基于IEC 61850过程总线结构的数字化保护系统性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于IEC 61850过程总线结构的数字化继电保护系统是数字化变电站综合自动化系统的重要体系之一,其性能优劣直接影响到电网的安全性和稳定性。过程总线结构数字化保护系统一般由常规/非常规互感器NCIT (Non-conventional Instrument Transformer)、合并单元MU (Merging Unit)、以太网交换机(Ethernet Switch)、保护智能电子装置IED (Intelligent Electronic Device)、同步时钟源(Time Synchronisation Source)、断路器控制器(Breaker Controller)等构成。IEC61850-9-2定义的过程总线,实现了互感器或合并单元与间隔层设备如保护IED、间隔层控制器、测量仪表等的数字化连接,是一次系统和二次系统的桥梁。不同的过程总线组网结构和过程层采样值通信的时间同步精度对数字化保护系统的性能有直接影响,与NCIT并列运行的常规电流互感器(CT)饱和现象对电流差动保护的影响也必须解决。因此,研究上述各种问题对基于过程总线结构的数字化保护系统性能的影响及解决方案具有重要的理论价值和实际意义,本工作是英国国家电网NG (National Grid)、法国阿海珐公司(Areva)、苏格兰电力公司(Scottish Power)等联合资助的基金项目的重要内容,由作者在英国曼彻斯特大学的国家电网电力系统研究中心完成。
     本文引入最小径集、灵敏度分析、三阶差分等方法并借助统计学工具,对基于过程总线结构的数字化保护系统的性能进行了深入研究,为英国国家电网公司设计了过程总线组网应用方案,过程层采样值精准时间同步实现方案和新型数字化保护系统模型及性能测试方案,开发了电流差动保护CT饱和检测程序,并应用于工程实际,取得的创新性成果和主要研究工作如下:
     1、建立了基于过程总线结构的六种数字化保护系统模型,应用可靠性框图和最小径集算法,求解各模型可靠性数据并进行灵敏度分析,得出最优模型和设备重要度优先级序列。
     过程总线的组网方案有星型拓扑、总线拓扑、环形拓扑、网状拓扑等,不同的组网方案对数字化保护系统的可靠性有重要影响。通过分析各方案的优缺点,基于国际主流设备制造商的过程总线数字化保护系统实现方案,为英国匡家电网设计了通用型过程总线组网方案、适用于双母线接线变电站和网格型接线变电站的过程总线组网方案。从功能冗余角度,提出了六种基于过程总线结构的数字化保护系统模型,建立可靠性框图并借助最小径集算法求解各模型的可靠性。由于系统各元件的可靠性数据源于设备制造商和电网运营商的经验值而非实际统计所得,采用两组灵敏度分析工具来研究原始数据不准确或发生变化时最优解的稳定性,得到各设备对保护系统可靠性的影响,确定元件重要度优先级排序,对优化系统投资计划和指导系统维护及故障检修有重要指导作用。
     2、针对数字化保护系统过程层采样值SV (Sampled Values)亚微秒级时间同步精度的要求,提出了三种合并单元时间同步模型,分别适用于灵敏度补偿系统、常规互感器和非常规互感器并列运行系统和分布式母线保护系统。将“乒乓”原理同步算法应用于合并单元同步,得出算法执行后的合并单元时钟漂移特性和采样值相角差;提出预测算法应对GPS信号丢失;对基于主从时钟算法的IEEE 1588 V2精准时钟同步协议,提出“主时钟群”概念并采用“民主”算法提高其主时钟故障时的可用率;结合实际工程,引入透明时钟概念,将支持IEEE1588 V2的RuggedCOM RSG 2288以太网交换机应用于过程层组网,确保过程层时间同步的可靠性和精确性。
     3、应用OMICRON CMC测试仪和RTDS (Real Time Digital Simulator),开发了新型过程总线结构数字化保护的性能测试系统。研究了IEC 61850对保护系统测试的影响,采用OMICRON CMC测试仪的IEC 61850测试工具和IRIG-B接口单元,设计了支持IEEE 1588 V2过程层时间同步的数字化保护测试系统,实现冗余时间源机制,提高了时间同步(亚微秒级)的可靠性和准确性。与原方案(5个保护柜各需一个GPS天线)相比节省了3套GPS天线及相应的P594同步单元,实现降低成本和简化接线的目的。同时,该测试方案修改扩展灵活,可替换其他厂家的合并单元和保护IED进行设备兼容性和互操作性测试,实现设备的“即插即测”,充分体现和利用了数字化保护系统的优势。开发了两套基于RTDS的合并单元测试方案,通过对OMICRON与RTDS测试方案的对比,提出测试工具的最优选择标准。
     4、针对英国国家电网的网格角型接线变电站(Mesh Corner)的运行特点,应用Areva MiCOM系列保护IED,在英国曼彻斯特大学国家电网电力系统研究中心为其建立了由5个保护柜组成的完整保护系统,包括全数字化网格角母线保护柜、全数字化变压器高/低压侧保护柜、馈线近网格角全数字化保护A柜和远端常规硬接线保护B柜。引入统计学工具,针对常规保护系统性能测试参数的不足,提出了一系列适用于该保护系统性能测试的独立参数、相对参数、兼容性和互操作性参数等指标,综合考虑保护系统的整体性能测试和单个设备的性能测试,同时兼顾设备兼容性和互操作性参数,并开发了适用于不同保护配置的测试执行方案,为量化统计分析该新型数字化保护系统的性能参数提供了高效有力的工具。
     5、针对本项目CT饱和对馈线B柜的常规硬接线电流差动保护的影响,引入CT二次侧感应电压变化率等判据对原三阶差分CT饱和检测算法进行改进。原算法采用CT二次电流三阶差分的模极大值串检测CT饱和,灵敏度较高但容易发生识别错误,抗噪声能力弱,且后续检测结果对前期检测结果依赖性强易导致检测结果无效,稳定性无法满足实际要求。改进算法克服了原三阶差分检测法的不足,且运算量小,便于实时实现。DigSILENT (DIgital SImuLation and Electrical NeTwork calculation program)仿真结果表明,该方法实用有效,提高了CT饱和检测的准确性和稳定性,有效避免了常规硬接线电流差动保护IED因CT饱和引起的误动、拒动或延时动作等问题。
