电磁带隙结构及在天线设计中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电磁带隙(EBG)结构作为一种特殊的人工电磁材料,自20世纪80年代后期提出以来,成为了世界各国学者们的研究热点,现已广泛应用于微波和天线领域。然而新型EBG结构的研究仍然很薄弱,如新型的多频带EBG、超宽带EBG和小型化EBG等方面,在天线领域的一些应用也有待进一步深入探讨。因此,对新型EBG结构的研究及在天线应用方面的进一步探索具有理论意义、学术价值和应用前景。论文通过理论分析与实验结合的方式,着重研究了几种新型的多频带和小型化EBG结构,探讨了EBG结构在天线谐波抑制、陷波特性、低剖面和高增益等方面的应用。作者的主要研究工作和成果可以概括为:
     1.设计了表面开槽的多频带EBG、螺旋地板的小型化EBG和电感加载的螺旋地板小型化EBG。通过在EBG贴片上增加细槽,产生额外电容,形成多个谐振回路,从而实现多频带EBG。测试结果显示该EBG结构能产生3个频率带隙。通过将EBG结构的地板转换成四臂螺旋结构,增加EBG结构的等效电感,降低谐振频率,从而实现小型化EBG。在此基础上,通过加载贴片电感,进一步降低谐振频率。与传统的蘑菇状EBG结构相比,螺旋地板EBG能减小尺寸达77%,电感加载的螺旋地板EBG能减小尺寸达81%。
     2.设计了谐波抑制的矩形微带天线和带陷波特性的超宽带单极子天线。使用蘑菇状EBG单元的谐振器,抑制矩形微带天线的二次和三次谐波,从而减少天线的谐波辐射对周围微波器件的干扰。使用窄微带线和扇形面构成的谐振器,抑制超宽带天线在5.2GHz和5.8GHz频率附近的辐射,减少超宽带天线对WLAN IEEE802.11a频段内通信的干扰。
     3.设计了低剖面的方向图可重构八木天线和低剖面的平面等角螺旋天线。使用射频二极管开关控制八木天线反射器和引向器之间的转换,并且使用EBG地板降低天线高度,从而实现低剖面的方向图可重构八木天线。使用EBG地板替代传统平面等角螺旋天线1/4波长的背腔,大大降低了天线的剖面高度,所设计的平面等角螺旋天线的高度为天线工作波长的1/10。
     4.设计了高定向性的偶极子天线和高增益的水平极化全向天线。通过在偶极子天线周围加载相对介电常数为0.46的金属圆柱型EBG材料,使全向辐射的偶极子天线沿四个EBG面定向辐射,极大地提高了天线的增益。再将其中三个面上EBG结构的周期变小,使天线最终沿另一个面定向辐射。在水平极化全向天线的周围加载类似于金属圆柱型EBG的腔体,提高天线的增益。在工作频率5.7GHz时,未使用EBG腔体的天线增益为2.23dBi,而所设计的天线增益提高到4.95dBi。
As a special artificial electromagnetic material, since the late1980s,electromagnetic band-gap (EBG) structures have attracted much interest fromresearchers, which has been widely used in the microwave and antenna field. However,the study of novel EBG structures is still weak, such as multi-band EBG,ultra-wideband EBG, and miniature EBG. Some applications in antenna field also needto be further explored. Therefore, the study of novel EBG structures and the applicationexplore for antennas have theoretical significance, academic value, and applicationprospect. In this dissertation, by using the method of combining theoretical analysis andexperiments, several novel EBG structures are designed and the application of EBGstructures for the harmonic suppression, notch bands, low profile, and high gain ofantennas are provided. The main works and contributions in this dissertation areoutlined as follows:
     1. A multi-band EBG with slots on patch, a miniature EBG with spiral groundplane, and a miniature EBG with inductance loaded spiral ground plane are introduced.The multi-band EBG is achieved by making slots on the EBG patch surface, which canadd extra capacitances and generate multiple resonant circuits. Measured results showthe EBG structure can form three frequency band-gap and the designed EBG may beused in multi-band antennas. The miniature EBG is realized by changing the EBGsquare ground plane into four-arm spiral structure, which can increase the equivalentinductance of the EBG structure and reduce the resonant frequency. On this basis, thesize of the EBG structure is further reduced by loading inductance on the spiral groundplane. Compared with traditional mushroom-like EBG structures, the EBG with spiralground plane achieves77%size diminution and the EBG with inductance loaded spiralground plane achieves81%size diminution. The proposed EBG structures may be usedin phased array antennas.
     2. A rectangle microstrip antenna with harmonic suppression and anultra-wideband monopole antenna with notch bands are designed. The second and thirdharmonics of the rectangle microstrip antenna are suppressed by using the resonators ofmushroom-like EBG units, which can reduce the harmonic radiation disturbance to themicrowave devices around. The radiation of the UWB antenna around5.2and5.8GHzis suppressed via using the resonators which consist of a narrow microstrip line and asector surface, which prohibit the disturbance to WLAN IEEE802.11a.
     3. A low-profile Yagi antenna with reconfigurable patterns and a low-profileplanar equiangular spiral antenna are designed. In the design process, RF diodes areused to control the interchange of the director and the reflector and the EBG groundplane is used to reduce the antenna height, which achieves the low-profilepattern-reconfigurable Yagi antenna. The height of the equiangular spiral antenna isremarkably reduced by using EBG ground plane instead of traditional1/4wavelengthbacked cavity. The height of the designed equiangular spiral antenna is1/10of the workwavelength.
     4. A high directive dipole antenna and an omnidirectional horizontally polarizedantenna with gain enhancement are designed. By adding the metal cylinder EBGmaterial with the effective permittivity eff=0.46, the omnidirectional dipole antenna ischanged to radiate along the four EBG surfaces and the antenna gain is evidentlyimproved. Then, reducing the period of three EBG surfaces and the antenna finallyradiate along one EBG surface. An omnidirectional horizontally polarized antenna isadded with EBG cavity which is similar with metal cylinder EBG structures to improvethe antenna gain. At the work frequency of5.7GHz, the gain of the antenna withoutEBG cavity is2.23dBi, while the gain of the antenna using the EBG cavity is4.95dBi.
