基于横截面图像分析的纤维异形度的指标表征和异形纤维种类的自动识别
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
异形纤维面料已经成为当前功能性面料消费市场一个重要分支。它通过使用非圆形喷丝板来改变纤维的横截面形状这种最简单的改性方法来改善普通圆形截面的合成纤维的光泽、手感、蓬松性、抗污性、抗起毛起球性等特性。异形纤维横截面形状的表征和自动识别对于分析截面的非圆形化对纤维特性的影响机理、纺织品质量控制和指导纺织品性能设计具有重要意义。
     但是目前,合成纤维横截面形态的定量分析是通过人眼观察、近似测量来得到,现行标准中的异形度指标体系也存在一定的缺陷,例如,可能会出现异形度存在明显差异但是指标的值却相等的情况。异形纤维截面形状的识别更是要依赖于人的主观判断来实现,非常耗时、耗力。所以,急需要一种能够完成异形纤维横截面形态分析的自动检测系统。
     有鉴于此,本课题借助图像处理技术,在课题组已建立的自动获取纤维显微图像系统这一条件基础上,研究了适用于异形纤维显微图像的纤维横截面形态自动分析系统。建立了适用于异形纤维显微图像的图像处理系统,分析了异形纤维横截面的形状特征,对纤维异形度的指标表征和纤维形状种类的自动识别做了深入研究。提出了全新的、能够应对任意实心异形纤维截面形状的表征指标,实现了自动测量;通过边界到质心点距离的波动曲线的比较提出了异形截面的识别特征参数提取方法。并在此基础上,提出了基于特征向量之间的非相似度量的顺序聚类算法,完成了异形纤维横截面形状种类的自动识别。
     在异形纤维显微图像处理方面,对可能出现的各类噪声的来源和分布特点进行了分析,从纤维异形度表征和识别的应用角度分析了异形纤维显微图像处理的特殊性,设计出最适合异形纤维显微图像的处理算法和流程,大大提高了异形纤维图像二值分割的精度。其中关键的两个步骤分别为:(一)针对异形纤维显微图像的特点,提出了能够最大化增强目标(纤维的边界)和背景(纤维横截面纹理和外部包埋体)对比度的图像增强方法;(二)通过计算包含标注对象的最小凸多边形的方法,大大改善了普通阈值分割算法的精度。实验结果证明,本文提出的图像增强算法降噪效果明显,而且有效地消除了对后续阈值分割非常不利的光照不匀现象。本文提出的计算包含标注对象的最小凸多边形的阈值分割后处理方法,能够很好地保护纤维的边界完整,有助于准确而彻底地去除噪声,大大改善了普通阈值分割算法的精度。该方法与常用的边缘检测算子相比较,提取出的纤维边界更加完整、准确,消除了双边缘和各种虚假边界,同时噪声点也较少。从后续处理的角度分析,也降低了随后的特征提取的技术难度。
     在纤维异形度的指标表征方面,突破了以往基于内切圆和外接圆的传统表征方法,借助纤维截面的距离-角度函数的提取,提出了一个新的异形度表征指标CVr2,并在此基础上,将几何矩的思想融入,提出了更为合理的加权改进指标CV(?)。原有的异形度指标体系中,有些不同的截面形状要求用不同的指标,使得形状相差较大的纤维截面形状的异形度指标值,无法直接相互比较。而本文所提出的异形度表征指标CV(?)可以用于表征任意实心异形纤维截面的异形度,无论这个形状是凸还是凹。这使得任意实心截面形状的异形度都可以直接进行相互比较。且与现用的所有异形度指标之间皆无明显相关性,给异形度的表征提供了一种统一的度量标准,真正实现了异形度的定量表征。
     指标CV(?)的一个优点来自其明显的平移、缩放和旋转不变性。其取值在区间[0,+∞],当且仅当纤维截面为理想圆形时,取最小值0。指标CV(?)的表征能力用一些基本形状和实际异形纤维截面进行了实验验证。结果表明,CV(?)能够有效区分各种纤维截面相对其面积等效圆的差异程度。与对比指标γ(γ=(?))相比,CV(?)在包含深凹部分的形状的异形度表征上更合理。y对于深凹部分所带来的周长大幅增加非常敏感,所得值偏大,而CV(?)没有这个缺点。CV(?)对于CVr2的改进效果,表现在对纤维截面主体外轮廓的波动非常敏感,而对深内凹部分的轮廓波动比较迟钝,在对异形度的表征更符合纤维与纤维外轮廓相接触的实际情况。而且,作为一个基于面积的指标,它是稳定的,抗噪声能力强。
     在对异形纤维自动识别的研究中,本课题提出了一种基于横截面轮廓波动曲线的特征提取方法和一种基于特征向量之间的非相似度量的顺序聚类识别算法。
     纤维截面的轮廓波动曲线同时包含了纤维截面形状和大小的信息,能够作为纤维自动识别的有效特征参数。但是,由于实际呈现在图像中的纤维对象分布的随机性和截面变形的不可避免,如何正确地校正纤维对象的起点是一大难题,用图像处理的方法很难解决。本文通过用信号处理技术来计算曲线的互相关,寻找最大值的方法,成功地解决了矫正纤维对象的起点的难题,实现了距离波动曲线的规范化。对于两个异形纤维截面,它们规范化后的轮廓波动曲线的相似程度充分反映了它们本身形状的相似度。因此,本文提出通过提取一个试样片中的所有纤维截面的轮廓波动曲线,两两比较它们的相似程度,自动聚类来识别纤维。
     本文提出的基于顺序聚类的自动识别算法是基于特征向量的差异性度量的,度量指标采用欧氏距离。该算法的时间复杂度为O(N2)。跟基本的顺序算法方案(BSAS)相比较,时间复杂度稍高,但是它的一大优点在于,对于一个给定的对象,只要它与任一个其所属类的类内对象的距离在阈值线以下,它就能被正确地归类。这样最终聚类的结果并不受送入算法的特征向量的先后次序的影响。用真实异形纤维截面进行了聚类算法的识别验证实验,平均识别正确率达到97%。表明了本课题所定义的基于轮廓波动曲线的形状描绘参数和提出的顺序聚类识别算法能够有效地识别不同截而形状的实心异形纤维。轮廓波动曲线能够充分、有效地表达异形纤维横截面轮廓的特征而用于纤维自动识别,提出的规范化方法也是有效的。其抗噪声能力很强,对纤维的随机分布,图像像素计算的误差,和对纤维在取样、包埋、切片过程中的一定程度的挤压变形不敏感。
     本系统的结果输出包括两部分:TXT结果信息文档和带编号和类别号的BMP图像文件。其中文档部分是数据的记录,包括所有有效纤维截面对象的面积、长宽比、聚类分类的结果、每一类别形状的具体描述、每一类别组分的根数百分比;图像部分是分类结果直观的图示。
     在实现了纤维异形度的新指标的表征、计算和横截面形状种类识别这两大功能之后,用各种不同截面形状的异形纤维进行了批量实验,对系统的有效性,稳定性和结果的可再现性进行了分析和测试,并对影响系统识别正确率和测试速率的因素进行了分析讨论。实验结果证明了6种纤维横截面的异形度指标计算的稳定性、6种测试样品的截面形状种类识别准确率的稳定性。系统的再现性测试也取得了良好的效果,对同一试样片进行的异形度计算和自动识别有很高的可再现性。
     此外,本文还对系统的扩展应用做了进一步的分析。以织物的芯吸性能为例,分析了纤维截面的异形化对纤维集合体的芯吸性能的影响机理,并借助已有的文献资料中的实验数据,对本文提出的异形度指标CV(?)的具体应用做了初步的分析和验证。证明了该指标对织物的芯吸性能具有一定的预测作用,可以用来分析异形纤维,尤其是吸湿排汗类异形纤维的截面异形程度对织物的芯吸性能的影响规律,指出了该指标的具体应用上的一个有价值的研究方向。
Fabrics made of profiled fibers with non-circular cross sections can be found on the functional wear market and widely used for sportswear. Changing the cross-sectional shape is the easiest way to alter the meachanical and aesthetic properties of a fiber. This is commonly done by changing the shape of the spinneret hole to produce the fiber shapes desired. Compared to the circular section fibers, fibers with modified cross sections possess more desirable qualities, such as increased luster, firm hand, bulkiness, soil resistance and reduced pilling. As for profiled fiber, quantitative characterization of fiber cross-sectional shape is an extremely important part of component analysis and quality control. It is indispensable when studying the influence mechanism of fiber cross-sectional non-circularity on the performance of end-use products.
     However, present methods of quantitative analysis on the cross sections of synthetic fibers are usually approached by eye observation and approximate measurement. The current standard test method of synthetic fiber shape factor has its shortcomings. For example, it is quite possible for fibers with different non-circularity degrees but identical measured shape factors. And the profiled fiber identification in cross-sectional view relies on subjective judgments, which is very time-consuming and tiring. Therefore, it is urgent to provide an automated system to complete cross-section shape analysis of profiled fiber.
     Based on this, the problem fallen into the scope of automatic image analysis system of profiled fiber cross-sectional shape in the condition of established automatic system of acquisiting microscopic images of fibers. An image processing system of profiled fiber cross-sectional photomicrographs is established, and then cross-sectional shape analysis of profiled fibers, quantitative characterization of shape factor and automatic identification of profiled fiber are investigated. We propose a new measure of shape factor which can be used to characterize all kinds of solid cross sections of profiled fibers. We propose an effective method of cross-sectional shape characterization for profiled fiber identification by comparing the extracted distance fluctuation curves of fiber cross-sectional boundary to the centroid. And we complete automatic identification of profiled fiber by means of a new sequential clustering algorithm based on dissimilarity measures among feature vectors.
     For image processing on profiled fiber photomicrographs, possible types of noises and their distribution are analyzed in this paper. The specificity of microscopic image processing is analyzed from the view of quantitative characterization of shape factor and profiled fiber identification. The pipeline of image processing which is suitable for profiled fiber photomicrographs are presented with two key steps which can greatly improved the accuracy of image segmentation. (1) Based on the characteristics of profiled fiber photomicrographs, an image enhancement technique of maximizing the contrast of the target (the boundaries of fibers) and the background (the texture of fiber cross-section and the body of resin) is proposed; (2) The accuracy of segmentation are greatly improved by computing the smallest convex polygon according to the registered objects. Experimental results show that the noises can be well controlled and the non-uniform illumination phenomenon can be eliminated effectively by the proposed image enhancement algorithm. The method of segmentation post-processing by calculating the smallest convex polygon can well protect the integrity of the boundary of fiber, while easily and accurately removing noises. The accuracy of image segmentation algorithm can be improved significantly. Compared with the common edge detection method, the proposed method is more effective because it can eliminate the double edge and false edge to extract the intact boundary with minimum noises. From the perspective of post-processing, this can reduce the difficulty of feature extraction.
     For quantitative characterization of shape factor, we present a new measure CVr2 and its modified measure CV(?)(a more reasonable weighted measure based on moments) of profiled fiber shape factor by extracting the distance-versus-angle function of the fiber cross section. Different from the traditional method that based on the inscribed circle and the circumscribed circle, our method is based on geometric moments. Furthermore, CV(?) can be applicable to any arbitrary shape with solid cross section, no matter whether it is convex or concave. Therefore, the values of CV(?) of different cross sections can be directly compared. Since CV(?)does not relevant with any measure of shape factor currently being used, it can provide a unified basis for quantification characterization of fiber shape factor.
     One of the advantages of CV(?)comes from its obvious translation, scaling, and rotation invariance property. It ranges over the interval [0,+∞) and CV(?)equals to the minimum 0 if and only if the cross- sectional shape is a perfect circle. The behavior of CV(?)is demonstrated on some regular shapes and practical cross-sections. Experimental results show that the defined measure can depict the discrepancy degree between fiber cross-section and the area equivalent circle. Compared withγ(γ=P2/4·π·A-1), CV(?)performs better in the case of cross-sectional shapes with deep concaves,γis sensitive to the change of the perimeter caused by the presence of deep concaves in cross-sectional shapes, whereas CV(?)does not have this disadvantage. Compared with CV,, CV(?)is more sensitive to the convex contours while less insensitive to the contour of deep concaves, more according with the real contacts among fibers. As an area-based measure, it is robust against noise.
     For automatic identification of profiled fiber in cross-sectional view, we propose an effective method of cross-sectional shape characterization for profiled fiber identification by comparing the extracted distance fluctuation curves of fibers'boundaries to the centroids and we also proposed a new sequential clustering algorithm based on dissimilarity measures among feature vectors.
     The distance fluctuation curve contains sufficient information on both the shape and the size of the cross section. Therefore, it can be used as the descriptor of cross-sections for profiled fiber identification. However, due to the randomly distributed fibers and shape deformation occurred in the microscopic images, it is hard to caliberate the starting point of fiber object in terms of image processing. In this paper, this challenge is tackled by finding the maximum value on the co-relationship curve, which intrinsically normalized the distance fluctuation curve. For two fiber cross-sections, the similarity degree of their normalized boundary fluctuation curves normalized can effectively reflect the similarity degree of themselves. Based on this, our method extracts the curves of all fiber cross-sections in one slide to compare the similarity degrees between each other, and then creates clusters to identify them.
     The proposed sequential clustering algorithm is based on dissimilarity measures among feature vectors. The well-know Euclidean distance are adopted as the proximity measure. The time complexity of this algorithm is O(N2).Although it is higher than that of the basic sequential algorithmic scheme (BSAS), for a given object, it can be clustered correctly if the distance between this object and any element of the class is lower than a given threshold. Such clustering result is independent on the order in which the vectors are presented to the algorithm. The experiment of verification of the clustering algorithm using real profiled fiber cross sections has also been done. The average recognition accuracy rate is about 97%. It is shown that the defined shape descriptor and the classification method can effectively identify solid profiled fibers that differ in their cross-sectional shapes. The distance fluctuation curve can characterize profiled fiber cross-sectional contour for profiled fiber identification effectively. The normalization method is also feasible. In addition, this curve is not sensitive to the calculation error caused by the discrete nature of digitial images. It is also insensitive to a certain degree of compressive deformation of cross sections during sample preparation.
     The resulting output of this system consists of two parts:TXT document and BMP image files. The document records the data of the result of shape factor calculation and fiber identification including area, aspect ratio, tag number, class number and component percentage. The image file is for intuitive output of fiber classification.
     After achieving the function of quantitative characterization of shape factor and profiled fiber recognition, batch testing is performed to validate the effectiveness, stability and reproducibility of the whole system through various shapes of profiled fiber. And the impact factors of the system are analyzed and discussed. Experimental results show that the shape factor calculation of our system is stable on 6 types of cross-sections and the recognition accuracy is stable too on 6 types of samples. The test on the system reproducibility has achieved good results. The output can be reproduced by using the same slide.
     In addition, further investigation on the extended application of our system has been made. Taking wickability of fabric as an example, the influence mechanism of fiber cross-sectional modification on the wicking properties of fiber assembles is analyzed. According to the experimental data existed in relevant literatures, we make a preliminary analysis and verification of the usefulness of the shape factor measure CV(?)proposed in this paper on textile industry. It shows that CV(?) has a predictive effect on the wicking property of fabric, and it can be used to analyze the effect of non-circularity degree of profiled fiber, especially for functional fiber with characteristic of moisture absorbing and drying quickly, which implies a potential valuable direction of using our proposed index.
引文
[1]商成杰.功能纺织品,中国纺织出版社,2006.
    [2]陈衍夏.纤维材料改性,中国纺织出版社,2009.
    [3]Sara J.Kadolph, Anna L.Langford, Norma Hollen, Jane. Saddler. Textiles,7th edition, Macmillan Publishing Company,1993.
    [4]Henri Ulrich. Introduction to Industrial Polymers, Wien:Hanser 1982.
    [5]Modification of polyester (PET), The Indian Textile Journal, June 2009.
    [6]Phyllis G. Tortora. Understanding Textiles, New York:Macmillan,1978.
    [7]M.A.Bueno, A.P.Anejia. Influence of the Shape of Fiber Cross Section on Fabric Surface Characteristics, Journal of Materials Science,2004,39,557-564.
    [8]ASTM D 629-08 Standard Test Methods for Quantitative Analysis of Textiles,2008.
    [9]赵书经.纺织材料实验教程,北京,中国纺织出版社,1989.
    [10]王荣武.基于图像处理技术的苎麻和棉纤维纵向全自动识别系统,东华大学博十学位论文,2008.
    [11]FZ/T 50002-91, Test Method for Synthetic Fiber Shape Factor,1991.
    [12]王府梅,赵林.纤维截面异形度的研究,纺织学报,1991,7,4-7.
    [13]于伟东,谭冬梅.化纤异形度的计算机数字图像处理,纺织学报,1994,15(5),33-35.
    [14]王华辉,陈永林,胡春圃,杨娟,吴雄英.基于计算机图像识别的纺织纤维树脂快速包埋技术研究,中国纤检,2006,3,16-18.
    [15]严晓燕.纤维的包埋切片技术与异形纤维特征参数研究,东华大学硕士学位论文,2005.
    [16]顾振亚,田俊营,牛家嵘.仿真与仿生纺织品,中国纺织出版社,2007.
    [17]朱建民,何铮,孙庆丰.差别化纤维现状分析与发展建议,合成纤维工业,2000,23,5,1-4.
    [18]上海纺织科学研究院产品组.异形纤维专刊,合成纤维,1978,6,1-62.
    [19]尹平平.喷丝板微孔中熔体流动及异形纤维成形过程的研究,东华大学硕十学位论文,2006.
    [20]K.Yamazaki, M. Okamoto. A Review of New Directions in Shingosen and Synthetic-fiber Textiles for Sportswear, Journal of Textile Institute,1997,88, part3:5-31.
    [21]余菲菲.大放光彩的异形纤维织物,纺织服装周刊,2007,18,30-31.
    [22]Joseph, Marjory L.. Essentials of Textiles 3rd edition, New York Holt, Rinehart and Winston, 1984.
    [23]周晓沧,肖建宇.新合成纤维材料及其制造,中国纺织出版社,1998.
    [24]K.Kajiwara, R.Nori.M.Okamoto. New Fibers from Japan, Journal of the Textile Institute, Part 3,2000,32-78.
    [25]Jules Labarthe, Elements of Textiles, MacMillan Publishing Company,1975.
    [26]Marjory L. Joseph. Introductory Textile Science,3rd edition, Holt, Rinehart and Winston,1977.
    [27]Betty F. Smith, Ira Block. Textiles in Perspective, Prentice-Hall, Facsimile edition,1982.
    [28]成晓旭,杨浩之.合成纤维新品种和用途,纺织工业出版社,1988.
    [29]方纫芝.涤纶仿真丝织物的开发与发展,上海纺织科技,1990,3,35-38.
    [30]中国科学技术协会.2010-2011纺织科学技术学科发展报告.中国科学技术出版社.北京.2011.
    [31]刘峻,张瑜,王兴雪,陈彦模,朱美芳.导湿纤维及其面料的开发,技术创新,2005,2,16-19.
    [32]倪海燕,付世伟Coolplus纤维针织物的热湿舒适性能研究.现代纺织技术,2008,4,44-47.
    [33]崔萍,戴黎春,黄凌Coolbst异形涤纶纤维的导湿、透汽性能的研究,西安工程科技学院学报,2006,20(3),266-269.
    [34]蔡再生.纤维化学与物理,中国纺织出版社,2009.
    [35]肖为维.合成纤维改性原理和方法,成都科技大学出版社,1992.
    [36]J.E.McIntyre,付中玉译.合成纤维,中国纺织出版社,2006.
    [37]Mark Goodman. Cross-section Analysis of Fibers (Microtomy) in the Fiber Lab.
    [38]FZ/T01057.3-2007纺织纤维鉴别试验方法,第3部分显微镜观察法,2007.
    [39]Ines V. deGruy, Mary L. Rollins. A Microscopical Technique for Determining Latex Distribution in Tire Cords, Textile Research Journal,1948,18,371-373.
    [40]S.G. Ellis. A New Method for the Rapid Examination of Textile Fiber Sections at High Magnification, Textile Research Journal,1975,45,599-601.
    [41]Anna M. Cannizzaro, Mary L. Rollins, David J. Stanonis. Microscopical Properties of Some Cellulose Ethers, Textile Research Journal,1973,43,397-404.
    [42]Newman JB, Borysko E, Swerdlow M. New Sectioning Techniques for Light and Electron Microscopy, Science,1949,110,66-68.
    [43]Geoff R Newman, Jan A Hobot. Resins for Combined Light and Electron Microscopy:A Half Century of Development, The Biotechnical and Histochemical Journal,1999,31,495-505.
    [44]Rose Matic-Leigh, Debra A. Cauthen. Determining Cotton Fiber Maturity by Image Analysis, Part Ⅰ:Direct Measurement of Cotton Fiber Characteristics, Textile Research Journal,1994, 64(9),534-544.
    [45]Boylston E K, Hinojosa O, Hebert J J. A Quick Embedding Method for Light and Electron Microscopy of Textile Fibers[J], The Biotechnical and Histochemical Journal,1991,66(3), 122-124.
    [46]E.K.Boylston, J.P.Evans, D.P.Thibodeaux. A Quick Embedding Method for Light Microscopy and Image Analysis of Cotton Fibers, The Biotechnical and Histochemical Journal,1995, 70(1),24-27.
    [47]E.K.Boylston. Microscopical Evalution of Yarns, Textile Chemist and Colorist.,1999,31(2), 20-22.
    [48]Wan-Ling Chen, S. Fujishige. A Simple Preparative Method for Cross-sectioning Fibrous Materials for Optical Microscopy, Textile Research Journal,1995,65,369-370.
    [49]Annis, P.A., Quigley, T.W.,Jr., Kyllo, K.E.. Useful Techniques in Textile Microscopy, AATCC, 1992,24(8),19-22.
    [50]宗亚宁,严晓燕,吴雄英,王善元.树脂包埋技术在纤维截面切片中的应用,纺织学报,2007,28(2),8-10,16.
    [51]I.De Smet, P. Chaerle, S. Vanneste, R. De Rycke, D. Inze, T. Beeckman. An Easy and Versatile Embedding Method for Transverse Sections. Journal of Microscopy.2004,213, Part 1,76-80.
    [52]Trancik, J.E., Czernuszka, J.T., Merriman, C., Viney, C., A Simple Method for Orienting Silk and Other Flexible Fibres in Transmission Electron Microscopy Specimens. Journal of Microscopy.2001,203 235-238.
    [53]S. Zarkoob, M. Mareanukroh. A Novel Method for Embedding Fibers for Ultramicrotoming. Journal of Materials Science Letters,1998,17,2063-2065.
    [54JL.C. Sawyer, J.C. Chen. Fiber Crimp Characterization by Image Analysis, Textile Research Journal,1978,48(4),244-246.
    [55]Hebert, J. J., Boylston, E. K., and Wadsworth, J. I., Cross-Sectional Parameters of Cotton Fibers, Textile Research Journal,1979,49,540-542.
    [56]R.L.Baker. Determination of Fiber Cross-sectional Circularity from Measurement Made in A Longitudinal View, J. Engr. Ind,1979,101,59-64.
    [57].D.Berlin., S.Worley JR, H.H.Ramey JR, S.S.Linkous. Measuring the Cross-sectional Area of Cotton Fibers with An Image Analyzer, Textile Research Journal,1981,51(2),109-113.
    [58]Devron.P.Thibodeaux. Cotton Fiber Maturity by Image Analysis, Textile Research Journal,1986,56(2),130-139.
    [59]Boylston E K, Thibodeaux D P, Evans J P. Applying Microscopy to the Development of a Reference Method for Cotton Fiber Maturity,Textile Research Journal,1993,32.80-86.
    [60]P.W.Chudleigh. Image Formation by Fibers and Fiber Assemblies. Textile Research Journal, 1984,54(12),813-820.
    [61]Young J. Han, Yongjincho. Wade E. Lambert.Charles K. Bragg. Identification and Measurement of Convolutions in Cotton Fiber Using Image Analysis, Artificial Intelligence Review,1998,12,201-211.
    [62]EI-Alfy M D, Blakey P R. The Identification of Animal Fibers by Means of Plaasmaetching and the Scanning Electron Microscope, Journal of Textile Institute,1980,71,168-170.
    [63]Wortmann F J, Wortmann G, Arns W. Quantitative Fiber Mixture Analysis by Scanning Electron Microscopy, Part Ⅰ:Blends of Mohair and Cashmere with Sheep's Wool, Textile Research Journal,1986,61(7),442-446.
    [64]Wortmann F J, Wortmann G, Arns W. Quantitative Fiber Mixture Analysis by Scanning Electron Microscopy, Part Ⅱ:Blends of Wool with Angora Rabbit Hair, Textile Research Journal,1989,59(2),73-80.
    [65]Wortmann F J, Phan K H, Augustin P. Quantitative Fiber Mixture Analysis by Scanning Electron Microscopy Part Ⅲ:Round Trial on Mohair/Wool Blends, Textile Research Journal, 1991,61,371-374.
    [66]D.Robson. Animal Fiber Analysis Using Imaging Techniques, Part Ⅰ:Scale Pattern Data, Textile Research Journal,1997,8,747-752.
    [67]D.Robson. Animal Fiber Analysis Using Imaging Techniques, Part Ⅱ:Additional of Scale Height Data, Textile Research Journal,2000,70(2),181-184.
    [68]Shih-Hsuan Chiu, Jyh-Yeow Chen, Jun-Huei Lee. Fiber Recognition and Distribution Analysis of PET/Rayon Composite Yarn Cross Sections Using Image Processing Techniques. Textile Research Journal,1999,9(6),417-422.
    [69]She F H, Chow S, Wang B, Kong L X, Identification and Classification of Animal Fibers Using Artificial Neural Networks. Journal of the Textile Machinery Society of Japan,2001, 47(2),35-38.
    [70]Bojun Xu, Bin Dong, Yan Chen. Neural Network Technique for Fiber Image Recognition, Journal of Industrial Textiles,2007,36(4),329-336.
    [71]Xu, B., Pourdeyhimi, B., Sobus, J. Characterizing Fiber Crimp by Image Analysis:Definitions, Algorithms and Techniques, Textile Research Journal,1992,62(2),73-80.
    [72]B Xu. Fiber Cross-sectional Shape Analysis Using Image Processing Techniques, Textile Research Journal,1993,63(12),717-730.
    [73]B Xu, B Pourdeyhimi. Evaluation Maturity of Cotton Fiber Using Image Analysis:Definition and Algorithm, Textile Research Journal.1994,64(6),330-335.
    [74]B Xu, Y.-L. Ting. Fiber Image Analysis, Part Ⅰ:Fiber Image Enhancement, Journal of Textile Institute,1996,87(2),274-283.
    [75]B Xu, Y.-L. Ting. Fiber Image Analysis, Part Ⅱ:Measurement of General Geometric Properties of Fibers. Journal of Textile Institute,1996,87(2),284-295.
    [76]Xu, B., Wang, S., Su, J.. Fiber Image Analysis, Part III:A New Segmentation Algorithm for Autonomous Separation of Fiber Cross-Sections. Journal of Textile Institute,1999,90(3), 288-297.
    [77]Huang, Y. and Xu, B., Image Analysis for Cotton Fibers, Part Ⅰ:Longitudinal Measurement, Textile Research Journal,2002,72(8),713-720.
    [78]B Xu, and Y Huang, Image Analysis for Cotton Fibers, Part Ⅱ:Cross-Sectional Measurements, Textile Research Journal,2004,74(5),409-416.
    [79]许鹤群,掌纪红,黄健.混纺纱截面图像的识别和分析,中国纺织大学学报,1993,19(1),67-71.
    [80]吴兆平,余序芬.化纤异形度指标及其图像处理的实现,纺织高校基础科学学报,1995,8(3),249-253.
    [81]吴兆平,余序芬.三叶形纤维异形指数自动测量的新方法,纺织学报,1995,16(4),42-44.
    [82]吴兆平,余序芬.V字形纤维异形度自动测量的新方法.纺织学报.1995,16(5),21-24.
    [83]吴兆平,余序芬.微机图像处理技术及其在化纤异形度测试中的应用,合成纤维,1995,24(6),20-24.
    [84]余序芬,吴兆平.棉麻混纺比图像处理测试系统的开发研究,中国纺织大学学报,1998,1,41-45.
    [85]余序芬,吴兆平,顾钰.数学形态学边缘检测法及其对棉麻自动识别的应用,中国纺织大学学报,1996,22(5),66-73.
    [86]袁翔,于伟东.快速准确的纤维异形度试验方法探讨,纤维标准与检验,1992,4,12-16.
    [87]于伟东.纤维异形度的测量方法,合成纤维,1992,21(4),46-50,61.
    [88]于伟东,谢莉青.混纺麻纱特征的实用图像表征技术Ⅰ:截面图像生成与特征指标,中国麻业科学,2004,26(3),127-132.
    [89]谢莉青,于伟东.混纺麻纱特征的实用图像表征技术Ⅱ:麻/涤纱混合比的计算,中国麻业科学,2004,26(4),177-182.
    [90]谢莉青,于伟东.麻/涤纱混纺比图像测试方法的应用研究,上海纺织科技,2002,30(6),62-64.
    [91]Xianjun Shi, Weidong Yu. Classification of Animal Fibers Based on Microscopic Images. Journal of Applied Sciences—Electronics and Information Engineering,2009,27(1),62-66.
    [92]沈精虎,王晓红.图像处理在特种动物毛纤维识别中的应用,纺织学报,2004,25(4),26-27.
    [93]李艰.图像处理技术在纺织上的应用与研究-丝毛自动识别及非织造布结构分析,中国纺织大学博士论文,1998.
    [94]周剑平,封举富,孙宝海.电镜羊绒毛图象自动识别方法研究,中国图象图形学报,2001, 6(10),979-983.
    [95]徐回祥,洪安凡,王建民,上条正义.关于混纺织物中棉,苎麻纤维识别的图像处理研究,苏州丝绸学院学报,2000,20(4),14-20.
    [96]贾立锋,孟会娟,孟凡辉.棉麻纤维自动识别技术研究,现代仪器,2006,60-62.
    [97]张传雄,吴雄英.图像处理技术在纤维素纤维纵向特征参数研究中的应用,东华大学学报,2006,32(1).46-49.
    [98]刘琳,苗长云.基于NiosⅡ的纤维自动识别系统设计,天津工业大学学报,2006,25(5),28-30.
    [99]丁喻洋,曾培峰.基于纺织纤维截面的多焦面处理方法研究,微计算机信息2006,22(5-1),199-202.
    [100]孙建成,曾培峰,禹素萍,吴雄英.方向链码及其曲线描述在纤维图像识别中的应用,上海工程技术大学学报,2005,19(3),239-243.
    [101]严晓燕,吴雄英,异形截面纤维特征参数提取及图像识别技术研究进展,合成纤维,2005,10,11-14.
    [102]张乐,唐莉萍,曾培峰,吴雄英,异形纤维的多尺度形状描述方法.东华大学学报,2009,35(5),566-574.
    [103]朱维松,姚砺,万燕,曾培峰,吴雄英.骨架提取算法的研究及在异形纤维中的应用东华大学学报,2008,34(5),604-607.
    [104]Yan Wan, Li Yao, Bugao Xu. A Dual Threshold Calculating Method for Fiber's Edge Extraction, IEEE International Conference on Intelligent Computing and Intelligent Systems, 2009,247-254.
    [105]Yan Wan, Li Yao, Bugao Xu, Xiongying Wu, Separation of Clustered Fibers in Cross-sectional Images using Image Set Theory, Textile Research Journal 2009,79, 1658-1663.
    [106]Yan Wan, Li Yao, Peifeng Zeng, Bugao Xu. Shaped Fiber Identification Using a Distance-Based Skeletonization Algorithm. Textile Research Journal 2009,0(0),1-11.
    [107]Yan Wan, Li Yao, Bugao Xu, Peifeng Zeng. A Distance Map Based Skeletonization Algorithm and its Application in Fiber Recognition. Internatinal Conference on Audio, Language and Image Processing,2008,1769-1774.
    [108]Li Yao, Yan Wan, Xin Li, Yingying He. Segmentation of Fiber Image Based on GVF Snake Model with Clustering Method,2011 Fourth International Conference on Intelligent Computation Technology and Automation,1182-1186.
    [109]姚重焘,游先洪.用数字化仪测定化学纤维异形度,湖北检验检疫,2000,1,8-9.
    [110]FMA纤维显微图像检测分析仪,上海纺织科技,2007,12.
    [111]A. A. Aver'yanov,A. A. Dubynin, G. D. Karpova. Selection of the Spinneret Hole Form for Preparation of Polyamide Fibres of Nonround Cross Section, Fibre Chemistry,1983,15(2), 116-118.
    [112]A. A. Aver'yanov, I. K. Nekrasov, A. A. Dubynin. Birefringence of Polyamide Fibres of Nonround Cross-sectional From, Fibre Chemistry,1984,15(3),218-220.
    [113]G.K.Tyagi, P.Madhusoodhanan. Effect of Fibre Cross-sectional Shape on Handle Characteristics of Polyester-viscose and Polyester-cotton Ring and MJS Yarn Fabrics. Indian Journal of Fibre & Textile Research,2006,31(12),496-500.
    [114]I. N. Zhmykhov, B. E. Geller, E. M. Aizenshtein. Profiled-section Textured Polyester Yarns, Fibre Chemistry,1980,11(3),170-176.
    [115]Tatsuya Hongu, Glyn O.Phillips. New Fibers, Woodhead Publishing Ltd, Cambridge, England,2nd edition,1997.
    [116]沙建勋,范德炘.纤维检验,中国纺织出版社,1996.
    [117]国家标准局纤维检验局.化学纤维检验技术,1983.
    [118]张宝兴.基于计算机图像处理技术的纤维素纤维混纺产品成分分析研究,东华大学硕士论文,2006.
    [119]Rafael C. Gonzalez, Richard E. Woods. Digital Image Processing Second Edition, Publishing House of Electronics Industry,2008.
    [120]梁光明,孙即祥.一种基于数学形态学得多结构元图像分割算法,计算机工程与应用,2007,43(28),70-72.
    [121]禹素萍,曾培峰,陈建平.棉纤维截面图像的自适应阈值Canny边缘检测.计算机工程.2007,23(11),168-203.
    [122]Mark S. Nixon, Alberto S. Aguado. Feature Extraction and Image Processing,2nd Edition, Academic Press,2008.
    [123]Hanwei Shen, Christopher R. Johnson. Semi-Automatic Image Segmentation:A Bimodal Thresholding Approach, UUCS-94-019.1-14.
    [124]T. Tasdizen, E. Jurrus, R. T. Whitaker, Non-uniform Illumination Correction in Transmission Electron Microscopy, MICCAI Workshop on Microscopic Image Analysis with Applications in Biology,2008.
    [125]Tolga Tasdizen, Ross Whitaker, Robert Marc, Bryan Jones. Automatic Correction of Non-uniform Illumination in Transmission Electron Microscopy Images. SCI Institute, technical report. UUSCI-2005-008, University of Utah,2005,1-10.
    [126]Shijian Lu, Chew Lim Tan. Thresholding of Badly Illuminated Document Images through Photometric Correction, Proceedings of the 2007 ACM symposium on Document Engineering,2007, August 28-31.
    [127]Vovk, U., Pernus, F., Likar, B.. A Review of Methods for Correction of Intensity Inhomogeneity in MRI, IEEE Transactions on Medical Imaging,2007,26(3),405-421.
    [128]John G. Sled, Alex P. Zijdenbos, Alan C. Evans. A Nonparametric Method for Automatic Correction of Intensity Nonuniformity in MRI Data, IEEE Transactions on Medical Imaging, 1998,17(1),87-97.
    [129]M. Styner, C. Brechbuhler, G. Szekely, and G. Gerig. Parametric Estimate of Intensity Inhomogeneities Applied to MRI, IEEE Transactions on Medical Imaging,2000,19(3), 153-165.
    [130]G. Randall, A. Fernandez, O. Trujillo-Cenoz, G. Apelbaum, M. Bertalmio, L. Vazquez, F. Malmierca, P. Morelli. Image Enhancement for A Low Cost TEM Acquisition System, SPIE Proc. Three-Dimensional and Multidimensional Microscopy:Image Acquisition and Processing V.1998,3261.140-148.
    [131]Alexei A. Samsonov, Ross T. Whitaker. Eugene G. Kholmovski, Chris R. Johnson. Parametric Method for Correction of Intensity Inhomogeneity in MRI Data. Proc. of 10th Annual Scientific Meetings of Int. Society for Magnetic Resonance in Medicine,2002,154.
    [132]Soon H. Kwon. Threshold Selection Based on Cluster Analysis, Pattern Recognition Letters, 2004,25,1045-1050.
    [133]Arifin AA, Asano A. Image Segmentation by Histogram Thresholding Using Hierarchical Cluster Analysis, Pattern Recognition Letters,2006,27,1515-1021.
    [134]Le Zhang, Zuyun Zhao, Xin Luo, Peifeng Zeng, Kenji Kita. A Research of Distance Transform based Peeling Algorithm for Overlapped Fibers Separation, International Conference on Computational Intelligence and Software Engineering,2009,1-4.
    [135]王仪科,窦万春,张习文,蔡士杰.基于形态学重建的粘连物体分割,计算机科学,2005,32(11),187-190.
    [136]尤育赛,于慧敏.一种重叠红细胞图像的分离方法.中国图象图形学报,2005,10(6),736-740.
    [137]Brojeswari Das, A. Das, V. K. Kothari, R. Fanguiero, M. de Araujo, Effect of Fiber Diameter and Cross-sectional Shape on Moisture Transmission through Fabrics, Fibers and Polymers, 2008,9(2),225-231.
    [138]Adderley, A..The Physical Causes of the Luster in Cotton, Journal of Textile Institute Transactions,1924.15(4),195-206.
    [139]Tyagi G.K., Madhusoodhanan P.. Effect of Fiber Cross-sectional Shape on Handle Characteristics of Polyester-viscose and Polyester-cotton Ring and MJS Yarn Fabrics, Indian Journal of Fiber & Textile Research,2006,31,496-500.
    [140]Fangueiro R., Filgueiras A., Soutinho F., Xie M.. Wicking Behavior and Drying Capability of Functional Knitted Fabrics, Textile Research Journal,2010,80(15),1522-1530.
    [141]Kim, C., Cho, G., Hong, K. A, Shim, H. J.. Sound Characteristics According to Cross-sectional Shapes of Fibers, Fibers and Polymers,2003,4(4),199-203.
    [142]Morton W. E., Hearle J. W. S.. Physical Properties of Textile Fibers,2nd Edition, The Textile Institute and Heinemann. London,1975.
    [143]Omeroglu, S., Karaca, E., Becerir, B.. Comparison of Bending, Drapability and Crease Recovery Behaviors of Woven Fabrics Produced from Polyester Fibers Having Different Cross-sectional Shapes, Textile Research Journal,2010,80(12),1180-1190.
    [144]Schick, M.J., Surface Characteristics of Fibers and textiles. Part Ⅰ, New York, Marcel Dekker, 1977.
    [145]Booth, J.E.. Principles of Textile Testing, Butterworths,1968.
    [146]Tortora P.G.. Understanding Textiles, New York, Macmillan,1978.
    [147]Skau E.L.. Simple Expression for the Circularity and Fullness of Fibers, Textile Research Journal,1951,21,14-17.
    [148]F. Podczeck, J.M. Newton. A Shape Factor to Characterize the Quality of Spheroids, J. Pharm. Pharmacol.1994,46,82-85.
    [149]Anneke M. Bouwman, Jaap C. Bosma, Pieter Vonk, J. (Hans) A. Wesselingh, Henderik W. Frijlink. Which shape factor(s) best describe granules, Powder Technology,2004,146, 66-72.
    [150]Volker Metzler, Hans Bienert, Thomas Lehmann, Khosrow Mottaghy, Klaus Spitzer. A Novel Method for Quantifying Shape Deformation Applied to Biocompatibility Testing, ASAIO J., 1999,45(4),264-271.
    [151]Russ, J.C., A Simplified Approach to Harmonic Shape Analysis, Journal of Computer-Assisted Microscopy,1989,1,377-396.
    [152]Alan H.S. Chan, Derek K.T. So.. Measurement and Quantification of Visual Lobe Shape Characteristics, International Journal of Industrial Ergonomics,2006,36,541-552.
    [153]Payne CM, Bjore CG Jr,Cromey DW, Roland F.. A Comparative Mathematical Evaluation of Contour Irregularity Using Form Factor and PERBAS, A New Analytical Shape Factor, Anal Quant Cytol Histol,1989,11(5),341-352.
    [154]Volker H. Metzler, Thomas Lehmann, Til Aach. Morphological Multiscale Shape Analysis of Light Micrographs, Proceedings of SPIE, Nonlinear Image Processing Ⅺ,2000, 3961,227-238.
    [155]Nicola Ritter, James Cooper. New Resolution Independent Measures of Circularity, Journal of Mathematical Imaging and Vision,2009,35,117-127.
    [156]ASTM F 1877-05(2010), Standard practice for characterization of particles,2010.
    [157]Chen, Y. Q., Nixon, M. S., Thomas D. W.. Texture Classification Using Statistical Geometric Features, Pattern Recognition,1995,28(4),537-552.
    [158]Susan R. Dubois, Filson H. Glanz. An Autoregressive Model Approach to Two-Dimensional Shape Classification. IEEE Transactions On Pattern Analysis and Machine Intelligence, 1986,8(1),55-66.
    [159]P Van Espen. Development and Application of Image Analysis Techniques for Identification and Classification of Microscopic Particles. Ⅱ:Shape Analysis, Thesis of UIA,1997.
    [160]Sung Kwan Kang, Muhammad Bilal Ahmad, Jong Hun Chun, Pan Koo Kim, Jong An Park. Modified Radius-Vector Function for Shape Contour Description, Computational Science and Its Applications-ICCSA 2004,2004,940-947.
    [161]Hu, M. K., Ming-Kuei Hu Visual Pattern Recognition by Moment Invariants, IRE Transactions on Information Theory,8(2),1962,179-187.
    [162]Jovisa Zunic, Kaoru Hirota, PaulL. Rosin. A Hu Moment Invariant as A Shape Circularity Measure, Pattern Recognition,2010,43,47-57.
    [163]Reinhold Nafe, Wolfgang Schlote. Methods for Shape Analysis of Two-dimensional Closed Contours-A Biologically Important, but Widely Neglected Field in Histopathology, Electronic Journal of Pathology and Histology,2002,8(2),1-18.
    [164]Radhika Sivaramakrishna, N. S. Shashidhar. Hu's Moment Invariants:How Invariant Are They Under Skew and Perspective Transformations, Conference on Communications, Power and Computing Proceedings,1997,292-295.
    [165]Michael A. Taylor. Quantitative Measures for Shape and Size of Particles, Powder Technology 2002,124(1-2),94-100.
    [166]Prokop R. J., Reeves A.P.. A Survey of Moment-Based Techniques for Unoccluded Object Representation and Recognition, CVGIP:Graphical Models Image Process.,1992,54(5), 438-460.
    [167]Mukundan R., Ramakrishnan K. R.. Moment Functions in Image Analysis-Theroy and Applications, World Scientific, Singapore,1988.
    [168]Sergios Theodoridis, Konstantinos Koutroumbas. Pattern Recognition,4-th Ed., China: China Machine Press,2009,603-638.
    [169]Zhengmin Li, Shouxu Du, Dafu Zhang, Feng Zhang, Xuequn Su. Shape Characterization and Recognition of Cross-section of Profiled Fibre by Microscopy and Image Analysis, Proceedings of 2005 International Conference on Advanced Fibers and Polymer Materials, 2005,197-200.
    [170]Hamidreza Zaboli, Mohammad Rahmati, Abdolreza Mirzaei. Shape Recognition by Clustering and Matching of Skeletons,Journal of Computers,2008,3(5),24-33.
    [171]郑方,徐明星.信号处理原理.清华大学出版社.北京.2003.
    [172]AATCC-20A-2007 Fiber Analysis:Quantitative.2007.
    [173]于伟东,储才元.纺织物理,笫二版,东华大学出版社,2009.
    [174]Brojeswari Das, A. Das, V.K. Kotharil, R. Fanguiero, M. de Araujo. Moisture Transmission Through Textiles, Part I:Processes Involved in Moisture Transmission and the Factors at Play, AUTEX Research Journal,2007,7(2),100-110.
    [175]王亚光.基于纱线内纤维排列方式仿真模拟的纤维集合体导湿性能研究,东华大学硕士学位论文,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700