Digital protection systems based on process bus architecture play a very important role in the application of Digital Substation Automation System (SAS); their performance directly affects power system security and stability. Process bus-based digital protection system generally consists of Conventional/Non-conventional Instrument Transformer (NCIT), Merging Unit (MU), Ethernet Switch, Protective IED (Intelligent Electronic Device), Time Synchronisation Source, Breaker Controller, etc. The process bus defined in IEC 61850-9-2 works as a bridge between primary and secondary systems. It enables the use of a digital link between current/voltage transformers or merging units (MUs) and bay devices such as protective relays, bay controllers or meters. Different process bus architectures and time synchronisation accuracy of process bus communication have great impact on the performance of digital protection systems, the problems caused by saturation of conventional CT for current differential protections which may operate in conjunction with NCIT must be solved as well. Consequently, it is of vital theoretical and practical importance to study the impact and solutions of the aforementioned factors on the performance of protection systems with IEC 61850-9-2 process bus architecture in digital substations. The work summarised in this thesis is also the important content of the project entitled "Protection Performance Study for Secondary Systems with IEC61850 Process Bus Architecture". This project is co-funded by the National Grid Company, U.K., Areva T&D, France, Scottish Power, U.K., Scottish and Southern Energy, U.K. etc and finished by the author in the National Grid Power System Research Centre (NGPSRC) at The University of Manchester.
     By utilising the minimal tie sets method, sensitivity analysis, the third order difference method and some statistical tools, the performance of protection systems with IEC 61850-9-2 process bus architecture in digital substations under various conditions are evaluated and solutions are given. Novel performance testing schemes for the digital protection systems are developed and applied in the project, a CT saturation detection algorithm for use in current differential protection is proposed as well. The innovative achievements and main works of the thesis are as follows:
     1、Six alternative digital protection system models are proposed based on process bus architecture. Reliability block diagrams are built to assess the functionality of each system and system reliability is calculated using the minimal tie sets method. Sensitivity analysis is carried out on the results to obtain the optimal system architecture and priority ranking of devices.