引文
[1] E. Yablonovitch, Inhibited spontaneous emission in solid-state physics andelectronics, Physical Review Letters, vol.58, no.20, pp.2059-2062, May1987.
    [2] S. John, Strong localization of photons in certain disordered dielectricsuper-lattices, Physical Review Letters, vol.58, no.23, pp.2486-2489, June1987.
    [3]付云起,微波光子晶体及其应用研究,国防科学技术大学博士学位论文,2004.
    [4] http://www.pbglink.com/.
    [5] http://www.scienceonline.org/.
    [6] E. Yablonovitch, T. J. Gmitter and K. M. Leung, Photonic band structure: theface-centered cubic case employing nonspherical atoms, Physical Review Letters,vol.67, no.18, pp.2295-2298, Oct.1991.
    [7] S. K. Padhi and N. C. Karmakar, Spurious harmonics suppression of tapered SIRband-pass filter using electromagnetic band-gap (EBG) structure, IEEE Antennasand Propagation Society International Symposium, vol.4, pp.3561-3564, June2004.
    [8] J. J. Simpson, A. Taflove, J. A. Mix, and H. Heck, Advances in hyper-speed digitalinterconnects using electromagnetic band-gap technology: measured low-loss43-GHz passband centered at50GHz, IEEE Antennas and Propagation SocietyInternational Symposium, vol.3A, pp.26-29, July2005.
    [9] I. Ederra, L. Azcona, B. Alderman, A. Laisne, R. Gonzalo, and P. de Maagt, A250GHz sub-harmonic mixer design implemented in EBG technology, IEEE Antennasand Propagation Society International Symposium, vol.3A, pp.35-38, July2005.
    [10] M. F. Karim, A. Q. Liu, A. Alphones, X. J. Zhang, and A. B. Yu, CPW band-stopfilter using unloaded and loaded EBG structures, IEE Proceedings. Microwave,Antennas and Propagation, vol.152, no.6, pp.434-440, Dec.2005.
    [11] F. R.Yang, K. P. Ma,Y. Qian, and T. Itoh, A novel TEM waveguide using uniplanarcompact photonic band-gap (UC-PBG) structure, IEEE Transactions onMicrowave Theory and Techniques, vol.47, no.11, pp.2092-2098, Nov.1999.
    [12] N. Llombart, A. Mazzinghi, P. H. Siegel, and A. Freni, Design of a low lossmetallo-dielectric EBG waveguide at submillimeter wavelengths, IEEE Microwaveand Wireless Components Letters, vol.19, no.7, pp.437-439, June2009.
    [13] T. Kamgaing and O. M. Ramahi, Electromagnetic band-gap structures formultiband mitigation of resonant modes in parallel-plate waveguides, IEEEAntennas and Propagation Society International Symposium, vol.4, pp.3577-3580,June2004.
    [14] G. K. Palikaras, A. P. Feresidis, and J. C.Vardaxoglou, Cylindrical electromagneticband-gap structures for directive base station antennas, IEEE Antennas and WirelessPropagation Letters, vol.3, no.1, pp.87-89,2004.
    [15] G. Goussetis, J. C. Vardaxoglou, and A. P. Feresidis, Handset antenna performanceusing flexible MEBG structures, IEEE international workshop on antennatechnology: small antennas and novel metamaterials, pp.55-58, Mar.2005.
    [16] L. Freytag, E. Pointereau, and B. Jecko, Omnidirectional dielectric electromagneticband gap antenna for base station of wireless network, IEEE Antennas andPropagation Society International Symposium, vol.1, pp.815-818, June2004.
    [17] G. K. Palikaras, A. P. Feresidis, and J. C. Vardaxoglou, Cylindrical EBG surfacesfor omnidirectional wireless LAN antennas, IEEE Antennas and PropagationSociety International Symposium, vol.4B, pp.339-342, July2005.
    [18] Y. Lee, X. Lu, Y. Hao, S. Yang, R. Ubic, J. R. G. Evans, and C. G. Parini, Directivemillimeter-wave antenna based on free formed woodpile EBG structure,Electronics Letters, vol.43, no.4, pp.195-196, Feb.2007.
    [19] J. M. Bell, M. F. Iskander, and J. J. Lee, Ultra-wideband and low-profile hybridEBG/ferrite ground plane for airborne foliage penetrating radar, IEEE Antennasand Propagation Society International Symposium, pp.369-372, July2006.
    [20] P. Salonen and K. Rintala, An S-band EBG antenna for mini-UAV, IEEE Antennasand Propagation Society International Symposium, pp.2373-2376, July2006.
    [21] P. Raumonen, M. Keskilammi, L. Sydanheimo, and M. Kivikoski, A very lowprofile CP EBG antenna for RFID reader, IEEE Antennas and Propagation SocietyInternational Symposium, vol.4, pp.3808-3811, June2004.
    [22] L. Ukkonen, L. Sydanheimo, and M. Kivikoski, Patch antenna with EBG groundplane and two-layer substrate for passive RFID of metallic objects, IEEE Antennasand Propagation Society International Symposium, vol.1, pp.93-96, June2004.
    [23] M. Stupf, R. Mittra, J. Yeo, and J. R. Mosig, Some novel design for RFID antennasand their performance enhancement with metamaterials, Microwave and OpticalTechnology Letters, vol.49, no.4, pp.858-867, April2007.
    [24] J. Kim and Y. Rahmat-Samii, Exterior antennas for wireless medical links: EBGbacked dipole and loop antennas, IEEE Antennas and Propagation SocietyInternational Symposium, vol.2B, pp.800-803, July2005.
    [25] J. Kim and Y. Rahmat-Samii, Electromagnetic interactions between biologicaltissues and implantable biotelemetry systems, IEEE MTT-S International.Microwave Symposium Digest, pp.1801-1804, June2005.
    [26] D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. Alexopolus, and E. Yablonovitch,High-impedance electromagnetic surfaces with a forbidden frequency band, IEEETransactions on Microwave Theory and Techniques, vol.47, no.11, pp.2059–2074, Nov.1999.
    [27] F. Yang and Y. Rahmat-Samii, Reflection phase characterizations of the EBGground plane for low profile wire antenna applications, IEEE Transactions onAntennas and Propagation, vol.51, no.10, pp.2691-2703, Oct.2003.
    [28] A. Aminian, F. Yang, and Y. Rahmat-Samii, In-phase reflection and EM wavesuppression characteristics of electromagnetic band gap ground planes, IEEEAntennas and Propagation Society International Symposium, vol.4, pp.430-433,June2003.
    [29] F. Yang, Y. Rahmat-Samii, Microstrip antennas integrated with electromagneticband-gap (EBG) structures: a low mutual coupling design for array applications,IEEE Transactions on Antennas and Propagation, vol.51, no.10, pp.2936-2946,Oct.2003.
    [30] R. Gonzalo, P. D. Maagt, and M. Sorolla, Enhanced patch-antenna performance bysuppressing surface waves using photonic band-gap substrates, IEEE Transactionson Microwave Theory and Techniques, vol.47, no.11, pp.2131-2138, Nov.1999.
    [31] H. S. Farahani, M. Veysi, M. Kamyab, and A. Tadjalli, Mutual coupling reductionin patch antenna arrays using a UC-EBG superstrate, IEEE Antennas and WirelessPropagation Letters, vol.9, pp.57-59,2010.
    [32] Z. Iluz, R. Shavit, and R. Bauer, Microstrip antenna phased array withelectromagnetic band-gap substrate, IEEE Transactions on Antennas andPropagation, vol.52, no.6, pp.1446–1453, June2004.
    [33] Y. Fu, and N. Yuan, Elimination of scan blindness in phased array of microstrippatches using electromagnetic band-gap materials, IEEE Antennas and WirelessPropagation Letters, vol.3, pp.63-65,2004.
    [34] L. Zhang, J. A. Castaneda, and N. G. Alexopoulos, Scan blindness free phasedarray design using PBG materials, IEEE Transactions on Antennas and Propagation,vol.52, no.8, pp.2000-2007, Aug.2004.
    [35] G. Donzelli, F. Capolino, S. Boscolo, and M. Midrio, Elimination of scan blindnessin phased array antennas using a grounded-dielectric EBG material, IEEEAntennas and Wireless Propagation Letters, vol.6, pp.106-109,2007.
    [36] M. S. Zhang, Y. S. Li, C. Jia, L. P. Li, Simultaneous switching noise suppression inprinted circuit boards using a compact3-D cascaded electromagnetic band-gapstructure, IEEE Transactions on Microwave Theory and Techniques, vol.55, no.10,pp.2200-2207, Oct.2007.
    [37] S. H. Joo, D. Y. Kim, H. Y. Lee, A S-bridged inductive electromagnetic band-gappower plane for suppression of ground bounce noise, IEEE Microwave andWireless Components Letters, vo.17, no.10, pp.709-711, Oct.2007.
    [38] L. Li, Q. Chen, Q. Yuan, and K. Sawaya, Ultra-wideband suppression of groundbounce noise in multilayer PCB using locally embedded planar electromagneticband-gap structures, IEEE Antennas and Wireless Propagation Letters, vol.8, pp.740-743,2009.
    [39] T. K. Wang, C. Y. Hsieh, H. H. Chuang, and T. L. Wu, Design and modeling of astop-band-enhanced EBG structure using ground surface perturbation lattice forpower/ground noise suppression, IEEE Transactions on Microwave Theory andTechniques, vol.57, no.8, pp.2047-2054, Aug.2009.
    [40] M. F. Abedin and M. Ali, Effects of EBG reflection phase profiles on the inputimpedance and bandwidth of ultrathin directional dipoles, IEEE Transactions onAntennas and Propagation, vol.53, no.11, pp.3664-3672, Nov.2005.
    [41] L. Akhoondzadeh-Asl, P. S. Hall, J. Nourinia, and Ch. Ghobadi, Influence ofangular stability of EBG structures on low profile dipole antenna performance,IEEE international. workshop on antenna technology small antennas and novelmetamaterials, pp.253-256,2006.
    [42] I. Ederra, R. Gonzalo, B. Martinez, L. Azcona, B. Alderman, P. Huggard, B. P. D.Hon, M. V. Beurden, L. Marchand, and P. de Maagt, Modifications of the woodpilestructure for the improvement of its performance as substrate for dipole antennas,IET Proceeding. Microwave Antennas Propagation, vol.1, no.1, pp.226-233, Feb.2007.
    [43] T. H. Liu, W. X. Zhang, M. Zhang, and K. F. Tsang, Low profile spiral antennawith PBG substrate, Electronics Letters, vol.36, no.9, pp.779-780, April2000.
    [44] F. Yang and Y. Rahmat-Samii, A low profile circularly polarized curl antenna overelectromagnetic band-gap (EBG) surface, Microwave and Optical TechnologyLetters, vol.31, no.4, pp.264-267, Nov.2001.
    [45] J. Kim and Y. Rahmat-Samii, Low-profile loop antenna above EBG structure,IEEE Antennas and Propagation Society International Symposium, vol.2A, pp.570-573, July2005.
    [46] D. F. Sievenpiper, High-impedance electromagnetic surfaces, Ph.D. Dissertation atUniversity of California, Los Angeles,1999.
    [47] M. Rahman, and M. A. Stuchly, Transmission line-periodic circuit representationof planar microwave photonic band-gap structures, Microwave and OpticalTechnology Letters, vol.30, no.1, pp.15-19, July2001.
    [48] H. Y. D. Yang, Characteristics of guided and leaky waves on multilayer thin-filmstructures with planar material gratings, IEEE Transactions on Microwave Theoryand Techniques, vol.45, no.3, pp.428-435, Mar.1997.
    [49] H. Y. D. Yang, R. Diaz, and N. G. Alexopoulos, Reflection and transmission ofwaves from multilayer structures with planar-implanted periodic material blocks,Journal of the Optical Society of America B, vol.14, no.10, pp.2513-2521, Oct.1997.
    [50] K. M. Leung, and Y. F. Liu, Full vector wave calculation of photonic bandstructures in face-centered-cubic dielectric media, Physical Review letters, vol.65,no.21, pp.2646-2649, June1990.
    [51] L. Zhang, and N. G. Alexopoulos, Finite-element based techniques for modeling ofPBG materials, Electromagnetics, vol.19, no.3, pp.225-239,1999.
    [52] L. Zhang, Numerical characterization of electromagnetic band-gap materials andapplications in printed antennas and arrays, Ph. D. Dissertation, University ofCalifornia at Los Angles,2000.
    [53] H. Contopanagos, L. Zhang, and G. Alexopoulos, Thin frequency-selective latticesintegrated in novel compact MIC, MMIC and PCA architectures, IEEETransactions on Microwave Theory and Techniques, vol.46, no.11, pp.1936-1947,Nov.1998.
    [54] M. A. Jensen, Time-domain finite-difference method in electromagnetics:application to personal communication, Ph. D. Dissertation at University ofCalifornia, Los Angeles,1994.
    [55] S. Fan, P. R. Villeneuve, and J. D. Joasnnopoulos, Large omni-directional bandgaps in metallo-dielectric photonic crystals, Physical Review B, vol.54, no.16, pp.11245-11251, Oct.1996.
    [56] M. Thevenot, A. Reineix, and B. Jecko, A new FDTD surface impedanceformalism to study PBG structures, Microwave and Optical Technology Letters,vol.18, no.3, pp.203-206, June1998.
    [57] F. R. Yang, K. P. Ma, Y. Qian, and T. Itoh, A uniplanar compact photonic band-gap(UC-PBG) structure and its applications for microwave circuit, IEEE Transactionson Microwave Theory and Techniques, vol.47, no.8. pp.1509-1514, Aug.1999.
    [58] J. W. Baik, D. H. Hyun, G. N. Kim, and Y. S. Kim, Novel ultra-widebandband-pass filter using DUC-EBG unit cell, Microwave and Optical TechnologyLetters, vol.49, no.12, pp.3134-3136, Dec.2007.
    [59] A. E. I. Lamminen, A. R. Vimpari, and J. S ily, UC-EBG on LTCC for60-GHzfrequency band antenna applications, IEEE Transactions on Antennas andPropagation, vol.57, no.10, pp.2904-2912, Oct.2009.
    [60] V. Radisic, Y. Qian, R. Coccioli, and T. Itoh, Novel2-D photonic band-gapstructure for microstrip lines, IEEE Microwave Guided Wave Letters, vol.8, no.2,pp.69-71, Feb.1998.
    [61] D. Ahn, J. S. Park, C. S. Kim, J. Kim, Y. Qian, and T. Itoh, A design of thelow-pass filter using the novel microstrip defected ground structure, IEEETransactions on Microwave Theory and Techniques, vol.49, no.1, pp.86-93, June2001.
    [62] H. J. Chen, T. H. Huang, C. S. Chang, L. S. Chen, N. F. Wang, Y. H. Wang, and M.P. Houng, A novel cross-shape DGS applied to design ultra-wide stop-bandlow-pass filters, IEEE Microwave and Wireless Components Letters, vol.16, no.5,pp.252-254, May2006.
    [63] F. Yang and Y. Rahmat-Samii, Polarization dependent electromagnetic band-gapsurfaces: characterization, designs, and applications, IEEE Antennas andPropagation Society International Symposium, vol.3, pp.339-342, June2003.
    [64] F. Yang and Y. Rahmat-Samii, Polarization dependent electromagnetic band gap(PDEBG) structures: designs and applications, Microwave and Optical TechnologyLetters, vol.41, no.6, pp.439-444, June2004.
    [65] Y. Kim, F. Yang, and A. Elsherbeni, Compact artificial magnetic conductor designsusing planar square spiral geometry, Progress In Electromagnetics Research,77, pp.43-54,2007.
    [66] H. Boutayeb, and T. A. Denidni, Metallic cylindrical EBG structures with defects:directivity analysis and design optimization, IEEE Transactions on Antennas andPropagation, vol.57, no.11, pp.3356-3361, Nov.2007.
    [67] H. Boutayeb, and T. A. Denidni, Technique for reducing the power supply inreconfigurable cylindrical electromagnetic band-gap structures, IEEE Antennas andWireless Propagation Letters, vol.5, pp.424-425,2006.
    [68] C. Biancotto, and P. Record, Triangular lattice dielectric EBG antenna, IEEEAntennas and Wireless Propagation Letters, vol.9, pp.95-98,2010.
    [69] J. Park, A. Chee, W. Lu, K. M. Chua, L. L. Wai, J. Lee, and J. Kim, Double-stackedEBG structure for wideband suppression of simultaneous switching noise inLTCC-based sip applications, IEEE Microwave and Wireless Components Letters,vol.16, no.9, pp.481-483, Sep.2006.
    [70] J. Park, A. Chee, W. Lu, V. Sunappan, L. L. Wai, and J. Kim, High dielectricconstant tape double-stacked EBG structure for broadband suppression of SSN inLTCC-based sip applications, Microwave and Optical Technology Letters, vol.50,no.4, pp.942-944, April2008.
    [71] J. McVay, N, Engheta, and A. Hoorfar, Chapter14: Space-filling curvehigh-impedance ground planes, Metamaterials: Physics and EngineeringExplorations, edited by N. Engheta and R. Ziolkowski, John Wiley&Sons Inc.,2006.
    [72] J. McVay, A. Hoorfar, and N. Engheta, Radiation characteristics of microstripdipole antennas over a high-impedance metamaterial surface made of Hilbertinclusions, Dig. IEEE MTT International. Microwave Symposium Digest, vol.1,pp.587-590, June2003.
    [73] D. Sievenpiper, Chapter11: Review of theory, fabrication, and applications of highimpedance ground planes, Metamaterials: Physics and Engineering Explorations,edited by N. Engheta and R. Ziolkowski, John Wiley&Sons Inc.,2006.
    [74] H. J. Lee, K. L. Ford, and R. J. Langley, Dual band tunable EBG, ElectronicsLetters, vol.44, no.6, Mar,2008.
    [75] D. J. Kern, D. H. Werner, A. Monorchio, L. Lanuzza, and M. J. Wilhelm, Thedesign synthesis of multiband artificial magnetic conductors using high impedancefrequency selective surfaces, IEEE Transactions on Antennas and Propagation, vol.53, no.1, pp.8-17, June2005.
    [76] T. H. Hand, and S. A. Cummer, Reconfigurable reflect array using addressablemetamaterials, IEEE Antennas and Wireless Propagation Letters, vol.9, pp.70-74,2010.
    [77] A. Tavallaee and Y. Rahmat-Samii, A novel strategy for broadband andminiaturized EBG designs: hybrid MTL theory and PSO algorithm, IEEE Antennasand Propagation Society International Symposium, pp.161-164, June2007.
    [78] Y. Q. Fu, and N. C. Yuan, EBG-based circular waveguide rod arrays with improvedscanning characteristics, IEEE Antennas and Wireless Propagation Letters, vol.8,pp.705-707,2009.
    [79]付云起,袁乃昌,用FDTD分析光晶带隙结构散射特性,电子学报, vol.29, no.12, pp.1729-1730, Dec.2001.
    [80] Y. Q. Fu, N. C. Yuan, G. H. Zhang, A very compact electromagnetic band-gapstructure for suppressing surface-waves in integrated circuits, Microwave andOptical Technology Letters, vol.41, no.6, pp.455-457, May2004.
    [81] Y. Q. Fu, G. H. Zhang, and N. C. Yuan, A novel PBG coplanar waveguide, IEEEMicrowave and Wireless Components Letters, vol.11, pp.447-449, Nov.2001.
    [82]杨宁,王蕴仪,用Caner网络综合技术提取PBG等效电路模型,微波学报,vol.17, no.4, pp.18-22, Dec.2001.
    [83] N. Yang, Z. N. Chen, Y. Y. Wang, and M. Y. W. Chia, A two-layer compactelectromagnetic band-gap (EBG) structure and its applications in microstrip filterdesign, Microwave and Optical Technology Letters, vol.37, no.1, pp.62-64, April2003.
    [84]高初,陈志宁,王蕴仪,一种低通带波纹的EBG带阻滤波器,微波学报,vol.22, pp.5, pp.63-66, Oct.2006.
    [85] C. Gao, Z. N. Chen, and Y. Y. Wang, Study and suppression of ripples in passbandsof series/parallel loaded EBG filters, IEEE Transactions on Microwave Theory andTechniques, vol.54, no.4, pp.1519-1526, April2006.
    [86] L. Li, B. Li, H. X. Liu, and C. H. Liang, Locally resonant cavity cell model forelectromagnetic band gap structures, IEEE Transactions on Antennas andPropagation, vol.54, no.1, pp.90-100, June2006.
    [87] Y. Q. Li, H. Zhang, Y. Q. Fu, and N. C. Yuan, RCS reduction of ridged waveguideslot antenna array using EBG radar absorbing material, IEEE Antennas andWireless Propagation Letters, vol.7, pp.473-476,2008.
    [88] L. Li, X. J. Dang, B. Li, and C. H. Liang, Analysis and design of waveguide slotantenna array integrated with electromagnetic band-gap structures, IEEE Antennasand Wireless Propagation Letters, vol.5, pp.111-115,2006.
    [89] Q. R. Zheng, Y. Q. Fu, and N. C. Yuan, A novel compact spiral electromagneticband-gap (EBG) structure, IEEE Transactions on Antennas and Propagation, vol.56, no.6, pp.1656-1660, June2008.
    [90]马锡英,光子晶体原理及应用,北京:科学出版社,2010.
    [91]叶卫民,光子晶体导论,北京:科学出版社,2010.
    [92]付云起,袁乃昌,温熙森,微波光子晶体天线技术,北京:国防工业出版社,2006.
    [93] J. S. Lim, C. S. Kim, D. Ahn, Y. C. Jeong, and S. Nam, Design of low-pass filtersusing defected ground structure, IEEE Transactions on Microwave Theory andTechniques, vol.53, no.8, pp.2539-2545, Aug.2005.
    [94] S. W. Ting, K. W. Tam, R. P. Martins, Miniaturized microstrip low-pass filter withwide stop-band using double equilateral U-shaped defected ground structure, IEEEMicrowave and Wireless Components Letters, vol.16, no.5, pp.240-242, May2006.
    [95] J. S. Park, J. S. Yun, and D. Ahn, A design of the novel coupled-line band-passfilter using defected ground structure with wide stop-band performance, IEEETransactions on Microwave Theory and Techniques, vol.50, no.9, pp.2037-2043,Sep.2002.
    [96] D. J. Woo, T. K. Lee, Suppression of harmonics in Wilkinson power divider usingdual-band rejection by asymmetric DGS, IEEE Transactions on Microwave Theoryand Techniques, vol.53, no.6, pp.2139-2144, June2005.
    [97] D. Qu, L. Shafai, and A. Foroozesh, Improving microstrip patch antennaperformance using EBG substrates, IEE Proceeding. Microwaves, Antennas andPropagation, vol.153, no.6, pp.558-563, Dec.2006.
    [98] X. L. Bao, G. Ruvio, M. J. Ammann, and M. John, A novel GPS patch antenna on afractal hi-impedance surface substrate, IEEE Antennas and Wireless PropagationLetters, vol.5, pp.323-326,2006.
    [99] S. Zhu, and R. Langley, Dual-band wearable textile antenna on an EBG substrate,IEEE Transactions on Antennas and Propagation, vol.57, no.4, pp.926-935, April2009.
    [100] F. Yang, and Y. Rahmat-Samii, A low profile single dipole antenna radiatingcircularly polarized waves, IEEE Transactions on Antennas and Propagation, vol.53, no.9, pp.3083-3086, Sep.2005.
    [101] P. Deo, A. Mehta, D. Mirshekar-Syahkal, and H. Nakano, An HIS-based spiralantenna for pattern reconfigurable applications, IEEE Antennas and WirelessPropagation Letters, vol.8, pp.196-199,2009.
    [102] J. M. Bell, and M. F. Iskander, A low-profile Archimedean spiral antenna using anEBG ground plane, IEEE Antennas and Wireless Propagation Letters, vol.3, pp.223-226,2004.
    [103] L. Yousefi, B. Mohajer-Iravani, and O. M. Ramahi, Enhanced bandwidth artificialmagnetic ground plane for low-profile antennas, IEEE Antennas and WirelessPropagation Letters. vol.6, pp.289-292,2007.
    [104] Y. J. L, J. Yeo, K. D. Ko, R. Mittra, Y. Lee, and W. S. Park, A novel designtechnique for control defect frequencies of an electromagnetic band-gap (EBG)superstrate for dual-band directivity enhancement, Microwave and OpticalTechnology Letters, vol.42, no.1, pp.25-31, July2004.
    [105] A. R. Weily, L. Horvath, K. P. Esselle, B. C. Sanders, and T. S. Bird, A planarresonator antenna based on a woodpile EBG material, IEEE Transactions onAntennas and Propagation, vol.53, no.1, pp.216-223, June2005.
    [106] A. Pirhadi, M. Hakkak, F. Keshmiri, and R. K. Baee, Design of compact dualband high directive electromagnetic band-gap (EBG) resonator antenna usingartificial magnetic conductor, IEEE Transactions on Antennas and Propagation, vol.55, no.6, pp.1682-1690, June2007.
    [107] A. Hao, A. H. Alomainy, and C. G. Parini, Antenna-beam shaping from offsetdefects in UC-EBG cavities, Microwave and Optical Technology Letters, vol.43,no.2, pp.108-112, Oct.2004.
    [108] F. Caminita, S. Costanzo, G. D. Massa, G. Guarnieri, S. Maci, G. Mauriello, and I.Venneri, Reduction of patch antenna coupling by using a compact EBG formed byshorted strips with interlocked branch-stubs, IEEE Antennas and WirelessPropagation Letters, vol.8, pp.811-814,2009.
    [109] Y. Q. Fu, Q. R. Zheng, Q. Gao and G. H. Zhang, Mutual coupling reductionbetween large antenna arrays using electromagnetic band-gap (EBG) structures,Journal of Electromagnetic Waves and Applications, vol.20, no.6, pp.819-825,2006.
    [110] A. Yu, and X. Zhang, A novel method to improve the performance of microstripantenna arrays using a dumbbell EBG structure, IEEE Antennas and WirelessPropagation Letters, vol.2, pp.170-172,2003.
    [111] J. M. Baracco, M. Paquay, and P. D. Maagt, An electromagnetic band-gap curlantenna for phased array applications, IEEE Transactions on Antennas andPropagation, vol.53, no.1, pp.173-180, June2005.
    [112] M. Coulombe, S. F. Koodiani, and C. Caloz, Compact elongated mushroom(EM)-EBG structure for enhancement of patch antenna array performances, IEEETransactions on Antennas and Propagation, vol.58, no.4, pp.1076-1086, April2010.
    [113]张榴晨,徐松,有限元法在电磁计算中的应用,北京:中国铁道出版社,1996.
    [114]哈林登,计算电磁的矩量法,中译本,北京:国防工业出版社,1981.
    [115]王长清,祝西里,电磁场计算中的时域有限差分法,北京:北京大学出版社,1994.
    [116]葛德彪,闫玉波,电磁波时域有限差分方法,西安:西安电子科技大学出版社,2002.
    [117] Ansoft Corporation,225West Station Square Drive, Suite200, Pittsburgh, PA15219.
    [118] Zeland Software, Inc.,48890Milmont Drive, Suite105D, Fremont, CA94538.
    [119] Remcom Inc.,315South Allen Street, Suite222, State College, PA16801.
    [120] J. P. Berenger, A perfectly matched layer for the absorption of electromagneticwaves, Journal of Computational Physics, vol.114, no.2, pp.185-200, Oct.1994.
    [121] J. P. Berenger, Three-dimensional perfectly matched layer for the absorption ofelectromagnetic waves, Journal of Computational Physics, vol.127, pp.363-379,Oct.1996.
    [122] F. Yang, and Y. Rahmat-Samii, Electromagnetic band gap structures in antennaengineering, Cambridge University Press,2009.
    [123] S. D. Gedney, and A. Taflove, Computational electrodynamics: the finitedifference time domain method,2ndedn, Artech House,2000.
    [124] K. S. Yee, Numerical solution of initial boundary value problem involvingMaxwell's equations in isotropic media, IEEE Transactions on Antennas andPropagation, vol.14, no.3, pp.302-307, May1966.
    [125] J. Stratton, Electromagnetic theory, New York: McGraw-Hill,1941.
    [126] H. Boutayeb, A. Denidni, K. Mahdjoubi, A. C. Tarot, A. R. Sebak, and L. Talbi,Analysis and design of a cylindrical EBG-based directive antenna, IEEETransactions on Antennas and Propagation, vol.54, no.1, pp.211-219, June2006.
    [127] F. Ghanem, G.Y. Delisle, T. A. Denidni, and K. Ghanem, A directive dual-bandantenna based on metallic electromagnetic crystals, IEEE Antennas and WirelessPropagation Letters, vol.5, pp.384-387,2006.
    [128] R. Zhou, H. Zhang, and H. Xin, Metallic wire array as low-effective index ofrefraction medium for directive antenna application, IEEE Transactions onAntennas and Propagation, vol.58, no.1, pp.79-87, June2010.
    [129] M. T. Zhang, Y. C. Jiao, and F. S. Zhang, Dual-band CPW-fed folded-slotmonopole antenna for RFID application, Electronics Letters, vol.42, no.21, Oct.2006.
    [130] D. Kim, U. Kim, and J. Choi, Design of a dual-band MIMO antenna for mobileWIMAX application, Microwave and Optical Technology Letters, vol.53, no.2,pp.410-414, Feb.2011.
    [131] R. Azaro, L. Debiasi, E. Zeni, M. Benedetti, P. Rocca, and A. Massa, A hybridpre-fractal three-band antenna for multi-standard mobile wireless applications,IEEE Antennas and Wireless Propagation Letters, vol.8, pp.905-908,2009.
    [132] R. Azaro, E. Zeni, P. Rocca, and A. Massa, Synthesis of a Galileo and WI-MAXthree-band fractal-eroded patch antenna, IEEE Antennas and Wireless PropagationLetters, vol.6, pp.510-514,2007.
    [133] Y. Ranga, K. P. Esselle, and A. R. Weily, Compact ultra-wideband CPW-fedprinted semicircular slot antenna, Microwave and Optical Technology Letters, vol.52, no.10, pp.2367-2372, Oct.2010.
    [134] M. T. Chattha, Y. Huang, Y. Lu, and X. Zhu, An ultra-wideband planar inverted-Fantenna, Microwave and Optical Technology Letters, vol.52, no.10, pp.2285-2288, Oct.2010
    [135] S. Barbarino, and F. Consoli, Study of the effect of the slot dimension on theproperties of a planar ultra-wideband antenna, Microwave and Optical TechnologyLetters, vol.52, no.8, pp.1813-1817, Aug.2010.
    [136] T. Kamgaing, and O. M. Ramahi, Multiband electromagnetic band-gap structuresfor applications in small form-factor multichip module packages, IEEETransactions on Microwave Theory and Techniques, vol.56, no.10, pp.2293-2300,Oct.2008.
    [137] L. Liang, C. H. Liang, L. Chen, and X. Chen, A novel broadband EBG usingcascaded mushroom-like structure, Microwave and Optical Technology Letters, vol.50, no.8, pp.2167-2170, Aug.2008.
    [138] R. Remski, Analysis of PBG surfaces using Ansoft HFSS, Microwave Journal,vol.43, pp.190-198,2000.
    [139] Zeland Software, IE3D12.1, Zeland Software Inc,2007.
    [140] J. R. James, P. S. Hall, and C. Wood, Microstrip antenna theory and design, PeterPeregrinus Ltd,1981.
    [141] J. Q. Howell, Microstrip antennas, IEEE Antennas and Propagation SocietyInternational Symposium, vol.10, pp.177-180, Dec.1972.
    [142] R. E. Munson, Conformal microstrip antennas and microstrip phased arrays,IEEE Transactions on Antennas and Propagation, vol.22, no.1, pp.74-78, June1974.
    [143] E. J. Denlinger, Radiation from microstrip resonators, IEEE Transactions onMicrowave Theory and Techniques, vol.17, no.4, pp.235-236, April1969.
    [144] B. Ester, and R. J. Roberts, Radiation from half-wavelength open circuitmicrostrip resonators, Electronics Letters, vol.6, pp.573-574, Sep.1970.
    [145] H. Sobol, Radiation conductance of open-circuit microstrip, IEEE Transactionson Microwave Theory and Techniques, vol.19, no.11, pp.885-887, Nov.1971.
    [146][加]I. J.鲍尔,P.布哈蒂亚,微带天线,北京:电子工业出版社,1984.
    [147] K. R. Carver, Practical analytical techniques for the microstrip antenna,Proceeding. Workshop on printed circuit antennas, New Mexico State University,pp.7.1-7.20,1979.
    [148] I. J. Bahl, Build microstrip antennas with paper-thin dimensions, Microwaves,vol.18, pp.50-63, Oct.1979.
    [149] Y. T. Lo, D. Solomon, and W. F. Richards, Theory and experiment on microstripantennas, IEEE Transactions on Antennas and Propagation, vol.27, no.2, pp.137-145, Mar.1979.
    [150]钟顺时,微带天线理论与应用,西安:西安电子科技大学出版社,1991.
    [151] W. F. Richards, Y. T. Lo, and D. D. Harrison, An improved theory for microstripantennas and applications, IEEE Transactions on Antennas and Propagation, vol.29, no.1, pp.38-46, June1981.
    [152] Ansoft high frequency structure simulator (HFSS) version11.1, AnsoftCorporation,2008.
    [153] H. F. Harmuth, Non-sinusoidal waves for radar and radio communication, NewYork: Academic,1981.
    [154]徐玉清,张国进,高攀,冲击脉冲雷达探雷,电波科学学报,vol.16, no.4, pp.546-550,2001.
    [155] T. Scullion, C. L. Lau, and T. Saarenketo, Performance specification of groundpenetrating radar, Proceeding. Of GPR96, pp.341-346,1996.
    [156] R. J. Fontana, Experimental results from an ultra wideband precision geo-locationsystem, Proceedings of ultra-wideband, short-pulse electromagnetics, vol.5, pp.215-224,2002.
    [157] FCC report and order ultra wideband technology, Federal CommunicationsCommission, USA,2002.
    [158] H. Nazli, E. B ak, B. Türetken, and M. Sezgin, An improved design of planarelliptical dipole antenna for UWB applications, IEEE Antennas and WirelessPropagation Letters, vol.9, pp.264-267,2010.
    [159] M. Ojaroudi, H. Ebrahimian, C. Ghobadi, and J. Nourinia, Small microstrip-fedprinted monopole antenna for UWB application, Microwave and OpticalTechnology Letters, vol.52, no.8, pp.1756-1761, Aug.2010.
    [160] N. Chahat, M. Zhadobov, R. Sauleau, K. Ito, A compact UWB antenna foron-body applications, IEEE Transactions on Antennas and Propagation, vol.59, no.4, pp.1123-1131, April2011.
    [161] Y. J. Cho, K. H. Kim, D. H. Choi, S. S. Lee, and S. O. Park, A miniature UWBplanar monopole antenna with5-GHz band-rejection filter and the time-domaincharacteristics, IEEE Transactions on Antennas and Propagation, vol.54, no.5, pp.1453-1460, May2006.
    [162] S. W. Qu, J. L. Li, and Q. Xue, A band-notched ultra-wideband printed monopoleantenna, IEEE Antennas and Wireless Propagation Letters, vol.5, pp.495-498,2006.
    [163] J. K. Lee, and Y. S. Kim, A multiband-rejected UWB monopole antenna usinginterdigital defected ground structure, Microwave and Optical Technology Letters,vol.53, no.2, pp.312-314. Feb.2011.
    [164] M. C. Tang, S. Xiao, T. Deng, D. Wang, J. Guan, B. Wang, and G. D. Ge,Compact UWB antenna with multiple band-notches for WIMAX and WLAN,IEEE Transactions on Antennas and Propagation, vol.59, no.4, pp.1372-1376,April2011.
    [165] J. W. Jang, and H. Y. Jwang, An improved band-rejection UWB antenna withresonant patches and a slot, IEEE Antennas and Wireless Propagation Letters, vol.8, pp.299-302,2009.
    [166] J. Liu, S. Gong, Y. Xu, X. Zhang, C. Feng, and N. Qi, Compact printedultra-wideband monopole antenna with dual band-notched characteristics,Electronics Letters, vol.44, no.12, pp.817-819, June2008.
    [167] A. M. Abbosh, and M. E. Bialkowski, Design of UWB planar band-notchedantenna using parasitic elements, IEEE Transactions on Antennas and Propagation,vol.57, no.3, pp.796-799, Mar.2009.
    [168] C. Y. Huang, S. A. Huang, and C. F. Yang, Band-notched ultra-wideband circularslot antenna with inverted C-shaped parasitic strip, Electronics Letters, vol.44, no.15, pp.891-892, July2008.
    [169] J. B. Jiang, Y. Song, Z. H. Yan, X. Zhang, and W. Wu, Band-notched UWBprinted antenna with an inverted-L-slotted ground, Microwave and OpticalTechnology Letters, vol.51, no.1, pp.260-263, June2009.
    [170] Y. D. Dong, W. Hong, Z. Q. Kuai, and J. X. Chen, Analysis of planarultra-wideband antennas with on-ground slot band-notched structures, IEEETransactions on Antennas and Propagation, vol.57, no.7, pp.1886-1893, July2009.
    [171] Z. Cui, Y. C. Jiao, L. Zhang, and F. S. Zhang, The band-notch function for aprinted ultra-wideband monopole antenna with E-shaped slot, Microwave andOptical Technology Letters, vol.50, no.8, pp.2048-2053, Aug.2008.
    [172][美] R. Ludwig, and P. Bretchko著,王子宇,张肇仪和徐承和等译,射频电路设计—理论与应用,北京:电子工业出版社,2002.
    [173] F. Yang, J. Chen, Q. Rui, and A. Elsherbeni, A simple and efficient FDTD/PBCalgorithm for scattering analysis of periodic structures, Radio Science, vol.42,RS4004, July2007.
    [174] C. Balanis, Antenna theory: analysis and design, New York, Wiley Interscience,2005.
    [175] Y. Chen, The design and application of broadband antennas and theirtransmission line feed structures, PH.D. Dissertation, Duke University, USA, Feb.2005.
    [176] N. Engheta, and R. W. Ziolkowski, Metamaterials: physics and engineeringexplorations, John Wiley&Sons Inc.,2006.
    [177] J. C. Bose, On the rotation of plane of polarization of electric waves by a twistedstructure, Proceedings of Royal Society, vol.63, pp.146-152, June1898.
    [178] A. Alǜ, F. Bilotti, N. Engheta, and L. Vegni, Compact leaky wave componentsusing metamaterial bilayers, IEEE MTT-S International. Microwave SymposiumDigest, pp.1733-1736, June2005.
    [179] R. W. Ziolkowski, Propagation in and scattering form a matched metamaterialhaving a zero index of refraction, Physical Review E, vol.70, no.4, pp.046608(1)-046608(12),2004.
    [180] K. C. Gupta, Narrow-beam antennas using an artificial dielectric medium withpermittivity less than unity, Electronics Letters, vol.7, no.1, pp.16-18, June1971.
    [181] S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, A metamaterial fordirective emission, Physical Review Letters, vol.89, no.21, pp.213902(1)-213902(4),2002.
    [182] G. Lovat, P. Burghignoli, F. Capolino, D. R. Jackson, and D. R. Wilton, Analysisof directive radiation from a line source in a metamaterial slab with lowpermittivity, IEEE Transactions on Antennas and Propagation, vol.54, no.3, pp.1017-1030, Mar.2006.
    [183] J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, Extremely low frequencyplasmons in metallic mesostructures, Physical Review Letters, vol.76, no.25, pp.4773-4776,1996.
    [184] R. E. Collin, Antennas and radio wave propagation, McGraw-Hill, New York, NY,1997.
    [185] A. K. Amert, and K. W. Whites, Miniaturization of the biconical antenna forultra-wideband applications, IEEE Transactions on Antennas and Propagation, vol.57, no.12, pp.3728-3735, Dec.2009.
    [186] I. Jayakumar, R. Garg, B. K. Sarap, and B. Lal, A conformal cylindricalmicrostrip array for producing omnidirectional radiation pattern. IEEETransactions on Antennas and Propagation, vol.34, no.10, pp.1258-1261, Oct.1986.
    [187] C. H. Ahn, S. W. Oh, and K. Chang, A dual-frequency omnidirectional antennafor polarization diversity of MIMO and wireless communication applications,IEEE Antennas and Wireless Propagation Letters, vol.8, pp.966-969,2009.
    [188] K. L. Wong, F. R. Hsiao, and C. L. Tang, A low-profile omnidirectional circularlypolarized antenna for WLAN access point. IEEE Antennas and PropagationSociety International Symposium, vol.3, pp.2580-2583, June2004.
    [189] K. Nakayama, T. Kawano, and H. Nakano, A conformal spiral array antennaradiating an omnidirectional circularly polarized wave, IEEE Antennas andPropagation Society International Symposium, pp.894-897, Aug.1999.
    [190] D. M. Pozar, Microwave engineering,3rdedition, Chap.1, John Wiley&Sons,Inc.,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700