PP2A介导MAP1B去磷酸化对BMSCs靶向脊髓损伤迁移的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微管相关蛋白1B(Microtubule associated proteins;MAP1B)的生物学活性受其磷酸化修饰调节,蛋白磷酸酶2A(Protein Phosphotase2A;PP2A)对MAP1B去磷酸化具有调控作用,但磷酸化修饰后MAP1B对骨髓间充质干细胞(Bonemsenchymal stem cells;BMSCs)靶向损伤脊髓迁移的作用及BMSCs内调控MAP1B磷酸化修饰的机制尚未见相关报道。本论文旨在验证BMSCs内PP2A介导的I型MAP1B磷酸化形式(Type I of phosphorylated MAP1B; P1-MAP1B)去磷酸化在脊髓缺血性损伤(Spinal Cord Ischemia Injury;SCII)后BMSCs靶向脊髓迁徙中的作用,及BMSCs内调控MAP1B磷酸化修饰分子机制。
     研究内容包括:1、兔BMSCs体外培养、鉴定。2、应用CM-Dil对BMSCs进行体外荧光标记和体内示踪。3、PP2A抑制剂OA和激动剂C2-ceramide预处理BMSCs;通过同位素32P标记蛋白底物法和Western-blot分别检测PP2A活性与I型MAP1B磷酸化形式P1-MAP1B含量。3、应用节段性腰动脉阻断术建立兔SCII模型,随机分为四组:IG组(抑制剂组)、AG组(激动剂组)、UG组(未治疗组)和CG组(对照组);经耳缘静脉移植BMSCs后观察各组BMSCs活体内靶向脊髓迁移情况。4、应用磷酸化抑制剂LY294002与U0126分别阻断BMSCs内的PI3K和ERK1/2通路,Western-blot定量检测BMSCs内P1-MAP1B。
     结果显示:1、所收获BMSCs形态典型,具有间充质干细胞生长特性;2、CM-Dil荧光标记BMSCs后标记率达到99%以上;OA与C2-ceramide处理细胞后PP2A活性分别降低61%和增长78%(P<0.05),P1-MAP1B表达分别增高和降低(P<0.01),而MAP1B表达无明显变化(P>0.05)。干预效果可维持48h。OA与C2-ceramide预处理细胞后测得生长曲线较低平,BMSCs增殖略减缓(P<0.05);3、成功建立兔脊髓缺血性损伤模型并移植BMSCs后,在激光共聚焦显微镜下观察可见:移植2天后,IG组和AG组在脊髓损伤部位均未发现荧光标记BMSCs聚集,UG组相应部位可见少量散在BMSCs;移植4天后IG组和AG组的脊髓损伤部位可见BMSCs聚集;4、与对照组相比较,抑制PI3K活性后MAP1B磷酸化水平升高;而抑制ERK1/2后MAP1B磷酸化水平降低(P<0.05)。
     研究表明:证明BMSCs内PP2A介导的MAP1B去磷酸化在调节BMSCs靶向脊髓损伤迁移过程中发挥重要作用。其中作用机制可能是MAP1B与P1-MAP1B维持动态平衡参与调节BMSCs靶向迁移,为MAP1B蛋白功能研究提供新的理论依据。目前尚无关于MAP1B与BMSCs靶向脊髓损伤迁移之间关系的报道。
【objective】
     Axon guidance and upregulated of MAP1B after SCI are utilized as the topicresearch background. Based on fluorescent tags, western blotting, andimmunocytochemistry, we focus on the relativity between phosphorylated level ofMAP1B and migration of BMSCs towards injured spinal cord, especially on detectingand analyzing the signaling pathways and molecular mechanisms for the migrationregulated by MAP1B, which was designed to verify the correlation betweenMAP1B and BMSCs migration and tentatively elaborate the relevant signalingmechanisms which could provide an important theoretical basis to improve BMSCstherapy effect for SCI.
     【Methods】
     Part I: To establish an optimal culture system for cultivating the bone marrowmesenchymal stem cells (BMSCS) of rabbit in vitro and via microscopicmorphological observation, the best cell was chosen to analyze BMSCs activity. Todraw a cellular growth curve by MTT colorimetry, and analyze the expression of cellsurface antigens and cell cycle by flow cytometry and antigen-antibody reaction.
     Part II: Fluorescent dye CM-DIL to label rabbits BMSCs in vitro was used, afterwhich determinating the labelling rate by flow cytometry, analyzing and comparingBMSCs activity by MTT colorimetry and growth curve. The highest fluorescentlylabeling rate and the best growth activity of rabbit BMSCs were selected to pre-dealwith OA and C2-ceramide, and cells were divided into the inhibitor group, agonistgroupand control group, respectively. PP2A inhibitor OA and PP2A agonistC2-ceramide could regulate activity of PP2A directly and change phosphorylationlevels of MAP1B indirectly, after that analyzing and comparing BMSCs activity byMTT colorimetry again were proceeded. And PP2A activity via isotope-labeledenzyme activity assay and MAP1B phosphorylated levels via western blot weredetected.
     Part III: Animal models about experimental SCI via blocking segmental lumbarartery for25minutes was established. Based on modified Tarlov score, the behavioraldifference of animal models from the surgery group and the sham group wereobserved and compared before live sampling at2, and7days after surgery. Animalethology and pathological morphological observation could validate the model whichwas established successfully. The surgical group models are divided into three groupsand transplantated with BMSCs via the marginal ear vessels of the rabbits.Respectively, each group will be lively sampled at2,4and7days aftertransplantation and observed by using laser confocal microscope to detect fluorescentmarker of BMSCs in spinal cord.
     Part IV: To use inhibitors to block the PI3K and ERK pathway in rabbit BMSCsand detect MAP1B phosphorylation level of BMSCs via immunoblotting, themodification function of regulating the phosphorylation of MAP1B was analyzed.
     【Results】
     Part I: The rabbit BMSCs cultured system was established successfully.Comparing the different passages of BMSCs’s morphology, there was no distinctdifference.The BMSCs harvested showed absence of CD34, CD45and the greatmajority of which were at the G0/G1point in the cycle. The detection of BMSCs'proliferation has shown that BMSCs accumulat greatly in the period of logarithmicphase for3-5days.
     Part II: The labeling yield of CM-Dil is more than99%on the condition that thecells' proliferation wasn’t affected. Regulation of OA and C2-ceramide, however,made the activity of PP2A drop to39%and increases to178%, respectively, comparedwith that in the untreated group (p<0.05). The phosphorylation of BMSCs wasaffected accordingly by the C2-ceramide PP2A activity, according to immunoblotting.However, the changes above were back to normal at48hours after pretreatment(p>0.05). BMSCs' proliferation was affected by C2-ceramide and OA, the growthcurve of BMSCs showed that the BMSCs of AG group still kept the most of growingability.
     Part III: Rabbit ischemic spinal cord injury model was successfully established,and the assessment of hindlimb locomotor function have shown that surgery groupwas2.7~3.2points (P<0.01). After ischemic injury, pathomorphological observationsshowed that the majority of nuclear membrane is integral and available, and the nuclei was slightly swelling. Part of the nuclear was translocation, deeply stained;condensation, fragmentation and the neurite reduce or disappear. Via transmissionelectron microscopy(TEM), rough endoplasmic reticulum and mitochondrial werefound swelling, and part of the mitochondrial membrane ruptured. Wide gapsappeared between layers of myelin shea. The cavitation and other pathologicalchanges were found in nuclear matrix. By laser scanning confocal microscope, theBMSCs in the injured spinal cord was observed and the difference between inhibitiongroup and agonists group, comparing to untreated group, was recorded. At the3rddayafter transplantation, there was no BMSCs in the injured spinal cord in the inhibitiongroup and agonists group, which was different until the fifth day.
     Part IV: Compared with the control group, inhibition of PI3K resulted in higherphosphorylated levels of MAP1B, while inhibition of ERK led to lowerphosphorylated levels of MAP1B.
     【Conclusion】
     BMSCs were successfully cultured and maintained proliferation in theexperiment, which successfully established the rabbit segmental ischemic spinal cordinjury model. BMSCs that were transplanted have successfully migrated into theinjured spinal cord which could be affected by phosphorylated level of MAP1B. Asincreasing or reducing of P1-MAP1B could break the dynamic equilibrium ofMAP1B/P1-MAP1B, the number of BMSCs within the injured spinal cord will befallen off. All of these factors have shown that dynamic equilibrium of MAP1B playsan important role in the regulation of BMSCs migration. PI3K, ERK and PP2A werein charge of the dynamic equilibrium and participated in the signal transductionpathways which regulate MAP1B phosphorylation.
     【Innovation】
     The paper innovatively relates the axon guidance of MAP1B and itsphosphorylated I type with BMSCs migration. And it proves that the form ofMAP1B and its phosphorylated I type can play an important role in the process ofBMSCs migration by experiment. Maintaining homeostasis between MAP1B andP1-MAP1B is essential for BMSCs athletic ability, which provides a new theoreticalbasis for the MAP1B protein function. There has not been reported about relativitybetween MAP1B and BMSCs migration ability.
     In the past, MAP1B was mainly as a neural differentiation marker proteins of BMSCs. For the first time, we aims at studying the signal transduction pathways ofthe regulation of MAP1B phosphorylation in BMSCs, analyzing the signalmechanism of MAP1B in the cell migration-oriented function in BMSCs, enrichingand perfecting the migration signal transduction pathway of BMSCs migration.
