橋本修,瀨戶口哲夫,等.高温浓厚LiBr系水溶液中鋼腐食. 第81回腐食防食,东京,1990:51-56.
    [52] Tanno K, Itoh M, Sekiya H, et al. The corrosion of carbon steel in lithium bromide solution by hydroxide and molybdate at moderate temperatures. Corrosion Science, 1993, 34 (9) : 1453-1461.
    [53] Tanno K, Yashiro H. The passivation behavior of carbon steel in high temperature LiBr solution including molybdate. Proceedings of Fushoku Boshuku: 95A, Tokyo, 1995.
    [54] 馬渕勝美,菊池智子,綠川平八郎,等.高温浓厚塩水溶液中LiNO_3、Li_2MoO_4LiNO_3、Li_2NoO_4混合炭素鋼腐食抑制機構.Zairy-to-Kankyo,1996,45(9):526-533.
    [55] 郭建伟,梁成浩. 高温高浓度溴化锂溶液中碳钢钝化膜形成机理研究.材料科学与工艺,2001,9(4):413-416.
    [56] Igual Munoz A, Garcia-Anton J, Guinon J L, et al. Comparison of inorganic inhibitors of copper, nickel and copper-nickels in aqueous lithium bromide solution. Electrochimica Acta, 2004, 50 (4) : 957-966.
    [57] Huang N B, Liang C H, Tong D W. Effect of inhibitors on corrosion behavior of coppernickel in concentrated lithium bromide solution at high temperature. Trans. Nonferrous Met. Soc. China, 2002, 12 (3) : 424-428.
    [58] 徐群杰,周国定,陆柱.交流阻抗法对几种铜缓蚀剂比较研究.华东理工大学学报,1998,24(3):324-328.
    [59] 汪知恩,周国定,徐群杰.BTA和P/D对铜的缓蚀作用的光电响应研究.中国腐蚀与防腐学报,1998,18(1):57-61.
    [60] 任聚杰,杨迈之,童汝亭,等.3%NaCl溶液中铜表面膜及BTA膜的光电化学研究.中国腐蚀与防护学报,1995,15(3):237-240.
    [61] 罗正贵,闻荻江.铜的腐蚀及防护研究进展.武汉化工学院学报,2005,27(2):17-21.
    [62] 梁成浩,黄乃宝.溴化锂制冷机中铜及其合金缓蚀剂的应用与发展.制冷,2002,21(3):62-65.
    [63] 丹野和夫,斋藤四郎,伊藤雅彦.高温浓厚臭化水溶液中炭素鋼、铜及70/30年腐食抑制.Boshoku Gijutsu,1984,33(9):516-519.
    [64] 梅津芳生,丹野和夫,伊藤雅彦.高温浓厚臭化水溶液中硼酸塩炭素鋼、铜70/30腐食抑制.防食技術,1980,29(5):233-238.
    [65] Shigeki I, Tadashi U. Water-lithium bromide-x-butyrolactone absorption refrigeration machine. Trans. of the JAR, 1986, 3 (1) : 27-30.
    [66] 陈济平,邢蓉,吉成荣.BTA对碳钢在LiBr溶液中腐蚀的影响.盐城工学院学报,2000,13(4):29-30.
    [67] Subramanian R, Lakshminarayanan V. Effect of adsorption of some azoles on copper passivation in alkaline medium. Corr. Sci, 2002, 44 (3) : 535-554.
    [68] Quraishi M A, Khan W M, Ajmal M. Influence of some thiazole derivatives on the corrosion of mild steel in hydrochloric acid. Anti-corros. Methods and Mater, 1996, 43 (2) : 5-8.
    [69] 黄乃宝,梁成浩.55%溴化锂溶液中缓蚀剂对磷脱氧铜缓蚀行为研究.大连理工大学学报,2004,44(5):646-650.
    [70] Huang N B, Liang C H. Corrosion behavior of carbon steel in lithium bromide. Journal of Chinese Chemical Society, 2003, 50 (5) : 979-984.
    [71] 蒋伏广,陆柱.钼酸锂与苯并三氮唑对碳钢在溴化锂溶液中缓蚀作用的协同效应.华东理工大学学报,2004,30(2):153-156.
    [72] 袁从杰,陆震,曹卫华,等.一种新型的串联三效溴化锂吸收式制冷循环的分析. 制冷学报,2002,2:46-49.
    [73] 袁从杰,陆震,曹卫华,等.带蒸汽压缩的并联型三效溴化锂吸收式制冷循环的分析.流体机械,2002,30(2):49-57.
    [74] 扈显琦,梁成浩,黄乃宝.三效溴化锂吸收式制冷机的发展概况.制冷,2003,22(4):27-30.
    [75] 伊与木茂樹,植树正.H_2O+LiBr+LiNO_3系蒸汽吸收式对腐食抑制劑.技苑,1993,77:26-29.
    [76] 郭建伟,梁成浩.LiNO_3对高温高浓度LiBr溶液中碳钢的缓蚀机理.腐蚀科学与防护技术,2002,12(4):197-201.