     There are four types of general protection system architectures based on process bus:star topology, bus topology, ring topology and mesh topology. The choices of different process bus architectures affect the reliability of protection systems directly. By analysing the pros and cons of different architectures and evaluating the proposed process bus solutions of world-leading manufactures, generic process bus architecture, double busbar substation process bus architecture and mesh substation process bus architecture are designed for NG substations. Six alternative process bus based protection system models are proposed from a component redundancy perspective. The functionality of each system is assessed using reliability block diagrams based on a success-oriented network. System reliability is calculated using the minimal tie sets method determined by the connection matrix. The input data used to calculate the system reliability are based mainly on engineers'experience and judgement rather than on a systematic measurement and collection process. Sensitivity analysis is used to determine the sensitivity of the results to variations in this input data. It was carried out using two approaches; one highlights those components with the greatest impact on system reliability and the other the importance of the task performed by each component in terms of how it affects the functionality of the system. This type of sensitivity approach is useful, not only to determine which components are likely to contribute most to an increase in system performance if their reliabilities are improved, but also to devise ways in which the architecture of the system can be modified to reduce the dominating effect of certain components on the system performance. The results and conclusions can assist both utilities and manufacturers in understanding alternative IEC 61850 process bus architectures and how they affect the performance of protection systems, so that educated and substantiated decisions can be made regarding system design, implementation and maintenance.
     2、Considering the 1μs time synchronisation accuracy requirements of the Sampled Values transmitted via process bus, three alternative time synchronisation scenarios of MU for different applications in digital protection systems are proposed. They are designed for systems with the characteristics like:parallel line compensation where the synchronisation is between two independent MUs located in two bays; the bay device has a local sampling of conventional CT and VT to be synchronised with the data of the MU or via a technique which time correlates the output to the sampled input data and distributed busbar protection respectively. A "Ping-Pong" principle based synchronisation algorithm applied to a decentralised busbar protection scheme and a differential line protection scheme is also proposed. The time offset between merging units (MUs) and the phase difference of the sampled values (SVs) after this synch process are analysed in detail. Prediction techniques are proposed to improve reliability in case of loss of the GPS signal. For the master/slave principle based IEEE 1588 Precision Time Protocol (PTP) standard, master group concept and democratic algorithms are proposed to cope with master clock failure. By introducing the Transparent Clock (TC) concept, RuggedCOM RSG 2288 Ethernet Switches are utilised in the project to ensure the reliability and accuracy of time synchronisation for process level communication.
     3、Novel performance testing schemes for digital protection systems are developed based on OMICRON test sets and the RTDS (Real Time Digital Simulator). The impact of IEC 61850 on protection testing is investigated; a performance testing scheme supporting IEEE 1588 V2 for process level communication based on OMICRON test set is developed. The scheme can improve the reliability and accuracy of time synchronisation through a redundant time source. This scheme can reduce three GPS antennas and the P594 time synch units compared with the original scheme (five GPS antennas are needed). The gains are simplified wiring, cost reduction and improved time synch reliability and accuracy for SV. Further more, this test scheme can be modified and expanded easily, the Merging Units and protective IEDs can be swapped readily to facilitate compatibility and interoperability tests. All the devices can simply "plug and test" and this demonstrates the advantages of digital protection systems perfectly. Two merging unit testing platforms are developed based on RTDS and the optimal testing device selection criteria can be concluded by comparing the advantages of OMICRON and RTDS based testing schemes.
     4、Integrated protection systems are developed in the NGPSRC based on Areva MiCOM protective IEDs. The systems are specially designed for a National Grid mesh topology substation and consist of five panels:digital mesh corner protection panel, Feeder local panel (digital), Feeder remote panel (conventional hardwired), digital transformer LV panel and digital transformer HV panel. A set of performance evaluation indices including absolute/relative and compatibility/interoperability indices are defined. It can be used to evaluate system level and independent component performance. System compatibility and interoperability can also be investigated utilising the schemes. Implementation methodology for performance testing of feeder protection and mesh corner busbar protection is proposed and the proposed schemes and methodology can work as a valuable and effective tool to quantitatively evaluate the performance of the novel protection systems.
     5、CT saturation has impact on the performance of the hardwired current differential protection in Feeder remote panel B. An improved CT saturation detection algorithm is developed based on the third order difference method by utilising the rate of change criteria of the CT secondary induced voltage. The algorithm evaluates the start and end of each saturation period using the "largest modulus series"; this is derived from the third order difference function applied to the secondary current. The ratios of the absolute values of the CT secondary induced voltage are also used as criteria to determine when the CT is saturated to reduce the possibility of false detection due to the effect of noise. The algorithm is validated by implementing it in a DigSILENT model of a typical 110kV network and its associated protection. Simulation results obtained for various case studies indicate that the proposed algorithm successfully detects the start/end of CT saturation. It is a reliable algorithm for use in conjunction with the biased current differential relay and can eliminate the maloperation and delayed operation of the relays caused by CT saturation.
