Cu_2O(111)表面电子结构性质及CO_2在此表面的吸附与活化的量子化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用光电催化作用实现CO2还原转化为有机燃料是一极具挑战性的课题。Cu2O是一种可见光响应的光催化剂,实验研究中发现它在CO2还原转化中对醇羟类产物具一定选择性。最近它在电催化CO2还原研究中被直接用作电极催化剂。Cu2O是一种潜在光电催化还原CO2的催化剂,但目前人们对于这种催化剂的表面性质及CO2与其表面的相互作用还是知之甚少。本论文采用量子化学理论方法对Cu2O暴露最多的低指数(111)表面的性质和CO2在该表面上的吸附与活化情况进行了系统研究。
     首先,我们采用基于密度泛函理论的第一性原理方法(SIESTA程序)、周期性板层模型及自己构造的Cu,O原子第一性原理赝势,对Cu2O(111)表面(包括完美表面及氧空位表面)的几何构型和电子结构等进行了理论计算研究。计算结果表明:(1)Cu2O(111)完美表面弛豫不超过表面以下三个TL层(共九个原子层,TL:是由O-Cu-O三个原子层构成的一个最小的周期性单元)。(2)相对于完美表面,表面氧空位的所引起的Cu2O(111)表面构型变化并不大。新弛豫在表面的第一、二TL层中,并且主要是在氧空位周围。(3)表面氧空位引起表面电子结构变化有很强的局域性,仅氧空位周围局部区域的原子电子结构有明显变化,这些变化增加了表面局部区域的反应活性。(4)表面氧空位的形成能比较低,说明在一定的还原性氛围或者加热作用下表面氧空位都比较容易形成,并且比较稳定。
     然后,我们采用杂化的密度泛函B3LYP方法(Gaussian03程序),采用嵌入簇模型"CU28014+824PCs+10AIMPs"和"CU52026+780PCs+18AIMPs"对CO2,H2C03,HCC3和CO32-各物种在Cu2O(111)完美表面上的吸附进行了模拟计算研究。从计算结果中我们发现:(1)在CU2O(111)完美表面上,CO2分子只能形成非活化吸附形态,CO32-离子则无法形成有效的吸附。(2)H2CO3分子在表面解离形成吸附态的H+和HCO3-。(3)HCO3-离子吸附在表面时,C-Oads(CuCUS)键有一定程度的活化,C原子上电荷密度下降,变得更容易接受亲核试剂的进攻。所以,CO2在Cu2O(111)完美表面上只能通过HCO3-离子形式吸附达到一定程度的活化。
     最后,我们采用基于密度泛函理论(DFT)的第一性原理方法(SIESTA程序)和周期性板层模型对分子态CO:在氧空位表面的吸附进行了研究。计算结果表明:(1)CO2分子在氧空位表面的解离吸附造成体系总能量上升很大(达到82.4和176.1kJ/mol),从热力学上判断解离吸附反应难以进行。(2)氧空位削弱了C02在Cucus和Ocus位上的吸附。(3)氧空位上方的横卧式吸附,C原子指向空位边的Cuvo,二氧化碳分子转化为具很高的反应活性自由基。它吸附能低,容易在表面迁移或是脱附离开表面。
The reduction of CO2into organic fuels with photocatalytic or electrochemical methods is a challenging subject. Cu2O, the visible-induced photo-catalyst, shows certain selectivity to alcohols in the hydrogenation of CO2. Recently, it was used as the electrocatalyst for CO2reduction. Cu2O is a promising catalyst for the photo-catalytic reduction of CO2. However, the properties of the material surface and the interactions between the CO2species and the surface are still poorly understood. In this thesis, we investigated the properties of Cu2O (111) surface and CO2adsorption and activation on the surface by using quantum chemical methods.
     Firstly, we investigated the geometric and electronic structures of Cu2O (111) perfect and oxygen vacancy surfaces by using first-principles method based on density functional theory (SIESTA program) with periodic slab models. We generated the first-principles pseudopotentials for Cu and O atoms, which then were well tested. The calculations indicate that:(1) The relaxation on the defect-free surface does not exceed three TL (nine atomic layers. TL denotes the minimal periodic unit of O-Cu-O three atomic layer) from the outermost.(2) The surface reconstructions caused by the oxygen vacancies are very small and localized in top two TLs, especially around the vacancy sites.(3) The electronic structures of atoms around the vacancy are changed apparently. The reaction activities in these regions are increased.(4) The formation energies of oxygen vacancies are rather low, indicating that the vacancies are easy to create.