    [77] Richard S Levine. Reducing the effect of lithium bromide in absorption chillers. Plant Engineering, 1978, 11: 101.
    [78] 李燕,陆柱.钨酸盐对碳钢缓蚀机理的研究.精细化工,2000,17(9):526-530.
    [79] 徐群杰,马姗姗,陈震芳.钨酸盐及其复配对模拟水中碳钢的缓蚀作用研究.上海电力学院学报,2005,21(3):268-270.
    [80] 许淳淳,何海平.钨酸钠与十二烷基苯磺酸钠协同缓蚀作用研究.表面技术,2005,34(3):33-35.
    [81] 徐群杰,刘小华,刘月丽,等.Na_2WO_4和BTA复配对铜缓蚀性能的研究.腐蚀与防护,2001,22(10):424-426.
    [82] 李燕,陆柱.电化学交流阻抗法研究钨酸盐与BTA的协同缓蚀作用.腐蚀与防护,2001,22(11):471-474
    [83] Shigeki I, Tadashi U. Studies on corrosion inhibitors in water-lithium bromide absorption refrigerating machine. Refrigeration, 1978, 53 (614) : 1101-1105.
    [84] Amaral S T, Muller I L. Effect of silicate on passive films anodically formed on iron in alkaline solution as studied by electrochemical impedance spectroscopy. Corrosion, 1999, 55 (1) : 17-22.
    [85] Verma, Shyam K, Mekhjian, et al. Corrosion inhibiting solutions and processes for refrigeration systems comprising heteropoly complex anions of transition metal elements additional additives. 1999, US: 6004476.
    [86] Verma, Shyam K, Mekhjian, et al. Corrosion inhibiting solutions for refrigeration systems comprising heteropoly complex anions of transition metal elements. 1999, US: 6004475.
    [87] 冷凍腐蚀抑制溶液方法.1999,JP:2947793.
    [88] 张澜萃,李晓辉,谷源鹏,等.Keggin结构杂多酸盐的缓蚀性能研究.辽宁师范大学学报(自然科学版),2003,26(4):404-406.
    [89] 张澜萃,谷源鹏,李晓辉.磷系杂多酸的缓蚀性能研究.辽宁化工,2003,32(11):472-473.
    [90] Ma L, Lu R Q, Cao Z G. The influences of heteropoly compounds on the corrosion behaviour of steel. Journal of Molecular Science, 1999, 15 (3) : 183-187.
    [91] 井上修行.水/臭化+C_2H_4(OH)_2系水/臭化+ZnCl_2系.冷凍,1993,68(789):41-45.
    [92] 伊与木茂树.水/臭化+LiCl+ZnCl2系.冷凍,1993,68(789):46-49.
    [93] 陈光明,陈曙辉.国外吸收制冷研究进展.制冷,1998,65(4):18-24.
    [94] 松田晃,崔光炫.水/塩化系.冷凍,1993,68(789):66-68.
    [95] 川田章廣.TFE/E181系.冷凍,1993,68(789):76-78.
    [96] 曹楚南,张鉴清.电化学交流阻抗谱导论.北京:科学出版社,2002.
    [97] Vera Cruz R P, Nishikata A, Tsuru T. AC impedance monitoring of pitting corrosion of stainless steel under a wet-dry cyclic condition in chloride-containing environment. Corrosion Science, 1996, 38 (8) : 1397-1406.
    [98] 史美伦,刘俊彦,吴科如.混凝士中钢筋锈蚀机理研究的交流阻抗方法.建筑材料学报,1998,1(3):206-209.
    [99] 张万灵,刘建蓉.交流阻抗法对耐候钢腐蚀行为的研究.钢铁研究,1996,25(5):39-43.
    [100] 赵永韬,吴建华,于辉,等.交流阻抗法研究膜层的形成和破损(Ⅰ)—缓蚀剂膜层的EIS变化.四川化工与腐蚀控制,1999,2(4):14-17.
    [101] 童汝亭,马子川.交流阻抗法研究BTA和MBT对铜的缓蚀行为.化学研究与应用,1996,8(3):329-333
    [102] Tanno K, Itoh M, Takahashi H, et al. The corrosion of carbon steel in lithium bromide solution at moderate temperature. Corrosion Science, 1993, 34 (9) : 1441-1451.
    [103] 马厚义,陈慎豪,全贞兰,等.卤离子溶液中邻香兰素邻苯二胺对铜的缓蚀作用.电化学,2000,6(1):31-39.
    [104] 秦玉楠.钼系杂多酸催化剂的结构、性能、制备和应用前景.中国钼业,2001,25(2):20-24.
    [105] 王恩波,胡长文,许林.多酸化学导论.北京:化学工业出版社,1997.
    [106] 高丽娟,郭飞军,谢显茂,等.磷钼杂多酸的合成、表征及催化活性的研究.黑龙江大学自然科学学报,2001,18(1):72-74
    [107] 黄泳权,钟立峰,唐渝,等.Keggin型P-Mo-V杂多酸催化合成苯甲酸正丁酯.精细化工,2003,20(8):478-480
    [108] 胡英,吕瑞东,刘国杰,等.物理化学.北京:高等教育出版社,1999.