引文
[1]高翔,张沛超.数字化变电站主要技术特征和关键技术.电网技术,2006,30(23):67-71.
    [2]殷志良,刘万顺,杨奇逊.一种遵循IEC 61850标准的合并单元同步的实现新方法.电力系统自动化,2004,28(11):57-61.
    [3]IEC 61850, Communication networks and systems in substation-part 9-2:specific communication service mapping(SCSM)-sampled analogue values over ISO 8802-3[S].
    [4]张沛超,高翔.数字化变电站系统结构.电网技术,2006,30(24):73-77.
    [5]杨奇逊.微型机继电保护基础[M].北京:水利电力出版社,1988.
    [6]张宇辉.电力系统微型计算机继电保护[M].北京:中国电力出版社,2000.
    [7]王梅义.电网继电保护应用[M].北京:中国电力出版社,1999.
    [8]陈德树,张哲,尹项根.微机继电保护[M].北京:中国电力出版社,2000.
    [9]葛耀中.新型继电保护与故障测距原理与技术[M].西安:西安交通大学出版社,1996.
    [10]张之哲,陈德树.微型计算机距离保护的自适应对策[J].中国电机工程学报,1988,8:(3):12-23.
    [11]ROCKEFELLER G D, WAGNER C L, LINDERS J R, etal. Adaptive transmission relaying concept for improved performance[J]. IEEE Trans. on Power Delivery,1988,3 (4)
    [12]XIA Y Q, LI K K, DAVID A K. Adaptive relay setting for stand-alone digital distance protection[J]. IEEE Trans. on Power Delivery,1994,9(1):480-491.
    [13]吴斌,刘沛,陈德树.继电保护中的人工智能及其应用[J].电力系统自动化,1995,19(5):5-11.
    [14]KANDIL N, SOOD V K, KHORASANI K, et al. Fault identification in an AC-DC transmission system using neural networks[J]. IEEE Trans. on Power Systems,1992,7 (2):812-819.
    [15]YANG H T, CHANG W Y, HUANG C L. A new neural networks approach to online fault section estimation using information of protective relays and circuit breakers[J]. IEEE Trans. on Power Delivery,1994,9 (1):220-230.
    [16]SIDHU T S, SINGH H, SACHDEV M S. Design implementation and testing of an artificial neural network based fault direction discriminator for protecting transmission lines[J]. IEEETrans. on Power Systems,1995,10 (2):1002-1009.
    [17]张秀峰,神经网络在继电保护中的应用[J].西南交通大学学报,1995,30(6):694-700.
    [18]陈允平,龚庆武,马宁,等.基于人工神经网络的智能型自适应保护(Ⅰ)原理[J].武汉水利电力大学学报,1998,31(2):28-31.
    [19]段玉清,贺家李.基于人工神经网络方法的微机变压器保护.中国电机工程学报,1998,7(3):15-20.
    [20]房鑫炎,钟聪,沈芳良.基于人工神经网络自适应电流保护[J].继电器,2000,28(5):16-19.
    [21]贺家李.电力系统继电保护技术的现状与发展[J].中国电力,1999,32(10):38-40.
    [22]曾庆禹.变电站自动化技术的未来发展(一)—电力市场与协调型自动化[J].电力系统自动化,2000,24(18):1-4.
    [23]曾庆禹.变电站自动化技术的未来发展(二)—集成自动化、寿命周期成本[J].电力系统自动化,2000,24(20):1-5.
    [24]IEC. IEC 61850:Communication networks and systems in substations[S].2005.
    [25]GE, "Hard Fiber Process Bus System"[R], GE HardFiber Reference Manual,2008.
    [26]APOSTOLOV A P. Distributed protection, control and recording in IEC 61850 based substation automation systems. Proceedings of Eighth IEE International Conference on Developments in Power System. Protection:Vol 2, April 5-8,2004, Amsterdam, Netherlands. Stevenage, UK:IEE, 2004:647-651.