     Then, we investigated the adsorption of various CO2species, CO2, H2CO3, HCO3-and CO32-, on Cu2O (111) perfect surface at DFT/B3LYP level (Gaussian03program) with two embedded cluster models, Cu28O14+824PCs+10AIMPs and Cu52O26+780PCs+18AIMPs. PC denotes point charges, and AIMP denotes ab initio model potential. The calculations indicate that:(1) CO2molecules are non-activated adsorbed on the surface. The effective adsorption of CO32-ions cannot be formed.(2) H2CO3molecules are dissociated into adsorbed H+and HCO3-ions on the surface.(3) HCO3-ions are adsorbed on the surface with bond length of C-Oads (CuCUS) increased. The charge densities on C atom decreased, which made the nucleophilic attack on this site easily. The results implied CO2activated adsorbed on Cu2O (111) perfect surface is via the form of HCO3-ion.
     Lastly, we studied the adsorption of CO2on Ou2O (111) oxygen vacancy surface by using the first-principles calculations based on density functional theory with the periodic slab model (SIESTA code). The results show that:(1) The total energy of the system would be increased by+82.4kJ/mol or+176.1kJ/mol if the dissociation adsorption processed, which means that the dissociation reaction is thermodynamically unfeasible.(2) The oxygen vacancy weakened the adsorption at Cucus, and Ocus sites.(3) The adsorbed molecule can be converted into a reactive radical when it horizontally adsorbed at oxygen vacancy site. The adsorption energy is only-0.2kJ/mol, which implies the radical is easy to migrate on the surface or leave away.
引文
[1]M. Mikkelsen, M. Jorgensen, F.C. Krebs. The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy & Environmental Science,2010, Vol.3(1):43-81.
    [2]K.L. Lim, H. Kazemian, Z. Yaakob, et al. Solid-state Materials and Methods for Hydrogen Storage:A Critical Review. Chemical Engineering & Technology,2010, Vol.33 (2):213-226.
    [3]J.C.S. Wu. Photocatalytic Reduction of Greenhouse Gas CO2 to Fuel. Catalysis Surveys from Asia,2009, Vol.13 (1):30-40.
    [4]S.C. Roy, O.K. Varghese, M. Paulose, et al. Toward Solar Fuels:Photocatalytic Conversion of Carbon Dioxide to Hydrocarbons. Acs Nano,2010, Vol.4 (3):1259-1278.
    [5]J. Lee, Y. Kwon, R.L. Machunda, et al. Electrocatalytic Recycling of CO2 and Small Organic Molecules. Chemistry-an Asian Journal,2009, Vol.4 (10):1516-1523.
    [6]E.E. Benson, C.P. Kubiak, A.J. Sathrum, et al. Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. Chemical Society Reviews,2009, Vol.38 (1):89-99.
    [7]Y.B. Vassiliev, V.S. Bagotzky, O.A. Khazova, et al. Electroreduction of Carbon-Dioxide.2. the Mechanism of Reduction in Aprotic-Solvents. Journal of Electroanalytical Chemistry,1985, Vol.189 (2):295-309.
    [8]Y.B. Vassiliev, V.S. Bagotzky, N.V. Osetrova, et al. Electroreduction of Carbon-Dioxide.1. the Mechanism and Kinetics of Electroreduction of CO2 in Aqueous-Solutions on Metals with High and Moderate Hydrogen Overvoltages. Journal of Electroanalytical Chemistry,1985, Vol.189 (2): 271-294.
    [9]Y.B. Vassiliev, V.S. Bagotzky, N.V. Osetrova, et al. Electroreduction of Carbon-Dioxide.3. Adsorption and Reduction of CO2 on Platinum Metals. Journal of Eleotroanalytical Chemistry,1985, Vol.189 (2):311-324.
    [10]M. Lukaszewski, H. Siwek, A. Czerwinski. Electrosorption of carbon dioxide on platinum group metals and alloys-a review. Journal of Solid State Electrochemistry,2009, Vol.13 (6):813-827.
    [11]W. Wang, S. Wang, X. Ma, et al. Recent advances in catalytic hydrogenation of carbon dioxide. Chemical Society Reviews,2011, Vol.40 (7):3703-3727.
    [12]P.V. Rysselberghe, G.J. Alkire. Polarographic Reduction of Carbondioxide. Journal of the American Chemical Society,1944, Vol.66 (10):1801-1801.
    [13]P.v. Rysselberghe. Polarographic Reduction of Carbon Dioxide. Ⅱ. Polymerization and Adsorption at the Dropping Mercury Cathodel. Journal of the American Chemical Society,1946, Vol. 68 (10):2047-2049.