    [109] 李巧霞,王振尧,韩微,等.耐候钢在含MgCl_2介质的干湿环境下的腐蚀行为.中国腐蚀与防护,2006,26(3):136-140.
    [110] 王睿.杂多化合物的氧化还原性能及其应用.海南大学学报自然科学版,2000,18(3):312-316.
    [111] 伊万·科热夫尼科夫著.唐培堃,李祥高,王世荣译.精细化学品的催化合成:多酸化合物及其催化.北京:学工业出版社,2005.
    [112] 王睿,鲍晓军.磷钼杂多酸钠盐脱硫制硫反应机理研究.石油学报,2000,16(6):70-73.
    [113] 黄乃宝,梁成浩.溴化锂吸收式制冷机中铜及其合金的腐蚀研究进展.制冷,2001,20(2):25-28
    [114] David I, Omer. Method for retarding corrosion of metals in lithium halide solutions. US: 000788 A1, 2003.
    [115] 林玉华,杜荣归,胡融刚,等.不锈钢钝化膜耐蚀性与半导体特性的关联研究.物理化学学报,2005,24(7):740-745.
    [116] Bard A J, Faulkner L R. Electrochemical Method, Fundamentals and Applications, John Wilcv & Sons, New York, 1980, 327.
    [117] Yau Y H, Streicher M A. The effect of chromium content (0 to 35%) in Fe-Cr alloys on corrosion rates and mechanisms in 1.0N sulfuric acid. Corrosion, 1991, 47 (5) : 352-358.
    [118] Guinon J L, Garcia-Anton J, Perez-Herranz V, et al. Corrosion of carbon steels, stainless steels, and titantium in aqueous lithium bromide solution. Corrosion, 1994, 50 (3) : 240-246.
    [119] Giddey S, Cherry B, Lawson F, et al. Stability of oxide films formed on mild steel in turbulent flow conditions of alkaline solutions at elevated temperatures. Corrosion Science, 2001, 43 (8) : 1497-1517.
    [120] Cheng Y F, Luo J L. Passivity and pitting of carbon steel in chromate solutions. Electrochimica Acta. , 1999, 44 (26) : 4795-4804.
    [121] Cheng Y F, Steward F R. Corrosion of carbon steels in high-temperature water studied by electrochemical techniques. Corrosion Science, 2004, 46 (10) : 2405-2420.
    [122] Brisard G M, Rudnichi J D, Mclarnon F, et al. Application of probe beam deflection to study the electrooxidation of copper in alkaline media. Electrochim Acta, 1993, 40 (7) : 859-865.
    [123] Gennero De Chinalvo M R, Marchinano S L, Arvia A J. The mechanism of oxidation of copper in alkaline solution. J. Appl. Electrochem, 1984, 14: 165-175.
    [124] 王力耕,杨兆柱,胡长文,等.杂多化合物的理论研究进展.东北师大学报自然科学,1998,30(2):112-120.
    [125] Hu X Q, Liang C H, Huang N B. Inhibition effects of PMA/SbBr_3 complex inhibitor on copper and cupronickel in LiBr solution. Transactions of Nonferrous Metals Society of China, 2005, 15 (3) : 625-630.
    [126] Han K P, Fang J L. A protective coating of P-Mo-V heteropoly acid on steel. Journal of Electron Spectroscopy and Related Phenomena, 1997, 83 (1) : 93-98.
    [127] 钟立峰,唐渝,张渊明.Keggin型P-Mo-V杂多酸的合成,化学研究与应用,2003,15(2):254-256.
    [128] 王力,刘宗瑞.PW_9V_3的合成及表征.内蒙古民族师院学报(自然科学版),2000,15(1):58-60.
    [129] 陈晋阳,柳士忠,董俊萍.Keggin结构钨钼磷混配杂多酸盐的合成和性质研究.湖北大学学报(自然科学版),1998,20(1):73-76.
    [130] 王恩波,许林.杂多蓝研究的进展.化学通报,1992,54(5):5-10.
    [131] 王恩波,陆新红,赵世良,等.Keggin结构和Dawson结构杂多酸(盐)及其衍生物的氧化还原性质研究.中国科学(B辑),1990,20(2):130-136.
    [132] 周国定.交流阻抗法在电力设备腐蚀研究中的应用.中国电力,1994,(10):24-29.
    [133] 王慧龙.巯基三唑缓蚀剂的合成及其缓蚀吸附行为研究:(博士学位论文).武汉:华中科技大学,2002.
    [134] 曹楚南.腐蚀电化学原理.北京:化学工业出版社,2004.
    [135] Murakawa T, Nagaura S, Hackerman. N. Coverage of iron surface by organic compounds and anions in acid solution. Corrosion Science, 1976, 7 (2) : 79-89.
    [136] 刘乃玲,李永安.溴化锂制冷机新的防腐措施.制冷,1995,50(1):47-49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700