    [27]HOGA C, WONG G. IEC 61850:open communication in practice in substations. Proceedings of 2004 IEEE PES Power Systems Conference and Exposition:Vol 2, Oct 10-13,2004, New York, NY. USA. New York, NY, USA:IEEE,2004:618-622.
    [28]CRISPINO F, VILLACORTA C A, OLIVEIRA P R P, et al. An experiment using an object-oriented standard-IEC 61850 to integrate IEDs systems in substations. Proceedings of 2004 IEEE PES Transmission and Distribution Conference and Exposition:Latin America, November 8-11,2004, Sao Paulo, Brazil. New York, NY, USA:IEEE,2004:22-27.
    [29]APOSTOLOV A P, VANDIVER B. Functional testing of IEC 61850 based IEDs and systems. Proceedings of 2004 IEEE PES Power Systems Conference Exposition:Vol 2, Oct 10-13,2004, New York, NY, USA. New York, NY, USA:IEEE,2004:640-645.
    [30]吴在军,胡敏强.基于IEC 61850标准的变电站自动化系统研究.电网技术,2003,27(10):61-65.
    [31]任雁铭,秦立军,杨奇逊.IEC 61850通信协议体系介绍和分析.电力系统自动化,2000, 24(8):62-64.
    [32]操丰梅,任燕铭,王照,等.变电站自动化互操作实验建议.电力系统自动化,2005,29(3):86-89.
    [33]张结,卢德宏.IEC 61850的语义空间研究.电力系统自动化,2004,28(11):45-48.
    [34]孙志祥,晋伟平,杨俊宏等.110kV数字化变电站建设.云南电力技术,2007,35(3):44-45.
    [35]高翔,周健,周红等.IEC 61850标准在南桥变电站监控系统中应用.电力系统自动化,2006,30(16):105-107.
    [36]HOSSENLOPP. L, CHHATREFOU. D, THOLOMIER. D, BUI. D. P. "Process bus:Experience and impact on future system architectures" [C] [2008 CIGRE Session Paper [B5-104] http://www.e-cigre.org
    [37]黄欣,贺春.IEC 61850标准对电力系统工作的影响[J].继电器,2007,35(13):53-56.
    [38]IEC 870-5-101. Telecontrol Equipment and Systems-Companion Standard for Basic Telecontrol Tasks.1995.
    [39]IEC 870-5-103. Telecontrol Equipment and Systems-Companion Standard for the Informative Interface of Protection Equipment.1997.
    [40]UCA 2.0. Utility Communication Architecture.1998.
    [41]ISO/IEC 9506. Industrial Automation Systems-Manufacturing Message specification.1990.
    [42]IEC 61850-1. Communication networks and systems in substations. Part 1:Introduction and overview [S].1999.
    [43]IEC 61850-2. Communication networks and systems in substations. Part 2:Glossary[S].1999.
    [44]IEC 61850-5. Communication networks and systems in substations. Part 5:Communication requirements for functions and device models[S].1999.
    [45]IEC 60870-5-103. Transmission protocols-Companion standard for the informative interface of protection equipment[S].1997.
    [46]杨军,罗建,赵春波.IEC 61850国际标准通信协议[J].重庆电力高等专科学校学报,2004,04期.
    [47]徐立子.变电站自动化系统的分析和实施[J].电网技术,2000,24(5):95-99.
    [48]陈冬.IEC 61850规约的理解及使用.湖北电力,2008,32(1):68-70.
    [49]LINDERS. J. R. Relay performance considerations with low-ratio CT's and high-fault currents[J]. IEEE Trans. on Industry Applications,1995,31(2):392-404.
    [50]陈三运.一起CT饱和引起的继电保护拒动分析[J].电网技术,2002,26(4):85-87.
    [51]陈铮,董新洲,罗承沐.电流互感器饱和影响测距精度的一种解决方法[J].电力系统自动化,2002,26(1):39-41.
    [52]平绍勋,黄仁山.光电式互感器原理和结构[J].变压器,2000,37(9):18-19.
    [53]方可行.光电式电流互感器[J].江苏电机工程,2002,21(2):52-54.
    [54]纪昆,李芙英.光电式电流互感器的实用化设计[J].光电工程,2002,29(2):39-40.
    [55]SCHWARZ. K. Standard IEC 61850 for Substation Automation and other Power System Application[C]. Beijing:In Prepared for the International Conference on Power System and Communication Infrastructures for the Future,2002.
    [56]何泽家,蒋平.光电式互感器及其在数字化变电站中的应用[J].江苏电机工程,2007,26(增刊):47-48.
    [57]李伟,尹项根,韩小涛.基于IEC 60044-7/8的光电式互感器在变电站自动化系统中的应用[J].电力自动化设备,2007,23(5):40-41.
    [58]贺元康,吕艳萍.光电式互感器及其在IEC 61850标准数字化变电站中的应用[J].科技综述,2008,36(7):45-49.
    [59]姜铁奇,翁晓宁.基于电子式互感器的数字化变电站的设计及特点.科技创新导报,2008,26:92-93.
    [60]沈国荣,黄健.2000年国际大电网会议系列报道—通信技术是变电站自动化的关键[J].电力系统自动化,2001,25(5):1-5.
    [61]BRAND. K. P, OSTERTAG. M, WIMMER. W, "Safety related, distributed functions in substations and the standard IEC 61850", IEEE Power Tech 2003, Bologna, Paper IEEE BPT03-232.
    [62]ANDERSSON. L, BRUNNER. C and ENGLER. F., "Substation Automation based on IEC 61850 with new process-close Technologies"[C]. Power Tech Conference Proceedings, IEEE, Bologna, June 2003.
    [63]ANDERSSON. L, BRAND. K, BRUNNER. C and WIMMER. W, "Reliability investigations for SA communication architectures based on IEC 61850"[C], Paper 604, Poster Session, IEEE St. Petersburg Power Tech, June 2004, St. Petersburg, Russia.
    [64]SIDHU. T. S. and YUJIE. Y., "IED modeling for IEC 61850 based substation automation system performance simulation"[C], IEEE Power Engineering Society General Meeting, June 2006.
    [65]M. Schumacher, "Process bus communication in High Voltage Substations based on IEC 61850"[R], CIGRE Study Committee B3 Colloquium, Berlin, September 2007, Presentation PS1-105.
    [66]A. Apostolov, "IT application in Power System Engineering" [R], Next Generation Power Technology Centre, Myungji University, Seoul, Korea, April 2006.
    [67]L. R. Castro Ferreira, "Reliability assessment of integrated protection and control systems" [D], Ph.D. dissertation, UMIST, Manchester, United Kingdom, May 1999.
    [68]R. Billinton and R. N. Allan, Reliability Evaluation of Engineering Systems-Concepts and Techniques [M], Second edition:Plenum Press,1992.
    [69]C. Singh and A. D. Patton, "Protection system reliability modeling:unreadiness probability and mean duration of undetected faults," IEEE Trans. Rel., vol.29, no.4, pp.339-340, Oct.1980.
    [70]P. M. Anderson and S. K. Agarwal, "An improved model for protective system reliability," IEEE Trans. Rel., vol.41, no.3, pp.422-426, September 1992.
    [71]J. J. Kumm, D. Hou, and E. O. Schweitzer, "Predicting the optimum routine test interval for protective relays," IEEE Trans. on Power Delivery, vol.10, no.2, pp.659-665, Apr.1995.
    [72]P. M. Anderson, R. F. Ghajar, G. M. Chintaluri, and S. M. Magbuhat, "An improved reliability model for redundant protective systems-Markov models, " IEEE Trans. on Power Syst., vol.12, no.2, pp.573-578, May 1997.
    [73]N. H. Roberts, W. E. Vesely, D. F. Haasl and F. F. Goldberg, Fault Tree Handbook. NUREG-0942, U. S., Nuclear Regulatory Commission, Washington DC,1981.
    [74]I. E. O. Schweitzer and P. M. Anderson. (1998) Reliability analysis of transmission protection using fault tree methods. [Online]. Available:http://www.selinc.com/techpprs/6060.pdf
    [75]G. W. Scheer and D. J. Dolezilek. (2000) Comparing the reliability of Ethernet network topologies in substation control and monitoring networks. [Online]:Available: http://www.selinc.com/techpprs/6103.pdf
    [76]M. Rausand, A. Hoyland. System reliability theory:models, statistical methods, and applications[M]. New York:John Wiley Sons,2004.
    [77]P. M. Anderson. Power system protection[M]. New York:IEEE Press,1998.
    [78]M. Modarres, M. Kaminskiy, V. Krivtsov, Reliability Engineering and Risk Analysis, CRC Press, 1999, pp.211-212.
    [79]Hiromitsu Kumamoto and Ernest J. Henley, "Probabilistic Risk Assessment and Management for Engineers and Scientists," 2nd Edition. IEEE Press, Pascataway, NJ,1996.
    [80]E. O. Schweitzer, B. Fleming, and P. M. Anderson, Reliability analysis of transmssion protection using fault tree methods. The 4th annual Western Protective Relay Conf., Spokane, WA., October 18-20,1994.
    [81]IEC 60044-7. Instrument Transformers:Part 7 Electronic voltage transformers.1999.
    [82]IEC 60044-8. Instrument Transformers:Part 8 Electronic current transformers.2002.
    [83]殷志良,刘万顺,杨奇逊,等.变电站自动化过程层与间隔层串行通讯研究.中国电力,2004,32(7):29-32.
    [84]窦晓波,吴在军,胡敏强,等.IEC 61850标准下合并单元的信息模型与映射实现.电网技术,2006,30(2):80-86.
    [85]殷志良,刘万顺,杨奇逊,等.基于IEC 61850标准的采样值传输模型构建及映射实现.电力系统自动化,2004,28(21):38-41.
    [86]高厚磊,江世芳,贺家李.数字电流差动保护中几种采样同步方案.电力系统自动化,1996,20(9):46-49,53.
    [87]朱声石.高压电网继电保护原理与技术.北京:中国电力出版社,2005.
    [88]佘明辉.振荡器的频率稳定及对策[J].机械与电子,2006(6):77-79.
    [89]D. L. Mills, "Computer Network Time Synchronisation:The Network Time Protocol," Taylor & Francis CRC Press,2006.
    [90]H. Kirrmann, M. Hansson, P. Muri, "IEC 62439 PRP:Bumpless Recovery for Highly Available, Hard Real-Time Industrial Networks," IEEE International Conference on Emerging Technologies and Factory Automation,2007.
    [91]S. Meier, "IEEE 1588 applied in the environment of high availability LANs," International IEEE Symposium on Precision Clock Synchronisation for Measurement, Control and Communication, 2007.
    [92]B. Arca, P. Duce, R.L. Snyder, D. Spano, M. Fiori, "Use of Numerical Weather Forecast and Time Series Models for Predicting Reference Evapotranspiration," IV International Symposium on Irrigation of Horticultural Crops,2004.
    [93]A. S. Weigend, N. A. Gershenfeld, "Time Series Prediction:Forecasting the Future and Understanding the Past," Proc. of the NATO Advanced Research Workshop on Comparative Time Series Analysis. Addison-Wesley Publishing Company,1992.
    [94]P. C. Lin, J. S. Chen, "A genetic-based hybrid approach to corporate failure prediction," International Journal of Electronic Finance, Vol.2, Num.2,2008, pp.241-255.
    [95]J. C. Tournier, X. Yin, "Improving Reliability of IEEE1588 in Electric Substation Automation," presented at International IEEE Symposium on Precision Clock Synchronisation for Measurement, Control and Communication, Ann Arbor, Michigan, September 22-26,2008.
    [96]IEEE Standard 1588TM. Standard for a precision clock synchronisation protocol for networked measurement and control systems.2008.
    [97]贺鹏,曾维鲁.电厂数据采集与监控系统的时间同步技术.华北电力大学学报,2000,27(3):42-45.
    [98]王晓冬,阚德涛,张志武.以太网时钟同步技术.电子工程师,2008,34(9):47-50.
    [99]赵新璧,陈普跃,潘克修.LXI总线技术综述.电子技术,2007,36(11):167-169.
    [100]美国国家半导体推出业界首款具备IEEE 1588 PTP硬件.电子工业专用设备,2007,36(10):76.
    [101]Areva T & D, "MiCOM P746 Technical Guide" available online:http://www.areva-td.com/
    [102]冯小玲,郭袅,谭建成.实时数字仿真系统(RTDS)在继电保护上的应用研究.电网技术,2005,19(4):43-47.
    [103]"RTDS-A Fully Digital Power System Simulator Operating in Real Time", Presented at ICDS-95, College Station TX, USA, April 1995.
    [104]M. Kezunovic et al. "Digital simulator performance requirements for relay testing", IEEE Trans. on Power Delivery, Vol.13, No.1, pp.78-84, January 1998.
    [105]L. A. Kojovic and T. R. Day, "Application of real-time power system simulators for testing protective relay system operational characteristics", IEEE Trans. on Power Delivery, pp. 447-452,1999.
    [106]Dingxiang Du, Z Q Bo, Zexin Zhou, A Perks, L Denning, B Smith, "An Advanced Real Time Digital Simulator Based Test System for Protection Relays", Proceedings of the 41st University Power Engineering Conference, Northumbria University, Newcastle upon Tyne, September 2006.
    [107]Areva T & D, "MiCOM P545 Technical Guide" available online:http://www.areva-td.com/
    [108]Areva T & D, "MiCOM P594 Technical Guide" available online:http://www.areva-td.com/
    [109]B. Naodovic, M. Kezunovic, "A Methodology for Assessing the Influence of Instrument Transformer Characteristics on Power System Protection Performance", Proceedings of the 15th Power Systems Computation Conference, August 2005.
    [110]Areva T & D, "MiCOM P 841 Technical Guide". available online:http://www.areva-td.com/
    [111]贺家李,郭征,杨晓军,等.继电保护的可靠性与动态性能仿真[J].电网技术,2004,28(9):18-22.
    [112]M. Kezunovic, T. Popovic, "Assessing Application Features of Protective Relays and Systems Through Automated Testing Using Fault Transients", Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference, Vol.3, No.3, pp.1742-1767, October 2002.
    [113]IEEE PSRC Working Group DS (chaired by E. A. Udren), "Proposed statistical performance measures for microprocessor-based transmission-line protective relays, explanations of the statistics," IEEE Trans. Power Delivery, vol.12, no.1, pp.134-143, Jan.1997.
    [114]M. Kezunovic, T. Popovic, D. Sevcik, H. DoCarmo, "Transient Testing of Protection Relays: Results, Methodology and Tools", Proceedings of International Conference on Power Systems Transients (IPST),2003.
    [115]M. Kezunovic, B. Kasztenny, "Design Optimization and Performance Evaluation of the Relay Algorithms, Relays and Protective Systems Using Advanced Testing Tools", IEEE Trans. on Power Delivery, Vol.15, No.4, pp.1129-1135, October 2000.
    [116]H. J. Zimmertmann, Fuzzy Sets, Decision Making and Expert Systems. Kluwer Academic Press, 1987.
    [117]O. E. Schweitzer III and J. J. Kumm, "Statistical comparison and evaluation of pilot protection schemes," Proceedings of the 23rd Western Protective Relay Conference, Spokane, WA, Oct. 15-17,1996.
    [118]M. Kezunovic, J. T. Cain, B. Perunicic, and S. Kreso, "Digital protective relaying algorithm sensitivity study and evaluation," IEEE Trans. Power Delivery, vol.3, no.3, pp.912-922, July 1988.
    [119]J. L. Blackburn, "Protective Relaying:Principles and Applications", IEEE Trans. on Power Delivery, Marcell Dekker, New York, NY,1998.
    [120]Peichao Zhang, Levi Portillo, Mladen Kezunovic. Compatibility and interoperability evaluation for all-digital protection system through automatic application test[C]. IEEE PES General Meeting, Montreal, Canada,2006.
    [121]Y C Kang, S H Ok, S H Kang. "A CT saturation detection algorithm," IEEE Trans. on Power Delivery, vol.19, no.1, pp.78-85, January 2004.
    [122]Y C Kang, S H Kang and P. A. Crossley. "Design, evaluation and implementation of a busbar differential protection relay immune to the effects of current transformer saturation," IEE Proceedings of International Conference on Generation, Transmission and Distribution, vol.151, no.3, pp.305-312, May 2004.
    [123]P. A. Crossley, H. Y. Li, and A. D. Parker, "Design and evaluation of a current differential relay test system," IEEE Trans. on Power Delivery, vol.13, no.2, pp.427-433, Apr.1998.
    [124]Kezunovic M, Kojovic L, Abur A, Fromen C.W., and Phillips F. "Experimental evaluation of EMTP-based current transformer models for protective relay transient study," IEEE Trans. on Power Delivery, vol.9, no.1, pp.405-413, January 1994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700