引文
[1] SATAKE K, LOU J, LENKE LG. Migration of mesenchymal stem cells throughcerebrospinal fluid into injured spinal cord tissue[J]. Spine (Phila Pa1976),2004,29(18):1971-1979.(PMID:1537169)
    [2] ZHANG J, GONG JF, ZHANG W, et al. Effects of transplanted bone marrowmesenchymal stem cells on the irradiated intestine of mice[J]. J Biomed Sci,2008,15(5):585-594.(PMID:18763056)
    [3] LE BLANC K. Immunomodulatory effects of fetal and adult mesenchymal stemcells[J]. Cytotherapy,2003,5(6):485-489.(PMID:14660044)
    [4] PAL R, GOPINATH C, RAO NM, et al. Functional recovery after transplantationof bone marrow-derived human mesenchymal stromal cells in a rat model ofspinal cord injury[J]. Cytotherapy,2010,12(6):792-806.(PMID:20524772)
    [5] Li H, WEN Y, LUO Y, et al. Transplantation of bone marrow mesenchymal stemcells into spinal cord injury: a comparison of delivery different times[J].Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi,2010,24(2):180-184.(PMID:20187449)
    [6] HU SL, LUO HS, LI JT, et al. Functional recovery in acute traumatic spinal cordinjury after transplantation of human umbilical cord mesenchymal stem cells[J].Crit Care Med,2010,38(11):2181-2189.(PMID:20711072)
    [7] CIZKOVA D, ROSOCHA J, VANICKY I, et al. Transplants of humanmesenchymal stem cells improve functional recovery after spinal cord injury inthe rat[J]. Cell Mol Neurobiol,2006,26(7-8):1167-1180.(PMID:16897366)
    [8] GHIMIKAR RS, LEE YL, ENG LF. Chemokine antagonist infusion attenuatescellular infiltration following spinal cord contusion injury in rat[J]. JNeurosciRes,2000,59(1):63-73.(PMID:10658186)
    [9] FRAIDAKIS MJ, KIYOTANI T, PERNOLD K, et al. Recovery from spinal cordinjury in tumor necrosis factor-alpha, signal transducers and activators oftranscription4and signal transducers and activators of transcription6nullmice[J]. Neuroreport,2007,18(2):185-189.(PMID:17301687)
    [10] GENOVESE T, MAZZON E, CRISAFULLI C, et al. TNF-alpha blockage in amouse model of SCI: evidence for improved outcome[J]. Shock,2008,29(1):32-41.(PMID:17621255)
    [11] PAN W, ZHANG L, LIAO J, et al.Selective increase in TNF alpha permeationacross the blood-spinal cord barrier after SCI[J]. J Neuroimmunol,2003,134(1-2):111-117.(PMID:12507778)
    [12] GUTIERREZ-FERNANDEZ M, RODRIGUEZ-FRUTOS B,ALVAREZ-GRECH J, et al. Functional recovery after hematic administration ofallogenic mesenchymal stem cells in acute ischemic stroke in rats[J].Neuroscience,2011,175:394-405.(PMID:21144885)
    [13] RUSTER B, GOTTIG S, LUDWIG RJ, et al. Mesenchymal stem cells displaycoordinated rolling and adhesion behavior on endothelial cells[J]. Blood,2006,108(12):3938-3944.(PMID:16896152)
    [14] FU X, HAN B, CAI S, et al.Migration of bone marrow-derived mesenchymalstem cells induced by tumor necrosis factor-alpha and its possible role in woundhealing[J]. Wound Repair Regen,2009,17(2):185-191.(PMID:19320886)
    [15] SEGERS VF, VAN RIET I, ANDRIES LJ, et al. Mesenchymal stem cell adhesionto cardiac microvascular endothelium: activators and mechanisms[J]. Am JPhysiol Heart Circ Physiol,2006,290(4):1370-1377.(PMID:16243916)
    [16] PONTE AL, MARAIS E, GALLAY N, et al. The in vitro migration capacity ofhuman bone marrow mesenchymal stem cells: comparison of chemokine andgrowth factor chemotactic activities[J]. Stem Cells,2007,25(7):1737-45.(PMID:17395768)
    [17] LIU Y, FIGLEY S, SPRATT SK, et al. An engineered transcription factor whichactivates VEGF-A enhances recovery after spinal cord injury[J]. Neurobiol Dis,2010,37(2):384-93(PMID:19879362)
    [18] BALL SG, SHUTTLEWORTH CA, KIELTY CM. Vascular endothelial growthfactor can signal through platelet-derived growth factor receptors[J]. J Cell Biol,2007,177(3):489-500.(PMID:17470632)
    [19] BAYLEY C, SHUTTLEWORTH CA, KIELTY CM. Neuropilin-1regulatesplatelet-derived growth factor receptor signalling in mesenchymal stemcells[J].Ball SG Biochem J,2010,427(1):29-40.(PMID:20102335)
    [20] LEE SH, LEE YJ, SONG CH, et al. Role of FAK phosphorylation inhypoxia-induced migration: involvement of VEGF as well as MAPKS andeNOS pathways[J]. Am J Physiol Cell Physiol,2010,298(4):C847-856.(PMID:20089932)
    [21] SHIMAMURA M, SATO N, SATA M, et al. Expression of hepatocyte growthfactor and c-Met after spinal cord injury in rats[J]. Brain Res,2007,2(1151):188-194.(PMID:17425951)
    [22] KITAMURA K, IWANAMI A, NAKAMURA M, et al. Hepatocyte growth factorpromotes endogenous repair and functional recovery after spinal cord injury[J]. JNeurosci Res,2007,85(11):2332-2342.(PMID:17549731)
    [23] SON BR, MARQUEZ-CURTIS LA, KUCIA M, et al. Migration of bone marrowand cord blood mesenchymal stem cells in vitro is regulated by stromal-derivedfactor-1-CXCR4and hepatocyte growth factor-c-met axes and involves matrixmetalloproteinases[J]. Stem Cells,2006,24(5):1254-1264.(PMID:16410389)
    [24] ROYAL I, LAMARCHE-VANE N, LAMORTE L, et al. Activation of cdc42, rac,PAK, and rho-kinase in response to hepatocyte growth factor differentiallyregulates epithelial cell colony spreading and dissociation[J]. Mol Biol Cell,2000,11(5):1709-1725.(PMID:10793146)
    [25] MOHAMADNEJAD M, SOHAIL MA, WATANABE A, et al. Adenosine inhibitschemotaxis and induces hepatocyte-specific genes in bone marrow mesenchymalstem cells[J]. Hepatology201051(3):963-973.(PMID:20044808)
    [26] RIDLEY AJ, SCHWARTZ MA, BURRIDGE K, FIRTEL RA et al. Cellmigration: integrating signals from front to back[J].Science,2003,302(5651):1704-1709.(PMID:14657486)
    [27] GENTILINI D, BUSACCA M, DI FRANCESCO S, et al. PI3K/Akt and ERK1/2signalling pathways are involved in endometrial cell migration induced by17beta-estradiol and growth factors[J]. Mol Hum Reprod,2007,13(5):317-322.(PMID:17350964)
    [28] KIM EK, TUCKER DF, YUN SJ, et al. Linker region of Akt1/protein kinaseBalpha mediates platelet-derived growth factor-induced translocation and cellmigration[J]. Cell Signal,2008,20(11):2030-2037.(PMID:18700164)
    [29] WU QH, ChEN WS, ChEN QX, et al. Changes in the expression ofplatelet-derived growth factor in astrocytes in diabetic rats with spinal cordinjury[J]. Chin Med J (Engl),2010,123(12):1577-15781.(PMID:20819515)
    [30] XIYANG YB, LIU S, LIU J, et al. Roles of platelet-derived growth factor-Bexpression in the ventral horn and motor cortex in the spinal cord-hemisectedrhesus monkey[J]. J Neurotrauma,2009,26(2):275-287.(PMID:19236168)
    [31] HATA N, SHINOJIMA N, GUMIN J, et al. Platelet-derived growth factor BBmediates the tropism of human mesenchymal stem cells for malignant gliomas[J].Neurosurgery,2010,66(1):144-156.(PMID:20023545)
    [32]. Kang YJ, Jeon ES, Song HY, et al.J Cell Biochem. Role of c-Jun N-terminalkinase in the PDGF-induced proliferation and migration of human adiposetissue-derived mesenchymal stem cells.2005.15.95(6):1135-1145.(PMID:15962287)
    [33] MONYPENNY J, ZICHA D, HIGASHIDA C, et al. Cdc42and Rac familyGTPases regulate mode and speed but not direction of primary fibroblastmigration during platelet-derived growth factor-dependent chemotaxis[J]. MolCell Biol,2009,29(10):2730-2747.(PMID:19273601)
    [34] MEIJS MF, TIMMERS L, PEARSE DD, et al. Basic fibroblast growth factorpromotes neuronal survival but not behavioral recovery in the transected andSchwann cell implanted rat thoracic spinal cord[J]. J Neurotrauma,2004,21(10):1415-1430.(PMID:15672632)
    [35] LIU WG, WANG ZY, HUANG ZS.Bone marrow-derived mesenchymal stemcells expressing the bFGF transgene promote axon regeneration and functionalrecovery after spinal cord injury in rats[J]. Neurol Res,2011,33(7):686-693.(PMID:21756547)
    [36] LIU L, PEI FX, TANG KL, et al.Effect of basic fibroblast growth factor onchange of caspase3gene expression after distractive spinal cord injury in rats[J].Zhonghua Yi Xue Za Zhi,2005,85(20):1424-1427.(PMID:16029658)
    [37] SCHMIDT A, LADAGE D, SCHINKOTHE T, et al. Basic fibroblast growthfactor controls migration in human mesenchymal stem cells[J]. Stem Cells,2006,24(7):1750-1758.(PMID:16822883)
    [38] DATTA SR, BRUNET A, GREENBERG ME. Cellular survival: a play in threeAkts[J]. Genes Dev,1999,15.13(22):2905-2927.(PMID:10579998)
    [39] HUNG KS, TSAI SH, LEE TC, et al.Gene transfer of insulin-like growth factor-Iproviding neuroprotection after spinal cord injury in rats[J]. J Neurosurg Spine,2007,6(1):35-46.(PMID:17233289)
    [40] KOOPMANS GC, BRANS M, GOMEZ-PINILLA F, et al.Circulatinginsulin-like growth factor I and functional recovery from spinal cord injury underenrichedhousingconditions[J].Eur JNeurosci,2006,23(4):1035-1046.(PMID:16519668)