    [14]P.v. Rysselberghe, G.J. Alkire, J.M. McGee. Polarographic Reduction of Carbon Dioxide. Ⅲ. Description and Interpretation of the Wavesl. Journal of the American Chemical Society,1946, Vol. 68 (10):2050-2055.
    [15]A.A. Vlcek. Polarographic Effect of Carbon Dioxide in Solutions of Ethyl Alcohol. Nature,1953, Vol.172 (4384):861-862.
    [16]T.E. Teeter, P. Van Rysselberghe. Reduction of Carbon Dioxide on Mercury Cathodes. The Journal of Chemical Physics,1954, Vol.22 (4):759-760.
    [17]J. Jordan, P.T. Smith. Free-radical Intermediate in the Electroreduction of Carbon Dioxide Proceedings of the Chemical Society,1960, Vol. (10):246-247.
    [18]W. Paik, T.N. Andersen, H. Eyring. Kinetic studies of the electrolytic reduction of carbon dioxide on the mercury electrode. Electrochimica Acta,1969, Vol.14 (12):1217-1232.
    [19]J. Ryu, T.N. Andersen, H. Eyring. Electrode reduction kinetics of carbon dioxide in aqueous solution. The Journal of Physical Chemistry,1972, Vol.76 (22):3278-3286.
    [20]Y. Hori, S. Suzuki. Electrolytic Reduction of Carbon-Dioxide at Mercury-Electrode in Aqueous-Solution. Bulletin of the Chemical Society of Japan,1982, Vol.55 (3):660-665.
    [21]C. Amatore, J.M. Saveant. Mechanism and Kinetic Characteristics of the Electrochemical Reduction of Carbon-Dioxide in Media of Low Proton Availability. Journal of the American Chemical Society,1981, Vol.103 (17):5021-5023.
    [22]C.L. Anfuso, R.C.III Snoeberger, A.M. Ricks, et al. Covalent Attachment of a Rhenium Bipyridyl CO(2) Reduction Catalyst to Rutile TiO(2). Journal of the American Chemical Society, 2011, Vol.133 (18):6922-6925.
    [23]A.M. Khenkin, I. Efremenko, L. Weiner, et al. Photochemical Reduction of Carbon Dioxide Catalyzed by a Ruthenium-Substituted Polyoxometalate. Chemistry-a European Journal,2010, Vol. 16 (4):1356-1364.
    [24]S.S. Bosquain. Aqueous phase carbon dioxide and bicarbonate hydrogenation catalyzed by cyclopentadienyl ruthenium complexes. Applied Organometallic Chemistry,2007, Vol.21 (11): 947-951.
    [25]N. Spataru, K. Tokuhiro, C. Terashima, et al. Electrochemical reduction of carbon dioxide at ruthenium dioxide deposited on boron-doped diamond. Journal of Applied Electrochemistry,2003, Vol.33(12):1205-1210.
    [26]J. Elek, L. Nadasdi, G. Papp, et al. Homogeneous hydrogenation of carbon dioxide and bicarbonate in aqueous solution catalyzed by water-soluble ruthenium(II) phosphine complexes. Applied Catalysis a-General,2003, Vol.255 (1):59-67.
    [27]N. Furuya, T. Yamazaki, M. Shibata. High performance Ru-Pd catalysts for CO2 reduction at gas-diffusion electrodes. Journal of Electroanalytical Chemistry,1997, Vol.431 (1):39-41.
    [28]A. Bandi, H.M. Kuhne. Elecuochemical Reduction of Carbon Dioxide in Water:Analysis of Reaction Mechanism on Ruthenium-Titanium-Oxide. Journal of the Electrochemical Society,1992, Vol.139(6):1605-1610.
    [29]J.K.W. Frese, S. Leach. Electrochemical Reduction of Carbon Dioxide to Methane, Methanol, and CO on Ru Electrodes. Journal of the Electrochemical Society,1985, Vol.132 (1):259-260.
    [30]Y. Hori, K. Kikuchi, S. Suzuki. Production of CO and CH4 in Electrochemical Reduction of CO, at Metal-Electrodes in Aqueous Hydrogencarbonate Solution. Chemistry Letters,1985, Vol. (11): 1695-1698.
    [31]R.L. Cook, R.C. MacDuff, A.F. Sammells. Efficient High Rate Carbon Dioxide Reduction to Methane and Ethylene at in situ Electrodeposited Copper Electrode. Journal of the Electrochemical Society,1987, Vol.134 (9):2375-2376.
    [32]R.L. Cook, R.C. MacDuff, A.F. Sammells. On the Electrochemical Reduction of Carbon Dioxide at In Situ Electrodeposited Copper. Journal of the Electrochemical Society,1988, Vol.135 (6): 1320-1326.
    [33]D.W. DeWulf, T. Jin, A.J. Bard. Electrochemical and Surface Studies of Carbon Dioxide Reduction to Methane and Ethylene at Copper Electrodes in Aqueous Solutions. Journal of the Electrochemical Society,1989, Vol.136(6):1686-1691.
    [34]M. Azuma, K. Hashimoto, M. Hiramoto, et al. Electrochemical Reduction of Carbon Dioxide on Various Metal Electrodes in Low-Temperature Aqueous KHCO[sub 3] Media. Journal of the Electrochemical Society,1990, Vol.137 (6):1772-1778.
    [35]J.K.W. Frese. Electrochemical Reduction of CO2 at Intentionally Oxidized Copper Electrodes. Journal of the Electrochemical Society,1991, Vol.138 (11):3338-3344.
    [36]R. Shiratsuchi, Y. Aikoh, G. Nogami. Pulsed Electroreduction of CO2 on Copper Electrodes. Journal of the Electrochemical Society,1993, Vol.140 (12):3479-3482.
    [37]G. Nogami, H. Itagaki, R. Shiratsuchi. Pulsed Electroreduction of CO2 on Copper Electrodes-Ⅱ. Journal of the Electrochemical Society,1994, Vol.141 (5):1138-1142.
    [38]M. Gattrell, N. Gupta, A. Co. A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper. Journal of Electroanalytical Chemistry,2006, Vol.594 (1):1-19.
    [39]J. Yano, T. Morita, K. Shimano, et al. Selective ethylene formation by pulse-mode electrochemical reduction of carbon dioxide using copper and copper-oxide electrodes. Journal of Solid State Electrochemistry,2007, Vol.11 (4):554-557.
    [40]J. Yano, S. Yamasaki. Pulse-mode electrochemical reduction of carbon dioxide using copper and copper oxide electrodes for selective ethylene formation. Journal of Applied Electrochemistry,2008, Vol.38(12):1721-1726.
    [41]E.A. Batista, M.L.A. Temperini. Spectroscopic evidences of the presence of hydrogenated species on the surface of ccpper during CO2 electroreduction at low cathodic potentials. Journal of Electroanalytical Chemistry 2009, Vol.629 (1-2):158-163.
    [42]M. Halmann. Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells. Nature,1978, Vcl.275 (5676):115-116.
    [43]T. Inoue, A. Fujishima, S. Konishi, et al. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature,1979, Vol.277 (5698):637-638.
    [44]D. Mandler, I. Willner. Effective Photoreduction of CO2 HCO3- to Formate Using Visible-Light. Journal of the American Chemical Society,1987, Vol.109 (25):7884-7885.
    [45]K. Ogura. Catalytic Conversion of Carbon Monoxide and Carbon Dioxide into Methanol with Photocells. Journal of the Electrochemical Society,1987, Vol.134 (11):2749-2754.
    [46]R.L. Cook, R.C. MacDuff, A.F. Sammells. Photoelectrochemical Carbon Dioxide Reduction to Hydrocarbons at Ambient Temperature and Pressure. Journal of the Electrochemical Society,1988, Vol.135 (12):3069-3070.
    [47]K. Tennakone, A.H. Jayatissa, S. Punchihewa. Selective photoreduction of carbon dioxide to methanol with hydrous cuprous oxide. Journal of Photochemistry and Photobiology A: Chemistry, 1989, Vol.49 (3):369-375.
    [48]Z. Goren, I. Willner, A.J. Nelson, et al. Selective photoreduction of carbon dioxide/bicarbonate to formate by aqueous suspensions and colloids of palladium-titania. The Journal of Physical Chemistry,1990, Vol.94 (9):3784-3790.
    [49]K. Susumu, N. Kazufumi, T. Ryo, et al., Photochemical Reduction of Carbon Dioxide to Methanol Using ZnS Microcrystallite as a Photocatalyst in the Presence of Methanol Dehydrogenase, Journal of the Electrochemical Society,1994, Vol.141 (6):1498-1503.
    [50]H. Kisch, P. Lutz. Photoreduction of bicarbonate catalyzed by supported cadmium sulfide. Photochemical & Photobiological Sciences,2002, Vol.1 (4):240-245.
    [51]下希涛,钟顺和,肖秀芬Pd/MoO3-TiO2/SiO2光催化CO2与C2H6合成烃类氧化物的反应性能.催化学报,2005,Vol.26(10):900-904.
    [52]孔令丽,钟顺和,柳荫Cu/NiO-MoO3/SiO2光催化CO2与CH3OH合成碳酸二甲酯的反应性能.催化学报,2005,Vol.26(10):917-922.
    [53]梅长松,钟顺和Cu/MoO3-TiO2光催化CO2与C3H6反应合成甲基丙烯酸的性能.催化学报,2004,Vol.25(12):937-942.
    [54]钟顺和,程庆彦,黎汉生.负载型Sn2(OMe)4/SiO2催化剂的制备及其催化CO2与CH3OH直接合成碳酸二甲酯的性能.催化学报,2002,Vol.23(06):543-548.
    [55]陈崧哲,钟顺和.光促CO2和H2O在Cu/TiO2-NiO上的表面反应.应用化学,2003,Vo1.20(01):23-28.
    [56]常丽萍,钟顺和,谢克昌.二氧化碳催化氢化——Ni、Cu间的相互作用及4不同担体的影响.燃料化学学报,1994,第02期:170-175.
    [57]I.H. Tseng, W.C. Chang, J.C.S. Wu. Photoreduction of CO2 using sol-gel derived titania and titania-supported copper catalysts. Applied Catalysis B-Environmental,2002, Vol.37 (1):37-48.
    [58]I.H. Tseng, J.C.S. Wu. Chemical states of metal-loaded titania in the photoreduction of CO2. Catalysis Today,2004, Vol.97 (2-3):113-119.
    [59]H. Tsuneoka, K. Teramura, T. Shishido, et al. Adsorbed Species of CO2 and H2 on Ga2O3 for the Photocatalytic Reduction of CO2. The Journal of Physical Chemistry C,2010, Vol.114 (19): 8892-8898.
    [60]P.W. Baumeister. Optical Absorption of Cuprous Oxide. Physical Review,1961, Vol.121 (2): 359-362.
    [61]C. Uihlein, D. Frohlich, R. Kenklies. Investigation of Exciton Fine-Structure in Cu2O. Physical Review B,1981, Vol.23 (6):2731-2740.
    [62]R.G. Kaufman, R.T. Hawkins. Vacancy Vacancy Interaction in the Excitation-Spectra of Lattice Perturbation Bands in Cu2O. Journal of Luminescence,1984, Vol.31-2 (Dec):509-511.
    [63]J. Ghijsen, L.H. Tjeng, J. Vanelp, et al. Electronic-Structure of Cu2O and CuO. Physical Review B,1988, Vol.38 (16):11322-11330.
    [64]K.H. Schulz, D.F. Cox. Photoemission and Low-Energy-Electron-Diffraction Study of Clean and Oxygen-Dosed Cu2O (111) and (100) Surfaces. Physical Review B,1991, Vol.43 (2):1610-1621.
    [65]D.F. Cox, K.H. Schulz. Interaction of CO with Cu+ Cations - CO Adsorption on Cu2O(100). Surface Science,1991, Vol.249 (1-3):138-148.
    [66]D.F. Cox, K.H. Schulz. H2O Adsorption on Cu2O(100). Surface Science,1991, Vol.256 (1-2): 67-76.
    [67]J.Y. Lin, J.A. May, S.V. Didziulis, et al. Variable-Energy Photoelectron Spectroscopic Studies of H2S Chemisorption on Cu2O and ZnO Single-Crystal Surfaces - HS- Bonding to Copper(I) and Zinc(Ii) Sites Related to Catalytic Poisoning. Journal of the American Chemical Society,1992, Vol. 114 (12):4718-4727.
    [68]K.H. Schulz, D.F. Cox. Reaction Pathways of C3 Carboxylates on Cu2O(100) - Acrylic and Propionic-Acid Decomposition. Journal of Physical Chemistry,1992, Vol.96 (18):7394-7398.
    [69]H. Kirk. structrue sensitivity in selective oxidation of propene over Cu2O surfaces.1993, Vol.
    [70]K.H. Schulz, D.F. Cox. Propene Oxidation over Cu2O Single-Crystal Surfaces - a Surface Science Study of Propene Activation at 1-Atm and 300-K. Journal of Catalysis,1993, Vol.143 (2): 464-480.
    [71]Y.H. Duan, K.M. Zhang, X.D. Xie. Theoretical-Studies of CO and NO on CuO and Cu2O(110) Surfaces. Surface Science,1994, Vol.321 (3):L249-L254.
    [72]M. Fernandezgarcia, J.C. Conesa, P.S. Bagus, et al. Bonding Geometry and Mechanism of NO Adsorbed on Cu2O(111) - NO Activation by Cu+ Cations. Journal of Chemical Physics,1994, Vol. 101(11):10134-10139.
    [73]M.A. Nygren, L.G.M. Pettersson. H2O interaction with the polar Cu2O(100) surface: A theoretical study. Journal of Physical Chemistry,1996, Vol.100 (5):1874-1878.
    [74]T. Bredow, G. Pacchioni. Comparative periodic and cluster ab initio study on Cu2O(111)/CO. Surface Science,1997, Vol.373 (1):21-32.
    [75]M. Casarin, C. Maccato, A. Vittadini. A comparative study of CO and NO chemisorption on Cu2O(111) and Ag2O(111) non-polar surfaces. Chemical Physics Letters,1997, Vol.280 (1-2):53-58.
    [76]M. Casarin, A. Vittadini. A theoretical study of the CO and NO chemisorption on Cu2O(111). Surface Science,1997, Vol.387 (1-3):L1079-L1084.
    [77]M. Casarin, C. Meccato, A. Vittadini. A theoretical study of the CO and NO chemisorption on Cu2O(111) (vol 387, pg L1079,1997). Surface Science,1998, Vol.399 (1):132-132.
    [78]T. Bredow, A.M. Marquez, G. Pacchioni. Analysis of electronic contributions to the vibrational frequency of CO/Cu2O(111). Surface Science,1999, Vol.430 (1-3):137-145.
    [79]M. Casarin, C. Maccato, A. Vittadini. A comparative study of the NH3 chemisorption on ZnO(1010) and Cu2O(111) non-polar surfaces. Chemical Physics Letters,1999, Vol.300 (3-4): 403-408.
    [80]Y. Jiang, J.B. Adams, D.H. Sun. Benzotriazole adsorption on Cu2O(111) surfaces:A first-principles study. Journal of Physical Chemistry B,2004, Vol.108 (34):12851-12857.
    [81]M. Altarawneh, M.W. Radny, P.V. Smith, et al. Adsorption of 2-chlorophenol on Cu2O(111)-Cucus:A first-principles density functional study. Applied Surface Science,2010, Vol.256 (15):4764-4770.
    [82]W.K. Chen, B.Z. Sun, X. Wang, et al. The role of surface oxygen vacancy in N2O decomposition on Cu2O(111) surface:A DFT study. Journal of Theoretical & Computational Chemistry,2008, Vol.7 (2):263-276.
    [83]B.Z. Sun, W.K. Chen, J.D. Zheng, et al. Roles of oxygen vacancy in the adsorption properties of CO and NO on Cu2O(111) surface:Results of a first-principles study. Applied Surface Science,2008, Vol.255(5):3141-3148.
    [84]B.Z. Sun, W.K. Chen, Y. Li, et al. A DFT Study of CO Adsorption on the Cu2O(111) Surface with Oxygen Vacancy. Chinese Journal of Structural Chemistry,2009, Vol.28 (3):311-314.
    [85]M. Hara, T. Kondo, M. Komoda, et al. Cu2O as a photocatalyst for overall water splitting under visible light irradiation. Chemical Communications,1998, Vol. (3):357-358.
    [86]P.E. de Jongh, D. Vanmaekelbergh, J.J. Kelly. Cu2O: a catalyst for the photochemical decomposition of water? Chemical Communications,1999, Vol. (12):1069-1070.
    [87]K.A. Khan, J.F. Kos. Photocurrent Characteristics in Cu2O/Pt and Cu2O/TiO2 Photoelectrochemical Cells in Aqueous and Nonaqueous Electrolytes. Pramana,1986, Vol.26 (3): 277-281.
    [88]M. Takeuchi, F.L. Weichman, K. Morosawa, et al. Photoelectrochemical Behavior of Cu2O Single-Crystals in Liquid Electrolytes. Applied Surface Science,1988, Vol.33-4 972-979.
    [89]A. Aruchamy, A. Fujishima. Photoanodic Behavior of Cu2O Corrosion Layers on Copper Electrodes. Journal of Electroanalytical Chemistry,1989, Vol.272 (1-2):125-136.
    [90]Y. Bessekhouad, D. Robert, J.V. Weber. Photocatalytic activity of Cu2O/TiO2, Bi2O3/TiO2 and ZnMn2O4/TiO2 heterojunctions. Catalysis Today,2005, Vol.101 (3-4):315-321.
    [91]M.K.I. Senevirathna, P.K.D.D.P. Pitigala, K. Tennakone. Water photoreduction with Cu2O quantum dots on TiO2 nano-particles. Journal of Photochemistry and Photobiology a-Chemistry,2005, Vol.171 (3):257-259.
    [92]S. Somasundaram, C.R.N. Chenthamarakshan, N.R. de Tacconi, et al. Photocatalytic production of hydrogen from electrodeposited p-Cu2O film and sacrificial electron donors. International Journal of Hydrogen Energy,2007, Vol.32 (18):4661-4669.
    [93]J.N. Nian, C.C. Hu, H. Teng. Electrodeposited p-type Cu2O for H2 evolution from photoelectrolysis of water under visible light illumination. International Journal of Hydrogen Energy, 2008, Vol.33 (12):2897-2903.
    [94]Z.H. Ai, L.Z. Zhang, S.C. Lee, et al. Interfacial Hydrothermal Synthesis of Cu@Cu2O Core-Shell Microspheres with Enhanced Visible-Light-Driven Photocatalytic Activity. Journal of Physical Chemistry C,2009, Vol.113 (49):20896-20902.
    [95]D. Barreca, P. Fornasiero, A. Gasparotto, et al. The Potential of Supported Cu2O and CuO Nanosystems in Photocatalytic H2 Production. Chemsuschem,2009, Vol.2 (3):230-233.
    [96]C.H. Han, Z.Y. Li, J.Y. Shen. Photocatalytic degradation of dodecyl-benzenesulfonate over TiO2-Cu2O under visible irradiation. Journal of Hazardous Materials,2009, Vol.168 (1):215-219.
    [97]S. Kakuta, T. Abe. Structural Characterization of Cu2O After the Evolution of H2 under Visible Light Irradiation. Electrochemical and Solid State Letters.2009, Vol.12 (3):P1-P3.
    [98]K.L. Sowers, A. Fillinger. Crystal Face Dependence of p-Cu2O Stability as Photocathode. Journal of the Electrochemical Society,2009, Vol.156 (5):F80-F85.
    [99]B. Zhou, Z.G. Liu, H.X. Wang, et al. Experimental Study on Photocatalytic Activity of Cu2O/Cu Nanocomposites Under Visible Light. Catalysis Letters,2009, Vol.132 (1-2):75-80.
    [100]Y.L. Du, N. Zhang, C.M. Wang. Photo-catalytic degradation of trifluralin by SnO2-doped Cu2O crystals. Catalysis Communications,2010, Vol.11 (7):670-674.
    [101]Y. Zhang, B. Deng, T.R. Zhang, et al. Shape Effects of Cu2O Polyhedral Microcrystals on Photocatalytic Activity. Journal of Physical Chemistry C,2010, Vol.114(11):5073-5079.
    [102]S. Ohya, S. Kaneco, H. Katsumata, et al. Electrochemical reduction of CO2 in methanol with aid of CuO and Cu2O. Catalysis Today,2009, Vol.148 (3-4):329-334.
    [103]T.Y. Chang, R.M. Liang, P.W. Wu, et al. Electrochemical reduction of CO2 by Cu2O-catalyzed carbon clothes. Materials Letters,2009, Vol.63 (12):1001-1003.
    [104]G.C. Wang, J. Ling, Y. Morikawa, et al. Cluster and periodic DFT calculations of adsorption and activation of CO2 on the Cu(hkl) surfaces. Surface Science,2004, Vol.570 (3):205-217.
    [105]G. Kovas, G. Schubert, F. Jo, et al. Theoretical investigation of catalytic HCO3- hydrogenation in aqueous solutions. Catalysis Today,2006, Vol.115 (1-4):53-60.
    [106]Q.-J. Hong, Z.-P. Liu. Mechanism of CO2 hydrogenation over Cu/ZrO2(212) interface from first-principles kinetics Monte Carlo simulations. Surface Science,2010, Vol.604 (21-22): 1869-1876.
    [107]W. Heisenberg. Uber quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen. Zeitschrift fur Physik A Hadrons and Nuclei,1925, Vol.33 (1):879-893.
    [108]E. Schrodinger. An Undulatory Theory of the Mechanics of Atoms and Molecules. Physical Review,1926, Vol.28 (6):1049-1070.
    [109]P.A.M. Dirac. The Quantum Theory of the Electron. Proceedings of the Royal Society of London. Series A,1928, Vol.117 (778):610-624.
    [110]W. Heitler, F. London. Wechselwirkung neutraler Atome und homoopolare Bindung nach der Quantenmechanik. Zeitschrift fur Physik,1927, Vol.44 (6-7):455-472.
    [111]L. Pauling. The Nature of the Chemical Bond. Application of Results Obtained From The Quantum Mechanics and From a Theory of Paramagnetic Susceptibility To the Structure of Molecules. J. Am. Chem. Soc,1931, Vol.53 (4):1367-1400.
    [112]R.S. Mulliken. The Assignment of Quantum Numbers for Electrons in Molecules. I. Physical Review,1928, Vol.32 (2):186-222.
    [113]E. Huckel. Quantentheoretische Beitrage zum Benzolproblem. Zeitschrift fur Physik A Hadrons and Nuclei,1931, Vol.70 (3):204-286.
    [114]A. Corlin, J.S. Stein, G. Beck, et al. Zuschriften. Naturwissenschaften,1931, Vol.19 (2):37-39.
    [115]L.H. Thomas. The calculation of atomic fields. Mathematical Proceedings of the Cambridge Philosophical Society,1927, Vol.23 (05):542-548.
    [116]P. Hohenberg, W. Kohn. Inhomogeneous Electron Gas. Physical Review,1964, Vol.136 (3B): B864-B871.
    [117]W. Kohn, L.J. Sham. Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review,1965, Vol.140 (4A):A1133-A1138.
    [118]徐光宪,黎乐民,王民德,量子化学:基本理论与从头算法,北京,科学出版社,2004.
    [119]林梦海,量子化学计算方法与应用,北京,科学出版社,2004.
    [120]P. Geerlings, F. De Pro ft, W. Langenaeker. Conceptual Density Functional Theory. Chem. Rev., 2003, Vol.103(5):1793-1874.
    [121]赵成大,固体量子化学:材料化学的理论基础,第二版,北京,高等教育出版社,2003.
    [122]N. Argaman, G. Makov. Density functional theory: An introduction. American Journal of Physics,2000, Vol.68 (1):69-79.
    [123]李震宇,贺伟,杨金龙.密度泛函理论及其数值方法新进展.化学进展,2005,Vol.17(2):192-202.
    [124]J.P. Perdew, K. Schmidt. Jacob's ladder of density functional approximations for the exchange-correlation energy. AIP Conference Proceedings,2001, Vol.577 (1):1-20.
    [125]J.P. Perdew, A. Ruzsinszky, J. Tao, et al. Prescription for the design and selection of density functional approximations:More constraint satisfaction with fewer fits. The Journal of Chemical Physics,2005, Vol.123 (6):062201.
    [126]X. Cao, M. Dolg. Pseudopotentials and modelpotentials. Wiley Interdisciplinary Reviews: Computational Molecular Science,2011, Vol.1 (2):200-210.
    [127]S. Huzinaga, A.A. Cantu. Theory of Separability of Many-Electron Systems. The Journal of Chemical Physics,1971, Vol.55 (12):5543-5549.
    [128]V. Bonifacic, S. Huzinaga. Atomic and molecular calculations with the model potential method. I. The Journal of Chemical Physics,1974, Vol.60 (7):2779-2786.
    [129]S. Huzinaga, L. Seijo, Z. Barandiaran, et al. The ab initio model potential method. Main group elements. The Journal of Chemical Physics,1987, Vol.86 (4):2132-2145.
    [130]H. Hellmann. A New Approximation Method in the Problem of Many Electrons. The Journal of Chemical Physics,1935, Vol.3 (1):61-61.
    [131]J. Meister, W.H.E. Schwarz. Principal Components of lonicity. J. Phys. Chem.,1994, Vol.98 (33):8245-8252.
    [132]K. Jug, T. Bredow. Models for the treatment of crystalline solids and surfaces. Journal of Computational Chemistry,2004, Vol.25 (13):1551-1567.
    [133]C.J. Cramer, Essentials of Computational Chemistry:Theories and Models, Second Edition ed., 2004.
    [134]R.F.W. Bader. A quantum theory of molecular structure and its applications. Chem. Rev.,1991, Vol.91 (5):893-928.
    [135]M.S. Jose, et al. The SIESTA method for ab initio order-N materials simulation. Journal of Physics:Condensed Matter,2002, Vol.14 (11):2745.
    [136]M.J. Frisch, G.W. Trucks, H.B. Schlegel, et al. Gaussian 03, Revision C.02.2003, Vol.
    [137]L.J. Broadbelt, R.Q. