六盘山北侧主要造林树种耗水特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对干旱半干旱地区需增加森林植被和水资源匮乏及容量有限的矛盾,在六盘山北侧的固原市,选择主要的造林树种及典型植被群落作为研究对象,在2001~2002年的生长季期间,利用先进仪器和设备,应用多种方法和手段,从叶片、单株和群落三个尺度系统研究了植物蒸腾耗水的水分生理生态学特征、植物单株和群落的耗水规律以及它们与环境因子之间的影响机理,其结果不仅可为更精确地估计生态用水定额提供科学依据;而且也可为该区域耐旱节水型造林树种草种的选择及合理林分密度的设计起到科学的指导作用。
    本文主要开展了以下几方面的研究:
    * 13个主要造林树种草种的水分生理生态学特性研究
    * 两种密度条件下3种典型植被单株和林分尺度的蒸腾耗水
    * 两种密度条件下3种典型植物群落的蒸散量及分量组成比例
    * 13年生华北落叶松林分蒸腾耗水的模拟与预测
    本论文取得的主要结果:
    1) 在无水分胁迫盆栽试验条件下,研究和对比了树种的蒸腾耗水特性,结果表明,针叶树种的蒸腾速率和气孔导度最低,阔叶树种最高,灌木树种位于中间;苗木蒸腾速率和气孔导度由小到大的顺序依次为青杄、侧柏、油松、柠条、白蜡、山杏、臭椿、沙棘、白榆和刺槐。
    2) 苗木蒸腾速率与凌晨叶水势呈正相关,且随叶水势下降蒸腾速率呈指数下降。不同树种由于其耐旱机理和生物学特性的不同造成了两者关系之间的差异,按树种苗木潜在蒸腾速率的大小及其对叶水势下降的敏感度,可将10个树种划分为四类:青杄、侧柏、柠条和白蜡属低蒸腾-低水分敏感型树种;油松属低蒸腾-高水分敏感型树种;白榆、刺槐和沙棘属高蒸腾-高敏感型树种;山杏和臭椿属中蒸腾-中水分敏感型树种。
    3) 野外人工水分控制试验表明,华北落叶松属于低蒸腾-高水分敏感
    
    型树种,其蒸腾作用主要取决于气孔的调节,因此在干旱半干旱树种的选择时可以作为耐旱节水树种;山桃属于高蒸腾-低水分敏感型树种,其耐旱机理属于典型的低水势忍耐脱水耐旱树种,因此在造林时可以选择水分条件较差的阳坡;紫花苜蓿属高蒸腾-高水分敏感型类别,虽然紫花苜蓿耐旱性较强,但具有较强的蒸腾耗水速率,建议在草种选择时要慎重使用。
    4) 油松和落叶松树干液流日进程都呈现出较明显的昼夜变化规律。液流量在夜间非常微弱,白天持续上升并呈现出双峰或多峰曲线。华北落叶松虽然峰值较低但持续时间较长;油松恰恰相反,峰值较高但持续时间短。油松和华北落叶松整个树干径向不同位点的液流速度由外到内呈现低→高→低的态势,符合Edwards提出的模型。
    13年生油松和华北落叶松晴天的单株日耗水量分别为0.0058 m3.d-1和0.0074 m3.d-1,均高于阴天的平均值;油松在两种典型天气下日耗水量和耗水率的平均值分别为0.0055 m3.d-1和1.326 m3.m-2.d-1,要高于华北落叶松。
    以2001年8月29日至8月30日为例,用24h液流量累积值估算华北落叶松单株的蒸腾量为0.00291m3,而“截干测定”结果为0.00317 m3·d-1,比前者高8.2%,这可能与本研究中所使用热脉冲探头的灵敏程度还难以记录较弱液流有关。
    5)两种密度条件下单株和林分的蒸腾耗水规律不尽相同。从单株尺度看,华北落叶松间伐林分(1667株/hm2)内单株的生长季蒸腾耗水速率要显著大于未间伐林分(2500株/hm2)内的单株,这种差异是因为间伐后林分微气象和土壤水分因子的改变共同引起的;但从林分尺度看,其生长季蒸腾量由原来的192.67mm下降到145.09 mm;与此相仿,山桃和沙棘间伐林分(2500株/hm2)内单株的蒸腾耗水速率在2002年生长季中期显著大于未间伐林分(3333株/hm2),其增加的原因是由于功能叶的日平均蒸腾速率加大或单株叶面积的增加引起的,但从林分尺度讲,山桃未间伐林分的生长季蒸腾量为241.21mm,比对应间伐林分高16.81%,但沙棘未间伐林分的生长季蒸腾量为255.94mm,比对应间伐林分低13.5%。
    6)生理法与“多株平衡法”测定三种植物群落蒸腾耗水量的结果基本相近。其中,应用生理法估计华北落叶松未间伐和间伐林分的生长季蒸腾
    
    量为204.28 mm和168.08 mm,稍高于“多株平衡法”的相应估计值(分别高出5.68%和13.68%),可能与后者过高地估计了枯落物的截持耗水量和观测误差有关;生理法计算未间伐、间伐山桃林分的生长季蒸腾量分别为235.35mm和219.18mm,与“多株平衡法”的估计值很接近,甚至略低于后者;用生理法估计未间伐和间伐沙棘林分的生长季蒸腾量分别为160.2mm和232.77 mm,均小于多株平衡法,这可能与“多株平衡法”中忽略了山桃和沙棘林的枯落物和林下草本植物的截留耗水有关。
    7)由于间伐引起的林分密度下降不同程度地导致了典型植物群落总蒸散量及其分量组成比例的改变。
    华北落叶松间伐林分(1667株/hm2)生长季总蒸散量为413.07mm,比未间伐林分(2500株/hm2)低8.02%,其中林分蒸腾量占总蒸散的比例由未间伐的42.9%下降到35.13%而位居第二,林冠层截持耗水比例由未间伐的15.21%下降到11.29%而位居第四;相反,林下植被的蒸散量比例由未间伐的30.48%提高到37.13%而位居第一,枯落物截持耗水比例由未间伐的11.4%提高到16.46%而位居第三。
    山桃间伐林分(
Aiming to solve the contradiction between demand for the extension of forest vegetation and the limited water supply in arid and semi-arid area, the dissertation chose the main afforestation tree species and typical vegetation communities in Gu Yuan City in the north of LiuPanshan mountains, utilized advanced apparatus, equipments and various approaches, at leaf, tree and community scales, systematically studied the ecophysiological characteristics of plant transpiration and water consumption, rules governing water consumption of tree and community and their control mechanism by environmental factors. These studies could provides scientific bases for accurately estimating ecological water consumption and the choice of drought-tolerance and water-saving afforestation tree and herb species, as well as the properly arrangement of stand density.
     The dissertation involved following aspects:
    * The study on ecophysiological characteristics of 13 main afforestation tree and herb species
    * Transpiration and water consumption of the 3 typical vegetation communities, at whole-tree and stand scale, and under two levels of stand density.
    * Total and component proportion of evapotranspiration of the three typical vegetation communities at two stand density levels.
    * Simulation and prediction of stand transpiration and water consumption of 13-year-old Larix principi-rupprechtii
     Major conclusions are summarized as follows:
     1) Under the condition of free soil water stress, the transpiration rate of coniferous trees was the lowest, whilst the broad leaved trees were the highest, and the shrub species fell between coniferous species and broad leaved species.When sorted by potential transpiration rate and stomatal conductance, the increasing orders were: Picea wilsonii Mast.、Platycladus orientalis、Pinus tabulaeformis、Caragana korshinskii、Fraxinus americana L.、Prunus armenniaca var. ansu Maxim、Ailanthus altissima、Hippophae rhamnoides、Ulmus pumila L. and Robinia pseudoacacie L..
    2) Positive correlation was found between the transpiration rate of seedling and predawn leaf water potential, that is, with the decrease of leaf water potential, transpiration rate reduced exponentially. According to the potential transpiration rate and its sensitivity to
    
    leaf water potential, the ten tree seedlings could be divided into four groups as follows: Picea wilsonii Mast.、Platycladus orientalis、Caragana korshinskii and Fraxinus americana L., with low-transpiration-rate-and-insensitive-to-water-stress; Pinus tabulaeformis, belonging to low-transpiration-rate-and-sensitive-to-water-stress species; Ulmus pumila L.、Robinia pseudoacacie L.and Hippophae rhamnoides are of high-transpiration and-
    sensitive-to-water-stress species, and Prunus armenniaca var. ansu Maxim and Ailanthus altissima are of medium-transpiration-rate-and-sensitive-water-stress species.
    3) The results of ecophysiological measurements under different soil water status indicated that Larix principi-rupprechtii is a low-transpiration-rate-and-sensitive-to-water-
    stress specie, and its' transpiration was mainly controlled by stomatal. As a result, Larix principi-rupprechtii can be selected as a drought-tolerance and low water consumption specie in afforestation in arid and semi-arid areas. Prunus davidiana is a high-transpiration-rate-
    and-insensitive-to-water-stress species that could be planted in sunny slope where soil water content is low. Medicago sativa is a high-transpiration-rate-and-sensitive-to-water-stress species thus should be careful to use the species for artificial grassland establishment.
    4)Diurnal course of sap flow of Pinus tabulaeformis and Larix principi-rupprechtii changed regularly from night to day, usually it was very weak in nighttime and started to increase continuously to single-peak or multiple-peaks in the daytime. Relatively, the maximum of sap flow of Larix principi-rupprechtii was lower but the period that kept on the peak was longer , on the contrary, the maximum of sap flow of Pinus tabulaeformis was high
引文
1. Aston, M.J. ,D.W. Lawlor. 1979. The relationship between transpi-ration, root water uptake, and leaf water potential. J. Exp. Bot. 30:169~181.
    2. Aussenac,G and A. Granier. 1988. Effects of thinning on water stress and growth in Douglas-fir. Can. J.For.Res. 18:100~105
    3. Barrett, D.J., T.J. Hatton, J.E. Ash and M.C. Ball. 1996. Transpira-tion by trees from contrasting forest types. Aust. J. Bot. 44:249~263.
    4. Calder,I.R.,1992. Water use of eucalyptus- a review. In Growth and water use of forest plantations. Eds.I.R. Calder, et al., West Sussex, England, pp 167~179
    5. Cermark J., Nadezhdina, N., 1998. Sapwood as the scaling parameter- defining according to xylem water content or radial pattern of sap flow. Ann. Sci. For. 55:869-940
    6. Cienciala, E.,A. Lindroth. 1995. Gas-exchange and sap flow measurements of Salix viminalis trees in short-rotation forest. I. Transpiration and sap flow. Trees 9:289~294.
    7. Cinnirella. S., et al.,2002,Response of a mature Pinus laricio plantation to a three-year restriction of water supply: structural and functional acclimation to drought. Tree physiology, 22:21~30
    8. Cochard, H., N. Bréda ,A. Granier. 1996. Whole tree hydraulic conductance and water loss regulation in Quercus during drought: evidence for stomatal control of embolism? Ann. Sci. For. 53:197~206.
    9. Collins, D.C. , Avissar,R.,1994. An evaluation with the Fourier amplitude sensitivity test(FAST) of which land-surface parameters are of greatest importance in atmospheric modelling. J.Climate 7,681~703
    10. David W. Still, Fred T.D.J., 1993, Water use, water use efficiency and growth analysis of selected woody ornamental species under a non-limiting water regime. Scientia Horticulturae. 53:213~223
    11. Dewar, R.C. 1995. Interpretation of an empirical model for stomatal conductance in terms of guard cell function. Plant Cell Environ.18: 365~37.
    12. Dunin et al.. 1986. Evaluation of the ventilated chamber technique for measuring evaporation from a forest. Hydro. Proc.1:47~62
    13. Dunn, G.M. and D.J. Connor. 1993. Analysis of sap flow in mountain ash (Eucalyptus regnans) forests of different age. Tree Physiol. 13:321--336.
    14. Dye et al. 1992, A comparison of heat pulse method and deuterium tracing method for measuring transpiration from Eucalyptus grandis trees. J. Exp.Bot. 43:337~343
    15. Edwards W R N, Warwick N W M. Transpiration from a kiwifruit vine as estimation by the heat pulse technique and the Penman-Monteith equation. New Zealand Journal of Agricultural Research, 1984, 27:537~543
    16. Edwards W.R.N.. 1986, Precision weighing lysimeter for trees, using a simplified tared-balance design. Tree physiol. 1:127~141
    17. F. Lagergren ,A.Lindroth, 2002. Transpiration response to soil water in pine and spruce trees in sweden. Agriculture and Forest Meteorology. 112:67~85.
    
    
    18. Farquhar, G.D. 1978. Feedforward responses of stomata to humidity. Aust. J. Plant. Physiol. 5:787~800.
    19. Francno,C.M., and Magalhaes,A.C.,1965. Techniques for the measurement of transpiration of individual plants. Arid Zone Res.25:211~224
    20. Fritschen et al. A 28-meters Douglas-fir in a weighing lysimeter. For. Sci.,1973, 19:256~261
    21. Geiger ,D.R. and J.C. Servaites,Carbon allocation and response to stress. In responses of plants to Multiple stresses. Eds. H.A.Mooney et al., 1991. Academic Press, pp 103~127
    22. Gowing, D.J.G., H.G. Jones and W.J. Davies. 1993. Xylem-trans-ported abscisic acid: the relative importance of its mass and its concentration in the control of stomatal aperture. Plant Cell Envi-ron.16:453~459.
    23. Granier A. , Loustau D., and Bréda N., 2000. A generic model of forest canopy conductance dependent on climate, soil water availability and leaf area index. Ann. For. Sci. 57: 755~765.
    24. Granier A., 1987. Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements, Tree Physiol. 3: 309~320.
    25. Granier A., Bréda N., 1996a. Modelling canopy conductance and stand transpiration of an oak forest from sap flow measurements, Ann. Sci. For. 53: 537-546.
    26. Granier A., Huc R., Barigah S.T., 1996b. Transpiration of natural rain forest and its dependence on climatic factors, Agric.For. Meteorol. 78: 19-29.
    27. Granier A., Loustau D., 1994. Measuring and modelling the transpiration of a maritime pine canopy from sap-flow data, Agric. For. Meteorol. 71: 61-81.
    28. Granier,A., Lousta,D.,1994. Measuring and modelling the transpiration of a maritime pine canopy from sapflow data. Agri. For. Meteorol. 71:61~81
    29. Green,S.R., 1993. Radiation balance, transpiration and photosynthesis of an isolated tree. Agric. For. Meteorol. 64:201~221
    30. Greenwood et al.. 1979, Evaporation from vegetation in landscape developing secondnary salinity using the ventilated-chamber techniqueⅠcomparative transpiration from juvenile Eucalyptus above saline ground-water seeps. J. Hydrol. 42:369~382
    31. Hatton & I Wu, 1995, Scaling theory to extroplate individual tree water use to stand water use. Hydrol. Process. 9:527~540
    32. Hatton T J, Moore S J, Reece P H. 1995. Estimating stand transpiration in Eucalyptus populnea woodland with the head pulse method: measurement errors and sampling strategies. Tree physiology :219~227
    33. Hatton, T.J. and R.A. Vertessy. 1990. Transpiration of plantation Pinus radiata estimated by the heat pulse method and the Bowen ratio. Hydrol. Proc. 4:289-298.
    34. Hinckley, T.M., J.R. Brooks, et al., 1994. Water flux in a hybrid poplar stand. Tree Physiol. 14:1005~1018.
    Hogg,E.H., B. Saugier. et al., 2000. Response of trembling aspen and hazelnut to vapor pressure
    
    35. deficit in a boreal deciduous forest. Tree Physiol. 20:725~734.
    36. Huber A et al., 1985. Water balance in three pinus radiata plantations and a meadow. Bosque, 6 (2):74~82
    37. Irvine,J., Perks,M.P., et al., 1998, the response of pinus sylverstris to drought: stomatal control of transpiration and hydraulic conductance. Tree Physiol., 18:393~402
    38. Jackson, G.E., J. Irvine and J. Grace. 1995a. Xylem cavitation in two mature Scots pine forests growing in a wet and a dry area of Britain. Plant Cell Environ. 18:1141~1418.
    39. Jarvis P.G., 1976. The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Phil. Trans. R. Soc. Lond. ser. B 273 593-610.
    40. Jarvis P.G., McNaughton K.G., 1986. Stomatal control of transpiration: scaling up from leaf to region. Advances in eco-logical Research, Academic Press, London 15 : 1-49.
    41. Jarvis,P.G., 1995, Scaling processes and problems. Plant cell environ. 18:1079~1089
    42. Kaufmann,M.R.,1981. Automatic determination of conductance, transpiration and environ- mental conditons in forest trees. For.Sci.27:817~827
    43. Knight et al. 1981, Transpiration from 100-year-old lodgepole pine forests estimated with whole-tree potometers. Ecology 62:717~726
    44. Kramer P J. 1983, Water relation of plants. Academic Press, Inc.
    45. Kramer P J.,Boyer J.S., 1995. Water relation of plants and soils. Academic Press, Inc.
    46. Küppers, M. 1984. Carbon relations and competition between woody species in a Central European hedgerow. II. Stomatal responses, water use, and hydraulic conductivity in the root/leaf pathway. Oecologia 64:344~54.
    47. Lagergren,F. , Lindroth,A., 2002, Transpiration response to soil moisture in pine and spruce trees in Sweden. Agriculture and For. Meteor. 112:67~85
    48. Landsberg, J.J., T.W. Blanchard ,B. Warrit. 1976. Studies on the movement of water through apple trees. J. Exp. Bot. 27:579~596.
    49. Lassoie, J.P. & D.J. salo.,1981,Physilogical response of large Douglas-fir to natural and induced soil water deficits. Can.J.For.Res.,(11):139~144
    50. Lindroth, A. ,E. Cienciala. 1995. Measuring water use efficiency of eucalypt trees with chambers and micrometeorological techniques--comment. J. Hydrol. 169:281~283.
    51. Loustau, D., P. Berbigier, P. et al. 1996. Transpira-tion of a 64-year-old maritime pine stand in Portugal. 1. Seasonal course of water flux through maritime pine. Oecologia 107:33~42.
    52. Martin T.A. ,Hinckley T.M., Meinzer,F.C. et al.,1999. Boundary layer conductance, leaf temperature and transpiration of Abies amabilis branches. Tree Physiology, 19:435~443
    53. McNaughton U G and Jarvis P G. 1983. Predicting effects of vegetation changes on transpiration and evporation. In: T T.Kozlowski (ed.) "water deficits and plant growth". Ⅴ.Ⅶ. 1~47 Academy Press, New York.
    Medhurst,J.L. and C.L. Beadle. 2001. Crown structure and leaf area index development in thinned
    
    54. and unthinned Eucalyptus nitens plantation. Tree Physiology. 21:989~999
    55. Medhurst,J.L. M. Battaglia. and C.L. Beadle., 2002, Measured and predicted changes in tree and stand water use following high-intensity thinning of an 8-year-old Eucalyptus nitens plantation. Tree Physiology. 22:775~784
    56. Meinzer, F.C. ,D.A. Grantz. 1990. Stomatal and hydraulic conduc-tance in growing sugarcane: stomatal adjustment to water transport capacity. Plant Cell Environ. 13:383~88.
    57. Meinzer, F.C. and D.A. Grantz. 1991. Coordination of stomatal, hydraulic and canopy boundary layer properties: do stomata balance conductances by measuring transpiration? Physiol. Plant. 83:324~329.
    58. Meinzer, F.C., G. Goldstein, P. Jackson, N.M. Holbrook, M.V. Gutier-rez and J. Cavelier. 1995. Environmental and physiological regulation of transpiration in tropical forest gap species: the influence of boundary layer and hydraulic properties. Oecologia 101:514~522.
    59. Meinzer, F.C., M.R. Sharifi, E.T. Nilsen ,P.W. Rundel. 1988. Effects of manipulation of water and nitrogen regime on the water relations of the desert shrub Larrea tridentata. Oecologia 77:480~486.
    60. Mielke MS,Oliva MA, et al., 2000, Leaf gas exchange in a clonal eucalypt plantation as related to soil moisture, leaf water potential and microclimate variables. Trees. 14:263~270
    61. Monteith, J.L. and M.H. Unsworth. 1990. Principles of environmental physics. Edward Arnold, New York, 291 p.
    62. Monteith, J.L., 1965. Evaporation and environment. In: Fogg, G.E. (Ed.), The State and Movement of Water in Living Organisms. Proceedings of the 19th Symposium on Soc. Exp. Biology, Cambridge University Press, London, pp. 205-235.
    63. Nobel, P.S. 1991. Physiochemical and environmental plant physiology. Academic Press, San Diego, 635 p.
    64. Pacheco RM, Louzada PTC, Development of root systems in eucalyptus grandis × E.urophylla hybirds IUFRO Symposium. Intensive forestry: the role of eucalyptus. IUFRO publiction,Durban, pp 569~575
    65. Phillps. N., Oren n., 1998. A comprison of daily responsentations of canopy conductance based on two conditonal time-averaging methods and the dependence of daily conductance on environmental factors. Annales des Science Forestieres. 55:217~235.
    66. Powell D B B . Thorpe M R , 1977, Dynamic aspects of plant-water relations in environmental effects on crop physiology, London, Academic Press, 1977:259~279
    67. Reich, P.B. ,T.M. Hinckley. 1989. Influence of pre-dawn water potential and soil-to-leaf hydraulic conductance on maximum daily leaf diffusive conductance in two oak species. Funct. Ecol. 3:719~726.
    68. Robert J. ,1983. Forest transpiration: A convservative hydrological process? . Joun. of Hydrol. 66:133~141.
    69. Roberts,J. 1977, The use of tree-cutting techniques in the study of the water relations of pinus sylvestris. L. J. Exp.Bot. 28:751~767
    
    
    70. Rutter,A.J., 1967, studies on the water relations of pinus sylverstris in plantation conditions. Part Ⅴ. Responses to variation in soil water conditions. J. Appl. Ecol., 4:73~81
    71. Saliendra,N.Z., J.S. Sperry, et al., 1995, Influence of leaf water status on stomatal responses to humidity , hydraulic conductance , and soil drought in Batula occidentalis. Planta , 196:357~366
    72. Schiller, G. ,Y. Cohen. 1995. Water regime of a pine forest under a Mediterranean climate. Agric. For. Meteorol. 74:181--193.
    73. Schuepp, P.H. 1993. Leaf boundary layers: Tansley Review No. 59. New Phytol. 125:477~507.
    74. Schulze, E.-D. 1986. Carbon dioxide and water vapor exchange in response to drought in the atmosphere and in the soil. Annu. Rev. Plant Physiol. 37:247~74.
    75. Schulze, E.-D., J. èermák, R. Matyssek, M. Penka, R. Zimmermann, F. Vasícek, W. Gries and J. Kuèera. 1985. Canopy transpiration and water fluxes in the xylem of the trunk of Larix and Picea trees--a comparison of xylem flow, porometer and cuvette measurements. Oecologia 66:475~483.
    76. Smith et al., Measurement of sap flow in stems. J. Exp.Bot. 1996, 47:1833~1844
    77. Sperry, J.S. ,W.T. Pockman. 1993. Limitation of transpiration by hydraulic conductance and xylem cavitation in Betula occidentalis. Plant Cell Environ. 16:279~287.
    78. Sperry, J.S., N.N. Alder and S.E. Eastlack. 1993. The effect of reduced hydraulic conductance on stomatal conductance and xylem cavitation. J. Exp. Bot. 44:1975~1082.
    79. Stewart, J.B. 1988. Modelling surface conductance of pine forest. Agric. For. Meteorol. 43:19~35.
    80. Swanson, R.H., Significant historical developments in thermal methods for measuring sap flow in trees. Agric. For. Meteorol. ,1994,72:113~132
    81. Szeicz G. And Long I.F., 1969. Surface resistance of crop canopies. Water Resource Research, 5:622~633.
    82. Teklehaimanot,z.,P.G. Jarvis and D.C. Ledger.1991. Rainfall interception and boundary layer conductance in relation to tree spacing. J.Hydrol. 123:261~278.
    83. Teskey, R.O. and D.W. Sheriff. 1996. Water use by Pinus radiata trees in a plantation. Tree Physiol. 16:273--279.
    84. Vertessy R A, Benyon R G, O'sullivan S K et al.. Leaf area and tree water use in a 15-year-old mountain ash forest. Central Highlands, 1994,31p
    85. Vertessy R A, Hatton T J, Reece P et al. Estimating stand water use of large mountain ash trees and validation of the sap flow measurement technique. Tree physiology, 1997,17:747~756
    86. Waring et al. Estimating water flux through stems of Scot pine with tritated water and phosphous-32. J. Exp. Bot.1979, 30:459~471
    87. Whitehead,D.,1998. Regulation of stomatal conductance and transpiration in forest canopies. Tree Physiol. 18:633~644.
    88. Wullschleger S, Meinzer F C, Vertessy R A. A review of whole-plant water use studies in trees. Tree physiology, 1998, 18:499~512
    
    
    89. Zimmermann,M.H., Brown C.L.,1974. Trees, structure and function (Ⅱ). Springger,Berlin,Heidelberg, New York,1974
    90. Zweifel ,R., Hasler,R., 2001. Dynamics of water storage in mature subalpine picea abies: temporal and spatial patterns of change in stem radius. Tree Physiol. 21:561~569.
    91. Zweifel R., et al., 2002. Midday stomatal closure in Norway spruce-reaction in the upper and lower crown. Tree Physiol. 22:1125~1136.
    92. 《六盘山自然保护区科学考察》编委会.1988. 六盘山自然保护区科学考察. 银川. 宁夏人民出版社
    93. 《宁夏森林》编委会.1990. 宁夏森林. 北京:中国林业出版社.
    94. 程积民,万慧娥. 2002. 中国黄土高原植被建设与水土保持. 中国林业出版社.
    95. 代亚丽,蔡江碧,王宏丽.2000. 植被建设在黄土高原生态环境建设中的地位和作用.西北农业大学学报.28(6):130~134.
    96. 杜世平、王留芳和龙明秀.1999. 宁南山区旱地紫花苜蓿土壤水分及产量动态研究.草业科学. 16(1):12~17
    97. 关君蔚.2000. 西部建设和我国的可持续发展. 世界林业研究.13(2):4~5. 
    98. 韩蕊莲,梁宗锁等. 1994. 黄土高原适生树种苗木的耗水特性. 应用生态学报.5(2):210~213.
    99. 韩蕊莲,侯庆春. 1996. 山桃山杏苗木耗水特性研究. 西北植物学报. 16(6):92~94
    100. 贺庆棠,刘祚昌. 1980. 森林的热量平衡. 林业科学.(1):24~33
    101. 侯庆春,韩蕊莲.2000. 黄土高原植被建设中的有关问题. 水土保持通报.20(2):53~56.
    102. 蒋有绪.2000. 为西部大开发建设良好的生态环境. 世界林业研究.13(2):3~4. 
    103. 李代琼.1998. 半干旱黄土区沙棘的水分生理生态与形态解剖学特性研究. 水土保持研究. 5(1):97~102
    104. 李海涛,陈灵芝. 1998. 应用热脉冲技术对棘皮桦和五角枫树干液流的研究. 北京林业大学学报,(1):1~6
    105. 李怀珠.1999. 论宁夏六盘山地区针阔混交水源涵养林工程建设现状及发展规划. 宁夏农林科技,(3):22~24
    106. 李吉跃,周平,招礼军. 2002. 干旱胁迫对苗木蒸腾耗水的影响. 生态学报. 22(9):1380~1386.
    107. 李吉跃. 1991. 太行山区主要造林树种耐旱特性的研究(Ⅳ)— 蒸腾作用与气孔调节. 北京林业大学学报,13 (增刊2):239~250
    108. 李家龙.1985. 快速测算针叶面积的方法. 林业科技通讯. 10:封三.
    109. 李银芳,杨戈,蒋进等. 1994. 盆栽条件下不同供水处理对六个树种蒸腾速率的影响. 干旱区研究. Vol.11, No.3:39~43
    110. 梁一民.1999. 从植物群落学原理谈黄土高原植被建造的几个问题.西北植物学报.19(5):26~31
    111. 林业部科技司编. 1994,森林生态系统定位研究方法. 中国科学技术出版社. 250~251.
    112. 刘奉觉,Edwards W.R.N.,郑世锴等. 1993. 杨树树干液流时空动态研究. 林业科学研究,(4):368~372
    113. 刘奉觉,郑世锴,藏道群. 1987. 杨树人工幼林的蒸腾变异与蒸腾耗水量估算方法的研究. 林业科学,23(营林专集):35~44
    
    
    114. 刘奉觉,郑世锴,巨关升. 1997. 树木蒸腾耗水测算技术的比较研究. 林业科学,(2):117~126
    115. 刘盛,宋全民. 1992. 华北落叶松边材在树干中垂直分布的探讨. 吉林林学院学报,(2):57~60
    116. 刘世荣,温远光等. 1996. 中国森林生态系统水文生态功能规律. 中国林业出版社.
    117. 刘向东,吴钦孝,苏宁虎. 1989. 六盘山林区森林树冠截留、枯枝落叶和土壤水文性质的研究. 林业科学. 25(3):220~227.
    118. 刘钰等. 1997. 参照蒸发量的新定义及计算方法对比. 水利学报..(6):27~33
    119. 刘志刚和马钦彦. 1994. 塞罕坝华北落叶松人工林的叶生长过程. 北京林业大学学报. 16(1):13~19
    120. 马雪华. 1963. 川西高山暗针叶林区的采伐与水土保持. 林业科学
    121. 马雪华. 森林水文学. 1993 . 中国林业出版社.
    122. 满荣洲等. 华北油松人工林蒸腾的研究. 北京林业大学学报,1986,(2):1~7
    123. 莫兴国. 1997. 冠层表面阻力与环境因子关系模型及其在蒸散估算中的应用.地理研究. 16(2):81~88.
    124. 潘建平,韩士杰等. 1996. 风对山杨叶片蒸腾的影响. 东北林业大学学报.24(1):27~32.
    125. 彭祥林,贾恒义等. 1997.黄土高原草地土壤生态. 西安:世界图书出版公司, 136~150
    126. 齐亚东,周晓峰等. 天然柞木次生林的能量关系和蒸腾、蒸发的研究Ι、ΙΙ. 1987年国际森林水文学研究方法讨论会论文
    127. 阮宏华,郑阿宝,钟育谦. 次生栎林蒸腾强度与蒸腾量的研究. 南京林业大学学报,1999,(4):32~35
    128. 山仑,徐萌.1991.节水农业及其生理生态基础.应用生态学报,2(1):70~76.
    129. 申双和. 国外森林蒸散的测定、计算与模拟. 中国农业气象. 1991,12(1):51~55
    130. 沈国舫,王礼先.2001.中国可持续发展水资源战略研究报告集第7卷,中国生态环境建设与水资源保护利用.北京:中国水利水电出版社.
    131. 盛炜彤.关于我国西部地区造林绿化中几个问题的思考.世界林业研究.13(2):5~6. 
    132. 宋炳煜. 1995.草原区不同植物群落蒸发蒸腾的研究.植物生态学报,(4):319-328
    133. 孙长忠,黄宝龙. 1996. 单株平衡法的建立. 林业科学. 32(4):378~381
    134. 孙长忠,黄宝龙等.1998.黄土高原人工植被与其水分环境相互作用关系研究.北京林业大学学报.20(3):7~14.
    135. 孙鹏森. 2000. 京北水源保护林格局及不同尺度树种蒸腾耗水特性研究. 北京林业大学博士学位论文
    136. 王安志. 森林蒸散测算方法研究进展与展望. 应用生态学报.2001,12(6):933~937
    137. 王斌瑞、王百田主编. 1996. 黄土高原径流林业. 北京:中国林业出版社,
    138. 王华田. 北京市水源保护林区主要树种耗水性研究. 博士学位论文. 北京:北京林业大学,2002
    139. 王九龄.2000.西部干旱半干旱地区生态建设中的造林问题. 世界林业研究.13(4):5~6. 
    140. 王礼先,2000.植被生态建设与生态用水—以西北地区为例.水土保持研究.7(3):5~7.
    141. 王礼先,张志强. 1998. 森林植被变化的水文生态效应研究进展. 世界林业研究,(6):14~22
    142. 王孟本,李洪建,柴宝峰等. 1999, 树种蒸腾作用、光合作用和蒸腾效率的比较研究. 植物生态学报. 23(5):401~410
    
    
    143. 王沙生,高荣孚,吴贯明. 1990. 植物生理学. 中国林业出版社.
    144. 王正菲等. 林冠蒸发散的计算. 1985. 中国科学院林业土壤研究所集刊. 第一集. 40~45
    145. 魏天兴,朱金兆,张学培等. 1998. 晋西南黄土区刺槐油松林地耗水规律的研究. 北京林业大学学报,20(4):36~40
    146. 魏天兴等. 1999. 林分蒸散耗水量测定方法述评. 北京林业大学学报.21(3):85~91
    147. 吴征镒主编. 1980. 中国植被.北京:科学出版社,
    148. 熊伟、王彦辉、程积民等. 2003. 三种草本植物蒸散量的对比试验研究. 水土保持学报. 17(1):170~172
    149. 徐德应,曾庆波. 1985. 用能量平衡-波文比法测定海南岛热带季雨蒸散初试. 热带亚热带森林生态系统研究.(3):183~196
    150. 徐德应. 森林的蒸散:方法和实践. 全国森林水文学术讨论会文集. 北京:测绘出版社,1989,177~182
    151. 徐德应. 1993. 森林蒸散. 见马雪华主编的《森林水文学》.北京:中国林业出版社
    152. 杨光,王玉.2000.试论植被恢复生态学的理论基础及其在黄土高原植被重建中的指导作用. 水土保持研究.7(2):133~135.
    153. 翟志席,郭玉海,马永泽等. 1997. 植物生态生理学.
    154. 张恩光.1997. 提高六盘山及外缘地区水源涵养用材林基地建设质量的建议. 宁夏农林科技.5:21~22.
    155. 张建国,李吉跃,沈国舫. 树木耐旱特性及其机理研究. 2000. 中国林业出版社
    156. 张劲松. 2000. 农林复合系统水分运移模型与水分生态特征的研究. 中国农业大学博士学位论文.
    157. 张劲松等. 植物蒸散耗水量计算方法综述. 世界林业研究. 2001,14(2):23~28
    158. 赵松乔等.1990. 中国的干旱区. 北京:科学出版社.
    159. 赵文智和程国栋.2001. 干旱区生态水文过程研究若干问题评述.科学通报.46(22):1851~1857.
    160. 中国可持续发展林业战略研究项目组.2002. 中国可持续发展林业战略研究总论.北京:中国林业出版社
    161. 中科院和宁夏回族自治区固原基地县综考队.1982. 固原自然资源和农业区划.内部资料
    162. 周平,李吉跃,招礼军. 北方主要造林树种苗木蒸腾耗水特性研究. 北京林业大学学报2002,24(5):50~55
    163. 周晓峰,2001.关于西部大开发的基本观点和植被建设中的若干问题.林业科学.37(6):98~104.
    164. 朱金兆,魏天兴,张学培.2002.基于水分平衡的黄土区小流域防护林体系高效空间配置. 北 京林业大学学报.24(5/6):5~13

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700