    [41] UMEMURA T, HARADA N, KITAMURA T, et al.Limaprost reduces motordisturbances by increasing the production of insulin-like growth factor I in ratssubjected to spinal cord injury[J]. Transl Res,2010,156(5):292-301.(PMID:20970752)
    [42] Baek SJ, Kang SK, Ra JC. In vitro migration capacity of human adiposetissue-derived mesenchymal stem cells reflects their expression of receptors forchemokines and growth factors. Exp Mol Med.2011.43(10):596-603.(PMID:21847008)
    [43] HAIDER HKh, JIANG S, IDRIS NM, et al. IGF-1-overexpressing mesenchymalstem cells accelerate bone marrow stem cell mobilization via paracrine activationof SDF-1alpha/CXCR4signaling to promote myocardial repair[J]. Circ Res,2008,103(11):1300-1308.(PMID:18948617)
    [44] LI Y, YU X, LIN S, et al. Insulin-like growth factor1enhances the migratorycapacity of mesenchymal stem cells[J]. Biochem Biophys Res Commun,2007,356(3):780-784.(PMID:17382293)
    [45] YAMASAKI K, SETOGUCHI T, TAKENOUCHI T, et al. Stem cell factorprevents neuronal cell apoptosis after acute spinal cord injury[J]. Spine,2009,34(4):323-7.(PMID:19182706)
    [46] BANTUBUNGI K, BLUM D, CUVELIER L, et al.Stem cell factor andmesenchymal and neural stem cell transplantation in a rat model of Huntington'sdisease[J]. Mol Cell Neurosci,2008,37(3):454-470.(PMID:18083596)
    [47] WANDZIOCH E, EDLING CE, et al. Activation of the MAP kinase pathway byc-Kit is PI-3kinase dependent in hematopoietic progenitor/stem cell lines[J].Blood,2004,104(1):51-57.(PMID:14996702)
    [48] KNERLICH-LUKOSCHUS F, VON DER ROPP-BRENNER B, LUCIUS R, etal. Spatiotemporal CCR1, CCL3(MIP-1α), CXCR4, CXCL12(SDF-1α)expression patterns in a rat spinal cord injury model of posttraumatic neuropathicpain[J]. J Neurosurg Spine,2011,14(5):583-597.(PMID:21332278)
    [49] BRENNER S, WHITING-THEOBALD N, KAWAI T, et al. CXCR4-transgeneexpression significantly improves marrow engraftment of cultured hematopoieticstem cells[J]. Stem Cells,2004,22(7):1128-1133.(PMID:15579633)
    [50] WYNN RF, HART CA, CORRADI-PERINI C, et al. A small proportion ofmesenchymal stem cells strongly expresses functionally active CXCR4receptorcapable of promoting migration to bone marrow[J]. Blood,2004,104(9):2643-2645.(PMID:15251986)
    [51] TYSSELING VM, MITHAL D, SAHNI V, et al. SDF1in the dorsal corticospinaltract promotes CXCR4+cell migration after spinal cord injury[J]. JNeuroinflammation,2011,8:16.(PMID:21324162)
    [52] SONG CH, HONMOU O, FURUOKA H, HORIUCHI M. Identification ofchemoattractive factors involved in the migration of bone marrow-derivedmesenchymal stem cells to brain lesions caused by prions[J]. J Virol,2011,85(21):11069-11078.(PMID:21813601)
    [53] TSAI LK, WANG Z, MUNASINGHE J, et al. Mesenchymal stem cells primedwith valproate and lithium robustly migrate to infarcted regions and facilitaterecovery in a stroke model[J]. Stroke,2011,42(10):2932-2939.(PMID:21836090)
    [54] CUI X, CHEN J, ZACHAREK A, et al. Nitric oxide donor upregulation ofstromal cell-derived factor-1/chemokine (CXC motif) receptor4enhances bonemarrow stromal cell migration into ischemic brain after stroke[J]. Stem Cells,2007,25(11):2777-2785.(PMID:17641243)
    [55] WANG Y, DENG Y, ZHOU GQ. SDF-1alpha/CXCR4-mediated migration ofsystemically transplanted bone marrow stromal cells towards ischemic brainlesion in a rat model[J]. Brain Res,2008,1195:104-12.(PMID:18206136)
    [56] WANG YP, TANG JM, GUO LY, et al. Adenovirus-mediated stromal cell-derivedfactor-1alpha gene transfer promotes mesenchymal stem cell migration[J]. NanFang Yi Ke Da Xue Xue Bao,2008,28(7):1190-1194.(PMID:18676260)
    [57] GAO H, PRIEBE W, GLOD J, et al. Activation of signal transducers andactivators of transcription3and focal adhesion kinase by stromal cell-derivedfactor1is required for migration of human mesenchymal stem cells in responseto tumor cell-conditioned medium[J]. Stem Cells,2009,27(4):857-865.(PMID:19350687)
    [58] LIU SQ, MA YG, PENG H, FAN L.Monocyte chemoattractant protein-1level inserum of patients with acute spinal cord injury[J]. Chin J Traumatol,2005,8(4):216-219.(PMID:16042867)
    [59] PINEAU I, SUN L, BASTIEN D, LACROIX S.Astrocytes initiate inflammationin the injured mouse spinal cord by promoting the entry of neutrophils andinflammatory monocytes in an IL-1receptor/MyD88-dependent fashion[J]. BrainBehav Immun,2010,24(4):540-53.(PMID:19932745)
    [60] WANG L, LI Y, CHEN X, et al.MCP-1, MIP-1, IL-8and ischemic cerebral tissueenhance human bone marrow stromal cell migration in interface culture[J].Hematology,2002,7(2):113-7.(PMID:12186702)
    [61] BELEMA-BEDADA F, UCHIDA S, MARTIRE A, et al.Cell Stem Cell. Efficienthoming of multipotent adult mesenchymal stem cells depends onFROUNT-mediated clustering of CCR2[J],2008,2(6):566-575.(PMID:18522849)
    [62] MA M, WEI T, BORING L, et al.Monocyte recruitment and myelin removal aredelayed following spinal cord injury in mice with CCR2chemokine receptordeletion[J]. J Neurosci Res,2002,68(6):691-702.(PMID:12111830)
    [63] SCHENK S, MAL N, FINAN A, et al. Monocyte chemotactic protein-3is amyocardial mesenchymal stem cell homing factor[J]. Stem Cells,2007,25(1):245-251.(PMID:17053210)
    [64] ZHONG J, GAVRILESCU LC, MOLNAR A, et al. GCK is essential to systemicinflammation and pattern recognition receptor signaling to JNK and p38[J]. ProcNatl Acad Sci U S A,2009,106(11):4372-4377.(PMID:19246396)
    [1] BAREYRE FM, KERSCHENSTEINER M, RAINETEAU O, et al. The injuredspinal cord spontaneously forms a new intraspinal circuit in adult rats[J]. NatNeurosci,2004,7(3):269-277.(PMID:14966523)
    [2] KUO TY, HONG CJ, HSUEH YP. Bcl11A/CTIP1regulates expression of DCCand MAP1B in control of axon branching and dendrite outgrowth[J]. Mol CellNeurosci,2009,42(3):195-207.(PMID:19616629)
    [3] BOUQUET C, SOARES S, VON BOXBERG Y, et al. Microtubule-associatedprotein1B controls directionality of growth cone migration and axonal branchingin regeneration of adult dorsal root ganglia neurons[J]. J Neurosci,2004,24(32):7204-7213.(PMID:15306655)
    [4] MEIXNER A, HAVERKAMP S, WASSLE H, et al. MAP1B is required for axonguidance and Is involved in the development of the central and peripheralnervous system[J]. J Cell Biol,2000,151(6):1169-1178.(PMID:11121433)
    [5] DEL RIO JA, GONZALEZ-BILLAULT C, Ure a JM, et al. MAP1B is requiredfor Netrin1signaling in neuronal migration and axonal guidance[J]. Curr Biol,2004,14(10):840-850.(PMID:15186740)
    [6] GOOLD RG, GORDON-WEEKS PR. NGF activates the phosphorylation ofMAP1B by GSK3beta through the TrkA receptor and not the p75(NTR)receptor[J]. J Neurochem,2003,87(4):935-946.(PMID:14622124)
    [7] GOOLD RG, GORDON-WEEKS PR. The MAP kinase pathway is upstream ofthe activation of GSK3beta that enables it to phosphorylate MAP1B andcontributes to the stimulation of axon growth[J]. Mol Cell Neurosci,2005,28(3):524-534.(PMID:15737742)
    [8] CIANI L, KRYLOVA O, SMALLEY MJ, et al. A divergent canonicalWNT-signaling pathway regulates microtubule dynamics: dishevelled signalslocally to stabilize microtubules[J].J Cell Biol,2004,164(2):243-253.(PMID:14734535)
    [9] GONZALEZ-BILLAULT C, DEL RIO JA, Ure a JM, et al. A role of MAP1B inReelin-dependent neuronal migration[J]. Cereb Cortex,2005,15(8):1134-1145.(PMID:15590913)
    [10] MEI X, SWEATT AJ, HAMMARBACK JA. Regulation ofmicrotubule-associated protein1B (MAP1B) subunit composition[J]. J NeurosciRes,2000,62(1):56-64.(PMID:11002287)
    [11] NOIGES R, EICHINGER R, KUTSCHERA W, et al. Microtubule-associatedprotein1A (MAP1A) and MAP1B: light chains determine distinct functionalproperties[J]. J Neurosci,2002,22(6):2106-2114.(PMID:11896150)
    [12] TOGEL M, WICHE G, PROPST F. Novel features of the light chain ofmicrotubule-associated protein MAP1B: microtubule stabilization, selfinteraction, actin filament binding, and regulation by the heavy chain[J]. J CellBiol,1998,143(3):695-707.(PMID:9813091)
    [13] CUEILLE N, BLANC CT, POPA-NITA S, et al. Characterization of MAP1Bheavy chain interaction with actin[J]. Brain Res Bull,2007,71(6):610-618.(PMID:17292804)
    [14] RIEDERER BM. Microtubule-associated protein1B, a growth-associated andphosphorylated scaffold protein[J]. Brain Res Bull,2007,71(6):541-558.(PMID:17292797)
    [15] YU L, COBA MP, HUSI H, et al. Proteomic analysis of in vivo phosphorylatedsynaptic proteins[J].Collins MOJ Biol Chem,2005,280(7):5972-82.(PMID:15572359)
    [16] ULLOA L, DIAZ-NIDO J, Avila J. Depletion of casein kinase II by antisenseoligonucleotide prevents neuritogenesis in neuroblastoma cells[J]. EMBO J,1993,12(4):1633-1640.(PMID:8467810)
    [17] GONG CX, WEGIEL J, LIDSKY T, et al. Regulation of phosphorylation ofneuronal microtubule-associated proteins MAP1b and MAP2by proteinphosphatase-2A and-2B in rat brain[J]. Brain Res,2000,853(2):299-309.(PMID:10640627)
    [18] BLACK MM, SLAUGHTER T, FISCHER I. Microtubule-associated protein1b(MAP1b) is concentrated in the distal region of growing axons[J]. J Neurosci,1994,14(2):857-870.(PMID:8301365)
    [19] TRIVEDI N, MARSH P, GOOLD RG, et al. Glycogen synthase kinase-3betaphosphorylation of MAP1B at Ser1260and Thr1265is spatially restricted togrowing axons[J]. J Cell Sci,2005,118(Pt5):993-1005.(PMID:15731007)
    [20] GONZALEZ-BILLAULT C, JIMENEZ-MATEOS EM, CACERES A, et al.Microtubule-associated protein1B function during normal development,regeneration, and pathological conditions in the nervous system[J]. J Neurobiol,2004,58(1):48-59.(PMID:14598369)
    [21] NOZUMI M, TOGANO T, TAKAHASHI-NIKI K, et al. Identification offunctional marker proteins in the mammalian growth cone[J]. Proc Natl Acad SciU S A,2009,106(40):17211-17216.(PMID:19805073)
    [22] GONZALEZ-BILLAULT C, ENGELKE M, JIMENEZ-MATEOS EM, et al.Participation of structural microtubule-associated proteins (MAPs) in thedevelopment of neuronal polarity[J]. J Neurosci Res,2002,67(6):713-719.(PMID:11891784)
    [23] TINT I, FISCHER I, BLACK M.Acute inactivation of MAP1b in growingsympathetic neurons destabilizes axonal microtubules[J]. Cell MotilCytoskeleton,2005,60(1):48-65.(PMID:15573412)
    [24] TAKEI Y, TENG J, HARADA A, et al. Defects in axonal elongation andneuronal migration in mice with disrupted tau and map1b genes[J]. J Cell Biol,2000,150(5):989-1000.(PMID:1097399)
    [25] TENG J, TAKEI Y, HARADA A, et al. Synergistic effects of MAP2and MAP1Bknockout in neuronal migration, dendritic outgrowth, and microtubuleorganization[J]. J Cell Biol2001,155(1):65-76.(PMID:11581286)
    [26] GONZALEZ-BILLAULT C, AVILA J, Cáceres A.Evidence for the role ofMAP1B in axon formation[J]. Mol Biol Cell,2001,12(7):2087-2098.(PMID:11452005)
    [27] JIMENEZ-MATEOS EM, PAGLINI G, GONZALEZ-BILLAULT C, et al. Endbinding protein-1(EB1) complements microtubule-associated protein-1B duringaxonogenesis[J]. J Neurosci Res,2005,80(3):350-9.(PMID:15789376)
    [28] GONZALEZ-BILLAULT C, OWEN R, GORDON-WEEKS PR,et al.Microtubule-associated protein1B is involved in the initial stages ofaxonogenesis in peripheral nervous system cultured neurons[J]. Brain Res,2002,943(1):56-67.(PMID:12088839)
    [29] GOOLD RG, OWEN R, GORDON-WEEKS PR.Glycogen synthase kinase3betaphosphorylation of microtubule-associated protein1B regulates the stability ofmicrotubules in growth cones[J]. J Cell Sci,1999,112(Pt19):3373-3384.(PMID:10504342)
    [30] BERGSTROM RA, SINJOANU RC, FERREIRA A.Agrin inducedmorphological and structural changes in growth cones of cultured hippocampalneurons[J]. Neuroscience,2007,149(3):527-536.(PMID:17870250)
    [31] Li W, XIA JT, FENG Y. Microtubule stability and MAP1B upregulation controlneuritogenesis in CAD cells[J]. Acta Pharmacol Sin,2006,27(9):1119-1126.(PMID:16923331)
    [32] UTRERAS E, JIMENEZ-MATEOS EM, CONTRERAS-VALLEJOS E, et al.Microtubule-associated protein1B interaction with tubulin tyrosine ligasecontributes to the control of microtubule tyrosination[J]. Dev Neurosci,2008,30(1-3):200-210.(PMID:18075266)
    [33] TYMANSKYJ SR, SCALES TM, GORDON-WEEKS PRMAP1B enhancesmicrotubule assembly rates and axon extension rates in developing neurons[J].Mol Cell Neurosci,2011,17.[Epub ahead of print](PMID:22033417)
    [34] SCALES TM, LIN S, KRAUS M, et al. Nonprimed and DYRK1A-primed GSK3beta-phosphorylation sites on MAP1B regulate microtubule dynamics in growingaxons[J]. J Cell Sci,2009,122(Pt14):2424-2435.(PMID:19549690)
    [35] GORDON-WEEKS PR. Microtubules and growth cone function[J]. J Neurobiol,2004,58(1):70-83(PMID:14598371)
    [36] LARSEN KE, PACHECO M, ROTH J, Aletta JM. Increased MAP1B expressionwithout increased phosphorylation in manganese-treated PC12Mn cells[J]. ExpCell Res,1998,245(1):105-115.(PMID:9828105)
    [37] EMERY DL, RAGHUPATHI R, SAATMAN KE, et al. Bilateral growth-relatedprotein expression suggests a transient increase in regenerative potentialfollowing brain trauma[J]. J Comp Neurol,2000,424(3):521-531.(PMID:10906717)
    [38] MONTENEGRO-VENEGAS C, TORTOSA E, et al. MAP1B regulates axonaldevelopment by modulating Rho-GTPase Rac1activity[J]. Mol Biol Cell,2010,21(20):3518-3528.(PMID:20719958)
    [39] WOOD-KACZMAR A, KRAUS M, ISHIGURO K, et al. An alternativelyspliced form of glycogen synthase kinase-3beta is targeted to growing neuritesand growth cones[J]. Mol Cell Neurosci,2009,42(3):184-194.(PMID:19607922)
    [40] GOOLD RG, GORDON-WEEKS PR. Glycogen synthase kinase3beta and theregulation of axon growth[J]. Biochem Soc Trans,2004,32(Pt5):809-811.(PMID:15494021)
    [41] BHANOT K, YOUNG KG, KOTHARY R. MAP1B and Clathrin Are NovelInteracting Partners of the Giant Cyto-linker Dystonin[J]. J Proteome Res,2011,10(11):5118-5127.(PMID:21936565)
    [42] GOOLD RG, OWEN R, GORDON-WEEKS PR.Glycogen synthase kinase3betaphosphorylation of microtubule-associated protein1B regulates the stability ofmicrotubules in growth cones[J]. J Cell Sci,1999,112(Pt19):3373-3384.(PMID:10504342)
    [43] ZHOU FQ, SNIDER WD. CELL BIOLOGY: GSK-3beta and MicrotubuleAssembly in Axons[J]. Science,2005,308(5719):211-214.(PMID:15824052)
    [44] TYMANSKYJ SR, LIN S, GORDON-WEEKS PR. Evolution of the spatialdistribution of MAP1B phosphorylation sites in vertebrate neurons[J]. J Anat,2010,216(6):692-704.(PMID:20408908)
    [45] HARADA T, MOROOKA T, OGAWA S, et al. ERK induces p35, aneuron-specific activator of Cdk5, through induction of Egr1[J]. Nat Cell Biol,2001,3(5):453-459.(PMID:11331872)
    [46] HAHN CM, KLEINHOLZ H, KOESTER MP, et al. Role of cyclin-dependentkinase5and its activator P35in local axon and growth cone stabilization[J].Neuroscience,2005,134(2):449-465.(PMID:15964697)
    [47] XIAO J, PRADHAN A, LIU Y. Functional role of JNK in neuritogenesis ofPC12-N1cells[J]. Neurosci Lett,2006,392(3):231-4.(PMID:16216413)
    [48] CAVALLI V, KUJALA P, KLUMPERMAN J, GOLDSTEIN LS. Sunday Driverlinks axonal transport to damage signaling[J]. J Cell Biol,2005,168(5):775-787.(PMID:15738268)
    [49] ETO K, KAWAUCHI T, OSAWA M, et al. Role of dual leucine zipper-bearingkinase (DLK/MUK/ZPK) in axonal growth[J]. Neurosci Res,2010,66(1):37-45.(PMID:19808064)
    [50] TANNER SL, FRANZEN R, JAFFE H, et al. Evidence for expression of somemicrotubule-associated protein1B in neurons as a plasma membraneglycoprotein[J]. J Neurochem,2000,75(2):553-62.(PMID:10899930)
    [51] KITAMURA C, SHIRAI K, INOUE M, et al. Changes in the subcellulardistribution of microtubule-associated protein1B during synaptogenesis ofcultured rat cortical neurons[J]. Cell Mol Neurobiol,2007,27(1):57-73.(PMID:17151949)
    [52] TORTOSA E, MONTENEGRO-VENEGAS C, BENOIST M, et al.Microtubule-associated Protein1B (MAP1B) Is Required for Dendritic SpineDevelopment and Synaptic Maturation[J]. J Biol Chem,2011,286(47):40638-40648.(PMID:21984824)
    [53] KAWAKAMI S, MURAMOTO K, ICHIKAWA M, et al. Localization ofmicrotubule-associated protein (MAP)1B in the postsynaptic densities of the ratcerebral cortex[J]. Cell Mol Neurobiol,2003,23(6):887-894.(PMID:14964776)
    [54] SOARES S, VON BOXBERG Y, LOMBARD MC, et al. PhosphorylatedMAP1B is induced in central sprouting of primary afferents in response toperipheral injury but not in response to rhizotomy[J]. Eur J Neurosci,2002,16(4):593-606.(PMID:12270035)
    [55] MULLER HD, NEDER A, SOMMER C, et al. Different postischemic proteinexpression of the GABA(A) receptor alpha2subunit and the plasticity-associatedprotein MAP1B after treatment with BDNF versus G-CSF in the rat brain[J].Restor Neurol Neurosci,2009,27(1):27-39.(PMID:19164851)
    [56] SCHABITZ WR, STEIGLEDER T, COOPER-KUHN CM, et al. Intravenousbrain-derived neurotrophic factor enhances poststroke sensorimotor recovery andstimulates neurogenesis[J]. Stroke,2007,38(7):2165-2172.(PMID:17510456)
    [57] PEDROTTI B, ISLAM K. Microtubule associated protein1B (MAP1B)promotes efficient tubulin polymerisation in vitro[J]. FEBS Lett,1995,371(1):29-31.(PMID:7664878)
    [58] SHIMAMURA M, SATO N, SATA M, et al. Delayed postischemic treatmentwith fluvastatin improved cognitive impairment after stroke in rats[J]. Stroke,2007,38(12):3251-3258.(PMID:17975105)
    [59] SOARES S, BARNAT M, SALIM C, et al. Extensive structural remodeling ofthe injured spinal cord revealed by phosphorylated MAP1B in sprouting axonsand degenerating neurons[J]. Eur J Neurosci,2007,26(6):1446-1461.(PMID:17880387)
    [60] RAMON-CUETO A, AVILA J. Differential expression of microtubule-associatedprotein1B phosphorylated isoforms in the adult rat nervous system[J].Neuroscience,1997,77(2):485-501.(PMID:9472406)
    [61] BARNAT M, ENSLEN H, PROPST F, et al. Distinct roles of c-Jun N-terminalkinase isoforms in neurite initiation and elongation during axonal regeneration[J].J Neurosci,2010,30(23):7804-7816.(PMID:20534829)
    [62] BUCK KB, ZHENG JQ. Growth cone turning induced by direct localmodification of microtubule dynamics[J]. J Neurosci,2002,22(21):9358-9367.(PMID:12417661)
    [63] ZHOU FQ, ZHOU J, DEDHAR S, et al. NGF-induced axon growth is mediatedby localized inactivation of GSK-3beta and functions of the microtubule plus endbinding protein APC[J]. Neuron,2004,42(6):897-912.(PMID:15207235)
    [64] LEE H, ENGEL U, RUSCH J, et al. The microtubule plus end tracking proteinOrbit/MAST/CLASP acts downstream of the tyrosine kinase Abl in mediatingaxon guidance[J]. Neuron,2004,42(6):913-926.(PMID:15207236)
    [65] BOUQUET C, RAVAILLE-VERON M, PROPST F, et al. MAP1B coordinatesmicrotubule and actin filament remodeling in adult mouse Schwann cell tips andDRG neuron growth cones[J]. Mol Cell Neurosci,2007,36(2):235-247(PMID:17764972)
    [66] MACK TG, KOESTER MP, POLLERBERG GE. The microtubule-associatedprotein MAP1B is involved in local stabilization of turning growth cones[J].Mol Cell Neurosci,2000,15(1):51-65.(PMID:10662505)
    [67] KAWAUCHI T, CHIHAMA K, NABESHIMA Y, et al. The in vivo roles ofSTEF/Tiam1, Rac1and JNK in cortical neuronal migration[J]. EMBO J,2003,22(16):4190-4201.(PMID:12912917)
    [68] JIMENEZ-MATEOS EM, WANDOSELL F, REINER O, et al. Binding ofmicrotubule-associated protein1B to LIS1affects the interaction betweendynein and LIS1[J]. Biochem J,2005,389(Pt2):333-341.(PMID:15762842)
    [69] ANTOINE-BERTRAND J, GHOGHA A, LUANGRATH V, et al. The activationof ezrin-radixin-moesin proteins is regulated by netrin-1through Src kinase andRhoA/Rho kinase activities and mediates netrin-1-induced axon outgrowth[J].Mol Biol Cell,2011,22(19):3734-46.(PMID:21849478)
    [1] PROCKOP DJ. Marrow stromal cells as stem cells for nonhematopoietictissues[J].Science,1997,276(5309):71-74.(PMID:9082988)[PubMed-indexedfor MEDLINE]
    [2] FRIEDENSTEIN AJ, CHAILAKHYAN RK, GERASIMOV UV.Bone marrowosteogenic stem cells: in vitro cultivation and transplantation in diffusionchambers[J]. Cell Tissue Kinet,1987,20(3):263-272.(PMID:3690622)[PubMed-indexed for MEDLINE]
    [3] DOMINICI M, LE BLANC K, MUELLER I, et al.Minimal criteria for definingmultipotent mesenchymal stromal cells. The International Society for CellularTherapy position statement[J]. Cytotherapy,2006,8(4):315-317.(PMID:16923606)[PubMed-indexed for MEDLINE]
    [4] Bu XY, HUANG ZQ, ZHANG YF. Transplantation of bone marrow derivedmesenchymal stem cells for treatment of spinal cord injury[J]. Chinese Journal ofClinical Rehabilitation,2006,10(21):183-185
    [5] CHEN J, LI Y, WANG L, et al.Therapeutic benefit of intravenous administrationof bone marrow stromal cells after cerebral ischemia in rats[J]. Stroke,2001,32(4):1005-1011.(PMID:11283404)[PubMed-indexed for MEDLINE]
    [6] SHAKE JG, GRUBER PJ, BAUMGARTNER WA, et al.Mesenchymal stem cellimplantation in a swine myocardial infarct model: engraftment and functionaleffects[J]. Ann Thorac Surg,2002,73(6):1919-1925.(PMID:12078791)[PubMed-indexed for MEDLINE]
    [7] PHINNEY DG, PROCKOP DJ.Concise review: mesenchymal stem/multipotentstromal cells: the state of transdifferentiation and modes of tissue repair--currentviews[J]. Stem Cells,2007,25(11):2896-2902.(PMID:17901396)[PubMed-indexed for MEDLINE]
    [8] CAPLAN AI. Mesenchymal stem cells[J]. J Orthop Res,1991,9(5):641–50.(PMID:1870029)[PubMed-indexed for MEDLINE]
    [9] FRIEDENSTEIN AJ, PETRAKOVA KV, KUROLESOVA AI, et al.Heterotopic ofbone marrow. Analysis of precursor cells for osteogenic and hematopoietictissues[J]. Transplantation,1968,6(2):230-247.(PMID:5654088)[PubMed-indexed for MEDLINE]
    [10] LI G, ZHANG XA, WANG H, et al.Comparative proteomic analysis ofmesenchymal stem cells derived from human bone marrow, umbilical cord, andplacenta: implication in the migration[J]. Proteomics,2009,9(1):20-30.(PMID:19116983)[PubMed-indexed for MEDLINE]
    [11] AUGELLO A, KURTH TB, DE BARI C.Mesenchymal stem cells: a perspectivefrom in vitro cultures to in vivo migration and niches[j]. Eur Cell Mater,2010,20:121-33.(PMID:21249629)[PubMed-indexed for MEDLINE]
    [12] LE BLANC K, TAMMIK C, ROSENDAHL K, et al. HLA expression andimmunologic properties of differentiated and undifferentiated mesenchymal stemcells[J]. Exp Hematol,2003,31(10):890-6.(PMID:14550804)[PubMed-indexed for MEDLINE]
    [13] CHEN PM, YEN ML, LIU KJ, et al. Immunomodulatory properties of humanadult and fetal multipotent mesenchymal stem cells[J]. J Biomed Sci,2011,18:49.(PMID:21762539)[PubMed-indexed for MEDLINE]
    [14] BARTHOLOMEW A, STURGEON C, SIATSKAS M, et al. Mesenchymal stemcells suppress lymphocyte proliferation in vitro and prolong skin graft survival invivo[J]. Exp Hematol,2002,30(1):42-8.(PMID:11823036)[PubMed-indexedfor MEDLINE]
    [15] PITTENGER MF, MACKAY AM, BECK SC, et al. Multilineage potential ofadult human mesenchymal stem cells[J]. Science,1999,284(5411):143-147.(PMID:10102814)[PubMed-indexed for MEDLINE]
    [16] BERGMAN RJ, GAZIT D, KAHN AJ, et al. Age-related changes in osteogenicstem cells in mice[J]. J Bone Miner Res,1996,11(5):568-577.(PMID:9157771)
    [PubMed-indexed for MEDLINE]
    [17] CONGET PA, MINGUELL JJ. Phenotypical and functional properties of humanbone marrow mesenchymal progenitor cells[J]. J Cell Physiol,1999,181(1):67-73.(PMID:10457354)[PubMed-indexed for MEDLINE]
    [18] COLTER DC, SEKIYA I, PROCKOP DJ.Identification of a subpopulation ofrapidly self-renewing and multipotential adult stem cells in colonies of humanmarrow stromal cells[J]. Proc Natl Acad Sci U S A,2001,98(14):7841-7845.(PMID:11427725)[PubMed-indexed for MEDLINE]
    [19] BONAB MM, ALIMOGHADDAM K, TALEBIAN F, et al. Aging ofmesenchymal stem cell in vitro[J]. BMC Cell Biol,2006,7:14.(PMID:16529651)
    [PubMed-indexed for MEDLINE]
    [20] FEHRER C, LEPPERDINGER G. Mesenchymal stem cell aging[J]. ExpGerontol,2005,40(12):926-30.(PMID:16125890)[PubMed-indexed forMEDLINE]
    [21] SETHE S, SCUTT A, STOLZING A.Aging of mesenchymal stem cells[J].Ageing Res Rev,2006,5(1):91-116.(PMID:16310414)[PubMed-indexed forMEDLINE]
    [22] JAVAZON EH, COLTER DC, SCHWARZ EJ, et al. Rat marrow stromal cells aremore sensitive to plating density and expand more rapidly fromsingle-cell-derived colonies than human marrow stromal cells[J]. Stem Cells,2001,(3):219-25.(PMID:11359947)[PubMed-indexed for MEDLINE]
    [23] BIANCHI G, BANFI A, MASTROGIACOMO M, et al. Ex vivo enrichment ofmesenchymal cell progenitors by fibroblast growth factor2[J]. Exp Cell Res,2003,287(1):98-105.(PMID:12799186)[PubMed-indexed for MEDLINE]
    [24] Stolzing A, Scutt A.Age-related impairment of mesenchymal progenitor cellfunction[J]. Aging Cell,2006,5(3):213-24.(PMID:16842494)[PubMed-indexed for MEDLINE]
    [25] PEISTER A, MELLAD JA, LARSON BL, et al. Adult stem cells from bonemarrow (MSCs) isolated from different strains of inbred mice vary in surfaceepitopes, rates of proliferation, and differentiation potential[J]. Blood,2004,103(5):1662-1668.(PMID:14592819)[PubMed-indexed for MEDLINE]
    [26] HAYNESWORTH SE, GOSHIMA J, GOLDBERG VM, et al. Characterizationof cells with osteogenic potential from human marrow[J]. Bone,1992,(1):81-8.(PMID:1581112)[PubMed-indexed for MEDLINE]
    [27] KICIC A, HALL CM, SHEN WY, et al. Are stem cell characteristics altered bydisease state[J]? Stem Cells Dev,2005,14(1):15-28.(PMID:15725741)[PubMed-indexed for MEDLINE]
    [28] D'IPPOLITO G, SCHILLER PC, RICORDI C, et al. Age-related osteogenicpotential of mesenchymal stromal stem cells from human vertebral bonemarrow[J]. J Bone Miner Res,1999,14(7):1115-1122.(PMID:10404011)[PubMed-indexed for MEDLINE]
    [29] TAKAGI M, UMETSU Y, FUJIWARA M, et al. High inoculation cell densitycould accelerate the differentiation of human bone marrow mesenchymal stemcells to chondrocyte cells[J]. J Biosci Bioeng,2007,103(1):98-100.(PMID:17298908)[PubMed-indexed for MEDLINE]
    [30] POCHAMPALLY R. Colony forming unit assays for MSCs[J]. Methods MolBiol,2008,449:83-91.(PMID:18370085)[PubMed-indexed for MEDLINE]
    [31] DUAN XIAO-JUN, YANG LIU, CHEN GUANG-XING, et al. Effects of celldensity on proliferation and osteogenic differentiation of human mesenchymalstem cells during subculturing in vitro[J]. Chinese Journal of ClinicalRehabilitation,2005,9(46):132-134.
    [1] LI N, LI XR, YUAN JQ.Effects of bone-marrow mesenchymal stem cellstransplanted into vitreous cavity of rat injured by ischemia/reperfusion[J].Graefes Arch Clin Exp Ophthalmol,2009,247(4):503-514.(PMID:19084985)
    [PubMed-indexed for MEDLINE]
    [2] KE Y, SOLARO RJ.Use of a decoy peptide to purify p21activated kinase-1incardiac muscle and identification of ceramide-related activation[J]. Biologics,2008,2(4):903-909.(PMID:19707468)[PubMed]
    [3] YANG Y, LI XQ, HUANG Q, et al. Influence of PP2A activator on proliferationof HL-60cells and analysis of PP2A activity changes in patients with acutemyeloid leukemia[J]. Zhongguo Shi Yan Xue Ye Xue Za Zhi,2011,19(3):594-597.(PMID:21729530)[PubMed-indexed for MEDLINE]
    [4] WEI H, OOI TH, TAN G, et al. Cell delivery and tracking in post-myocardialinfarction cardiac stem cell therapy: an introduction for clinical researchers[j].Heart Fail Rev,2010,15(1):1-14.(PMID:19238541)[PubMed-indexed forMEDLINE]
    [5] HONIG MG, HUME RI.Fluorescent carbocyanine dyes allow living neurons ofidentified origin to be studied in long-term cultures[J]. J Cell Biol,1986,103(1):171-87.(PMID:2424918)[PubMed-indexed for MEDLINE]
    [6] FERRARI A, HANNOUCHE D, OUDINA K, et al. In vivo tracking of bonemarrow fibroblasts with fluorescent carbocyanine dye[J]. J Biomed Mater Res,2001,56(3):361-367.(PMID:11372053)[PubMed-indexed for MEDLINE]
    [7] KRUYT MC, DE BRUIJN J, VEENHOF M, et al. Application and limitations ofchloromethyl-benzamidodialkylcarbocyanine for tracing cells used in boneTissue engineering[J]. Tissue Eng,2003,9(1):105-115.(PMID:12625959)
    [PubMed-indexed for MEDLINE]
    [8] MARKUS PM, KOENIG S, KRAUSE P, et al. Selective intraportaltransplantation of DiI-marked isolated rat hepatocytes[J]. Cell Transplant,1997,6(5):455-462.(PMID:9331496)[PubMed-indexed for MEDLINE]
    [9]钟跃思.氯甲基苯甲酰氨荧光染料标记大鼠骨髓间质干细胞的体内示踪[J].中国组织工程研究与临床康复,2008,12(51):10090-10094.
    [10]范里.骨髓基质细胞经CM-Dil标记后的活性及移植到损伤脊髓的示踪观察[J].中华实验外科杂志,2008,25(12):1643-1645.
    [11] FAN L, DU F, CHENG BC, et al. Migration and distribution of bone marrowstromal cells in injured spinal cord with different transplantation techniques[J].Chin J Traumatol,2008,11(2):94-97.(PMID:18377712)[PubMed-indexed forMEDLINE]
    [12] ANDRADE W, SEABROOK TJ, JOHNSTON MG, et al. The use of thelipophilic fluorochrome CM-DiI for tracking the migration of lymphocytes[J]. JImmunol Methods,1996,194(2):181-189.(PMID:8765171)[PubMed-indexedfor MEDLINE]
    [13]房林.骨髓间充质干细胞移植促进皮肤创伤愈合的实验研究[D].北京:中国协和医科大学整形外科医院,2010.
    [14] MOORHEAD GB, TRINKLE-MULCAHY L, ULKE-LEMéE A. Emergingroles of nuclear protein phosphatases[J]. Nat Rev Mol Cell Biol,2007,8(3):234-244.(PMID:17318227)[PubMed-indexed for MEDLINE]
    [15] WEI YJ, TSAI KS, LIN LC, et al. Catechin stimulates osteogenesis by enhancingPP2A activity in human mesenchymal stem cells[J]. Osteoporos Int,2011,22(5):1469-1479.(PMID:20683709)[PubMed-indexed for MEDLINE]
    [16] GONG CX, WEGIEL J, LIDSKY T, et al. Regulation of phosphorylation ofneuronal microtubule-associated proteins MAP1b and MAP2by proteinphosphatase-2A and-2B in rat brain[J]. Brain Res,2000,853(2):299-309.(PMID:10640627)[PubMed-indexed for MEDLINE]
    [17] CUEILLE N, BLANC CT, POPA-NITA S, et al. Characterization of MAP1Bheavy chain interaction with actin[J]. Brain Res Bull,2007,71(6):610-618.(PMID:17292804)[PubMed-indexed for MEDLINE]
    [18] NOZUMI M, TOGANO T, TAKAHASHI-NIKI K, et al. Identification offunctional marker proteins in the mammalian growth cone[J]. Proc Natl Acad SciU S A,2009,106(40):17211-17216.(PMID:19805073)[PubMed-indexed forMEDLINE]
    [19] TAKAI A, BIALOJAN C, TROSCHKA M, et al. Smooth muscle myosinphosphatase inhibition and force enhancement by black sponge toxin[J]. FEBSLett,1987,217(1):81-84.(PMID:3036577)[PubMed-indexed for MEDLINE]
    [20] DOBROWSKY RT, KAMIBAYASHI C, MUMBY MC, et al.Ceramide activatesheterotrimeric protein phosphatase2A[J]. J Biol Chem,1993,268(21):15523-15530.(PMID:8393446)[PubMed-indexed for MEDLINE]
    [21] GONG CX, SINGH TJ, GRUNDKE-IQBAL I, et al. Phosphoproteinphosphatase activities in Alzheimer disease brain[J]. J Neurochem,1993,61(3):921-927.(PMID:8395566)[PubMed-indexed for MEDLINE]
    [22] TIAN Q, LIN ZQ, WANG XC, et al.Injection of okadaic acid into the meynertnucleus basalis of rat brain induces decreased acetylcholine level and spatialmemory deficit[J]. Neuroscience,2004,126(2):277-84.(PMID:15207345)
    [PubMed-indexed for MEDLINE]
    [23] DASHIELL SM, TANNER SL, PANT HC, et al.Myelin-associated glycoproteinmodulates expression and phosphorylation of neuronal cytoskeletal elements andtheir associated kinases[J]. J Neurochem,2002,81(6):1263-1272.(PMID:12068074)[PubMed-indexed for MEDLINE]
    [24] FISCHER I, ROMANO-CLARKE G. Changes in microtubule-associated proteinMAP1B phosphorylation during rat brain development[J]. J Neurochem,1990,55(1):328-333.(PMID:1693946)[PubMed-indexed for MEDLINE]
    [25] ULLOA L, DíAZ-NIDO J, AVILA J. Depletion of casein kinase II by antisenseoligonucleotide prevents neuritogenesis in neuroblastoma cells[J]. EMBO J,1993,12(4):1633-1640.(PMID:8467810)[PubMed-indexed for MEDLINE]
    [26] GOOLD RG, GORDON-WEEKS PR. The MAP kinase pathway is upstream ofthe activation of GSK3beta that enables it to phosphorylate MAP1B andcontributes to the stimulation of axon growth[J]. Mol Cell Neurosci,2005,28(3):524-534.(PMID:15737742)[PubMed-indexed for MEDLINE]
    [27] BHANOT K, YOUNG KG, KOTHARY R. MAP1B and Clathrin Are NovelInteracting Partners of the Giant Cyto-linker Dystonin[J]. J Proteome Res,2011,10(11):5118-5127.(PMID:21936565)[PubMed-indexed for MEDLINE]
    [28] GOOLD RG, OWEN R, GORDON-WEEKS PR. Glycogen synthase kinase3beta phosphorylation of microtubule-associated protein1B regulates thestability of microtubules in growth cones[J]. J Cell Sci,1999,112(19):3373-3384.(PMID:10504342)[PubMed-indexed for MEDLINE]
    [29] SILVERSTEIN AM, BARROW CA, DAVIS AJ, et al. Actions of PP2A on theMAP kinase pathway and apoptosis are mediated by distinct regulatorysubunits[J]. Proc Natl Acad Sci U S A,2002,99(7):4221-4226.P(MID:11904383)[PubMed-indexed for MEDLINE]
    [30] ZHOU B, WANG ZX, ZHAO Y, et al.The specificity of extracellularsignal-regulated kinase2dephosphorylation by protein phosphatases[J]. J BiolChem,2002,277(35):31818-23185.(PMID:12082107).[PubMed-indexed forMEDLINE]
    [31] RIEDERER BM.Microtubule-associated protein1B, a growth-associated andphosphorylated scaffold protein[J]. Brain Res Bull,2007,71(6):541-558.(PMID:17292797)[PubMed-indexed for MEDLINE]
    [32] RUBIOLO JA, LóPEZ-ALONSO H, VEGA FV, et al. Comparative study oftoxicological and cell cycle effects of okadaic acid and dinophysistoxin-2inprimary rat hepatocytes[J]. Life Sci,2012,90(11-12):416-423.(PMID:22285596)
    [PubMed-in process]
    [33] TANAKA T, ZHONG J, IQBAL K, et al. The regulation of phosphorylation oftau in SY5Y neuroblastoma cells: the role of protein phosphatases[J]. FEBS Lett,1998,426(2):248-54.(PMID:9599018).[PubMed-indexed for MEDLINE]
    [34] YOON BS, JUN EK, PARK G, et al. Optimal suppression of proteinphosphatase2A activity is critical for maintenance of human embryonic stemcell self-renewal[J]. Stem Cells,2010,28(5):874-84.(PMID:20306465).
    [PubMed-indexed for MEDLINE]
    [35] QI Z, YANG W, LIU Y, et al.Loss of PINK1function decreases PP2A activityand promotes autophagy in dopaminergic cells and a murine model[J].Neurochem Int,2011,59(5):572-581.(PMID:21672589).[PubMed-indexed forMEDLINE]
    [36] RUVOLO PP, DENG X, ITO T, et al.Ceramide induces Bcl2dephosphorylationvia a mechanism involving mitochondrial PP2A[J]. J Biol Chem,1999,274(29):20296-20300.(PMID:10400650).[PubMed-indexed forMEDLINE]
    [37] WANG J, LV XW, SHI JP, et al. Mechanisms involved in ceramide-induced cellcycle arrest in human hepatocarcinoma cells[J]. World J Gastroenterol,2007,13(7):1129-1134.(PMID:17373752).[PubMed-indexed for MEDLINE]
    [38] MACRAE VE, BURDON T, AHMED SF, et al.Ceramide inhibition ofchondrocyte proliferation and bone growth is IGF-I independent[J]. J Endocrinol,2006,191(2):369-377.(PMID:17088406).[PubMed-indexed for MEDLINE]
    [39] SHI JING, KONG CHUI-ZE, WANG XIA, et al. Research about synergeticeffect and its mechanism of combining mitomycin C with C2-ceramide ininhibiting growth of human bladder cancer cells[l]. China Journal of ModernMedicine,2007,17(12):1421-1426.
    [1] KWUN BD, VACANTI FX.Mild hypothermia protects against irreversibledamage during prolonged spinal cord ischemia[J]. J Surg Res,1995,59(6):780-782.(PMID:8538181)[PubMed-indexed for MEDLINE]
    [2] ZIVIN JA, DEGIROLAMI U.Spinal cord infarction: a highly reproducible strokemodel[J]. Stroke,1980,11(2):200-202.(PMID:7368250)[PubMed-indexed forMEDLINE]
    [3]宋启民.不同水平永久性脊髓缺血动物模型的建立评估和应用[D].福建医科大学协和临床学院,2010.
    [4]宋启民.兔子脊髓缺血动物模型建立的解剖学基础[D].福建医科大学附属协和临床医学院,2008.
    [5]朱本清.兔脊髓急性缺血再灌注损伤相关蛋白质组学研究[D].吉林大学第三临床医学院,2010.
    [6]高琦.急性脊髓缺血/再灌注损伤能量代谢相关蛋白质组与代谢组学初步分析
    [D].吉林大学第三临床医学院,2011.
    [7] SATAKE K, LOU J, LENKE LG. Migration of mesenchymal stem cells throughcerebrospinal fluid into injured spinal cord tissue[J]. Spine (Phila Pa1976),2004,29(18):1971-1979.(PMID:15371697)[PubMed-indexed for MEDLINE]
    [8] PARK SS, BYEON YE, RYU HH, et al. Comparison of canine umbilical cordblood-derived mesenchymal stem cell transplantation times: Involvement ofastrogliosis, inflammation, intracellular actin cytoskeleton pathways, andneurotrophin. Cell Transplant,2011, doi:10.3727/096368911X566163.(PMID:21375803)[PubMed-as supplied by publisher]
    [9] HOFSTETTER CP, SCHWARZ EJ, HESS D, et al. Marrow stromal cells formguiding strands in the injured spinal cord and promote recovery[J].Proc NatlAcad Sci U S A,2002,99(4):2199-2204.(PMID:11854516)[PubMed-indexedfor MEDLINE]
    [10] Pal R, Gopinath C, Rao NM,, et al.Functional recovery after transplantation ofbone marrow-derived human mesenchymal stromal cells in a rat model of spinalcord injury[J]. Cytotherapy,2010,12(6):792-806.(PMID:20524772)[PubMed-indexed for MEDLINE]
    [11] LI ZH, LIAO W, CUI XL, et al. Intravenous transplantation of allogeneic bonemarrow mesenchymal stem cells and its directional migration to the necroticfemoral head[J]. Int J Med Sci,2011,8(1):74-83.(PMID:21234272)[PubMed-indexed for MEDLINE]
    [12]景元海.大鼠骨髓间充质干细胞在脊髓损伤治疗中的应用及其机制的研究
    [D].吉林大学第三临床医学院,2008.
    [13] GONG CX, WEGIEL J, LIDSKY T, et al. Regulation of phosphorylation ofneuronal microtubule-associated proteins MAP1b and MAP2by proteinphosphatase-2A and-2B in rat brain[J]. Brain Res,2000,853(2):299-309.(PMID:10640627)[PubMed-indexed for MEDLINE]
    [14] ZHOU FQ, SNIDER WD.Cell biology. GSK-3beta and microtubule assembly inaxons[J]. Science,2005,308(5719):211-214.(PMID:15825222)[PubMed-indexed for MEDLINE]
    [15] BOUQUET C, RAVAILLE-VERON M, PROPST F, et al. MAP1B coordinatesmicrotubule and actin filament remodeling in adult mouse Schwann cell tips andDRG neuron growth cones[J]. Mol Cell Neurosci,2007,36(2):235-247.(PMID:17764972)[PubMed-indexed for MEDLINE]
    [16] KUO TY, HONG CJ, HSUEH YP. Bcl11A/CTIP1regulates expression of DCCand MAP1b in control of axon branching and dendrite outgrowth[J]. Mol CellNeurosci,2009,42(3):195-207.(PMID:19616629)[PubMed-indexed forMEDLINE]
    [17] BOUQUET C, SOARES S, VON BOXBERG Y, et al. Microtubule-associatedprotein1B controls directionality of growth cone migration and axonal branchingin regeneration of adult dorsal root ganglia neurons[J]. J Neurosci,2004,24(32):7204-7213.(PMID:15306655)[PubMed-indexed for MEDLINE]
    [18] KAWAUCHI T, CHIHAMA K, NABESHIMA Y, et al. The in vivo roles ofSTEF/Tiam1, Rac1and JNK in cortical neuronal migration[J]. EMBO J,2003,22(16):4190-4201.(PMID:12912917)[PubMed-indexed for MEDLINE]
    [19] UTRERAS E, JIMéNEZ-MATEOS EM, CONTRERAS-VALLEJOS E, et al.Microtubule-associated protein1B interaction with tubulin tyrosine ligasecontributes to the control of microtubule tyrosination[J]. Dev Neurosci,2008,30(1-3):200-210.(PMID:18075266)[PubMed-indexed for MEDLINE]
    [20] SILVERSTEIN AM, BARROW CA, DAVIS AJ, et al. Actions of PP2A on theMAP kinase pathway and apoptosis are mediated by distinct regulatorysubunits[J]. Proc Natl Acad Sci U S A,2002,99(7):4221-4226.(PMID:11904383)[PubMed-indexed for MEDLINE]
    [21] ZHOU B, WANG ZX, ZHAO Y, et al. The specificity of extracellularsignal-regulated kinase2dephosphorylation by protein phosphatases[J]. J BiolChem,2002,277(35):31818-31825.(PMID:12082107)[PubMed-indexed forMEDLINE]
    [22] WEI YJ, TSAI KS, LIN LC, et al. Catechin stimulates osteogenesis by enhancingPP2A activity in human mesenchymal stem cells[J].Osteoporos Int,2011,22(5):1469-1479.(PMID:20683709)[PubMed-indexed for MEDLINE]
    [23] GUADAGNA S, ESIRI MM, WILLIAMS RJ, et al. Tau phosphorylation inhuman brain: relationship to behavioral disturbance in dementia[J].NeurobiolAging,2012,28.(PMID:22382406)[PubMed-as supplied by publisher]
    [24] GOOLD RG, GORDON-WEEKS PR. The MAP kinase pathway is upstream ofthe activation of GSK3beta that enables it to phosphorylate MAP1B andcontributes to the stimulation of axon growth[J]. Mol Cell Neurosci,2005,28(3):524-534.(PMID:15737742)[PubMed-indexed for MEDLINE]
    [25] HARADA T, MOROOKA T, OGAWA S, et al.ERK induces p35, aneuron-specific activator of Cdk5, through induction of Egr1[J]. Nat Cell Biol,2001,3(5):453-459.(PMID:11331872)[PubMed-indexed for MEDLINE]
    [26] TAKEI Y, TENG J, HARADA A, et al. Defects in axonal elongation andneuronal migration in mice with disrupted tau and map1b genes[J]. J Cell Biol,2000,150(5):989-1000.(PMID:10973990)[PubMed-indexed for MEDLINE]
    [27] TENG J, TAKEI Y, HARADA A, et al. Synergistic effects of MAP2and MAP1Bknockout in neuronal migration, dendritic outgrowth, and microtubuleorganization[J]. J Cell Biol,2001,155(1):65-76.(PMID:11581286)[PubMed-indexed for MEDLINE]
    [1] SATAKE K, LOU J, LENKE LG. Migration of mesenchymal stem cells throughcerebrospinal fluid into injured spinal cord tissue[J]. Spine (Phila Pa1976),2004,29(18):1971-1979.(PMID:1537169).[PubMed-indexed for MEDLINE]
    [2] ZHANG J, GONG JF, ZHANG W, et al. Effects of transplanted bone marrowmesenchymal stem cells on the irradiated intestine of mice[J]. J Biomed Sci,2008,15(5):585-594.(PMID:18763056).[PubMed-indexed for MEDLINE]
    [3]景元海.大鼠骨髓间充质干细胞在脊髓损伤治疗中的应用及其机制的研究
    [D].吉林大学第三临床医学院,2008.
    [4] PAL R, GOPINATH C, RAO NM, et al. Functional recovery after transplantationof bone marrow-derived human mesenchymal stromal cells in a rat model ofspinal cord injury[J]. Cytotherapy,2010,12(6):792-806.(PMID:20524772)
    [PubMed-indexed for MEDLINE]
    [5] GHIRNIKAR RS, LEE YL, ENG LF. Chemokine antagonist infusion attenuatescellular infiltration following spinal cord contusion injury in rat[J]. J NeurosciRes,2000,59(1):63-73.(PMID:10658186)[PubMed-indexed for MEDLINE]
    [6]朱本清.兔脊髓急性缺血再灌注损伤相关蛋白质组学研究[D].吉林大学第三临床医学院,2010.
    [7] DEL RíO JA, GONZáLEZ-BILLAULT C, URE A JM, et al. MAP1B is requiredfor Netrin1signaling in neuronal migration and axonal guidance[J]. Curr Biol,2004,14(10):840-850.(PMID:15186740)[PubMed-indexed for MEDLINE]
    [8] CIANI L, KRYLOVA O, SMALLEY MJ, et al. A divergent canonicalWNT-signaling pathway regulates microtubule dynamics: dishevelled signalslocally to stabilize microtubules[J]. J Cell Biol,2004,164(2):243-253.(PMID:14734535)[PubMed-indexed for MEDLINE]
    [9] GONZáLEZ-BILLAULT C, DEL RíO JA, URE A JM, et al. A role of MAP1Bin Reelin-dependent neuronal migration[J]. Cereb Cortex,2005,15(8):1134-1145.(PMID:15590913)[PubMed-indexed for MEDLINE]
    [10] JIMéNEZ-MATEOS EM, WANDOSELL F, REINER O, et al. Binding ofmicrotubule-associated protein1B to LIS1affects the interaction betweendynein and LIS1[J]. Biochem J,2005,389(Pt2):333-341.(PMID:15762842)
    [PubMed-indexed for MEDLINE]
    [11] SIMó S, PUJADAS L, SEGURA MF, et al. Reelin induces the detachment ofpostnatal subventricular zone cells and the expression of the Egr-1throughErk1/2activation[J]. Cereb Cortex,2007,17(2):294-303.(PMID:16514107)
    [PubMed-indexed for MEDLINE]
    [12] JOSSIN Y, GOFFINET AM. Reelin signals through phosphatidylinositol3-kinase and Akt to control cortical development and through mTor to regulatedendritic growth[J]. Mol Cell Biol,2007,27(20):7113-7124.(PMID:17698586)[PubMed-indexed for MEDLINE]
    [13] ZHOU FQ, SNIDER WD.Cell biology. GSK-3beta and microtubule assembly inaxons[J]. Science,2005,308(5719):211-214.(PMID:15825222)[PubMed-indexed for MEDLINE]
    [14] DASHIELL SM, TANNER SL, PANT HC, et al. Myelin-associated glycoproteinmodulates expression and phosphorylation of neuronal cytoskeletal elements andtheir associated kinases[J]. J Neurochem,2002,81(6):1263-1272.(PMID:12068074)[PubMed-indexed for MEDLINE]
    [15] GORDON-WEEKS PR, FISCHER I. MAP1B expression and microtubulestability in growing and regenerating axons[J]. Microsc Res Tech,2000,48(2):63-74.(PMID:10649507)[PubMed-indexed for MEDLINE]
    [16] ROYAL I, LAMARCHE-VANE N, LAMORTE L, et al. Activation of cdc42, rac,PAK, and rho-kinase in response to hepatocyte growth factor differentiallyregulates epithelial cell colony spreading and dissociation[J]. Mol Biol Cell,2000,11(5):1709-1725.(PMID:10793146)[PubMed-indexed for MEDLINE]
    [17] KIM EK, TUCKER DF, YUN SJ, et al. Linker region of Akt1/protein kinaseBalpha mediates platelet-derived growth factor-induced translocation and cellmigration[J]. Cell Signal,2008,20(11):2030-2037.(PMID:18700164)[PubMed-indexed for MEDLINE]
    [18] MONYPENNY J, ZICHA D, HIGASHIDA C, et al. Cdc42and Rac familyGTPases regulate mode and speed but not direction of primary fibroblastmigration during platelet-derived growth factor-dependent chemotaxis[J]. MolCell Biol,2009,29(10):2730-2747.(PMID:19273601)[PubMed-indexed forMEDLINE]
    [19] WANG YP, TANG JM, GUO LY, et al. Adenovirus-mediated stromal cell-derivedfactor-1alpha gene transfer promotes mesenchymal stem cell migration[J]. NanFang Yi Ke Da Xue Xue Bao,2008,28(7):1190-1194.(PMID:18676260)
    [PubMed-indexed for MEDLINE]
    [20] FU X, HAN B, CAI S, et al.Migration of bone marrow-derived mesenchymalstem cells induced by tumor necrosis factor-alpha and its possible role in woundhealing[J]. Wound Repair Regen,2009,17(2):185-191.(PMID:19320886)
    [PubMed-indexed for MEDLINE]
    [21] GAO H, PRIEBE W, GLOD J, et al. Activation of signal transducers andactivators of transcription3and focal adhesion kinase by stromal cell-derivedfactor1is required for migration of human mesenchymal stem cells in responseto tumor cell-conditioned medium[J]. Stem Cells,2009,27(4):857-865.(PMID:19350687)[PubMed-indexed for MEDLINE]
    [22] YANG HJ, XIA YY, WANG L, et al. A novel role for neural cell adhesionmolecule in modulating insulin signaling and adipocyte differentiation of mousemesenchymal stem cells[J]. J Cell Sci,2011,124(Pt15):2552-2560.(PMID:21730021)[PubMed-indexed for MEDLINE]
    [23] WEI Z, CHEN N, GUO H, et al. Bone marrow mesenchymal stem cells fromleukemia patients inhibit growth and apoptosis in serum-deprived K562cells[J].J Exp Clin Cancer Res,2009,28:141.(PMID:19883517)[PubMed-indexed forMEDLINE]
    [24] LIN HY, TSAI CC, CHEN LL, et al. Fibronectin and laminin promotedifferentiation of human mesenchymal stem cells into insulin producing cellsthrough activating Akt and ERK[J]. J Biomed Sci,2010,17:56.(PMID:20624296)[PubMed-indexed for MEDLINE]
    [25] Liang X, So YH, Cui J, et al. The low-dose ionizing radiation stimulates cellproliferation via activation of the MAPK/ERK pathway in rat culturedmesenchymal stem cells[J]. J Radiat Res (Tokyo),2011,52(3):380-386.(PMID:21436606)[PubMed-indexed for MEDLINE]
    [26] YUN DH, SONG HY, LEE MJ, et al. Thromboxane A(2) modulates migration,proliferation, and differentiation of adipose tissue-derived mesenchymal stemcells[J]. Exp Mol Med,2009,41(1):17-24.(PMID:19287196)[PubMed-indexed for MEDLINE]
    [27] KIM S, SHIN JK, YOON HS, et al. Blockade of ERK Phosphorylation in theNucleus Accumbens Inhibits the Expression of Cocaine-induced BehavioralSensitization in Rats[J]. Korean J Physiol Pharmacol,2011,15(6):389-395.(PMID:22359477)[PubMed-in process]
    [28] SABLINA AA, HECTOR M, COLPAERT N, et al. Identification of PP2Acomplexes and pathways involved in cell transformation[J]. Cancer Res,2010,70(24):10474-10484.(PMID:21159657)[PubMed-indexed for MEDLINE]
    [29] BASU S, RAY NT, ATKINSON SJ, et al. Protein phosphatase2A plays animportant role in stromal cell-derived factor-1/CXC chemokine ligand12-mediated migration and adhesion of CD34+cells[J]. J Immunol,2007,179(5):3075-3085.(PMID:17709522)[PubMed-indexed for MEDLINE]
    [30] SILVERSTEIN AM, BARROW CA, DAVIS AJ, et al. Actions of PP2A on theMAP kinase pathway and apoptosis are mediated by distinct regulatorysubunits[J]. Proc Natl Acad Sci U S A,2002,99(7):4221-4226.(PMID:11904383)
    [PubMed-indexed for MEDLINE]
    [31] ZHOU B, WANG ZX, ZHAO Y, et al. The specificity of extracellularsignal-regulated kinase2dephosphorylation by protein phosphatases[J]. J BiolChem,2002,277(35):31818-31825.(PMID:12082107)[PubMed-indexed forMEDLINE]
    [32] BAE D, CERYAK S. Raf-independent, PP2A-dependent MEK activation inresponse to ERK silencing. Biochem Biophys Res Commun,2009,385(4):523-527.PMID:19465001[PubMed-indexed for MEDLINE]
    [33] HU X, WU X, XU J, et al. Src kinase up-regulates the ERK cascade throughinactivation of protein phosphatase2A following cerebral ischemia[J]. BMCNeurosci,2009,10:74.(PMID:19602257)[PubMed-indexed for MEDLINE]
    [34] KILILI GK, KYRIAKIS JM.Mammalian Ste20-like kinase (Mst2) indirectlysupports Raf-1/ERK pathway activity via maintenance of proteinphosphatase-2A catalytic subunit levels and consequent suppression of inhibitoryRaf-1phosphorylation[J]. J Biol Chem,2010,285(20):15076-15087.(PMID:20212043)[PubMed-indexed for MEDLINE]
    [35] WEI YJ, TSAI KS, LIN LC, ET AL. Catechin stimulates osteogenesis byenhancing PP2A activity in human mesenchymal stem cells[J]. Osteoporos Int,2011,22(5):1469-1479.(PMID:20683709)[PubMed-indexed for MEDLINE]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700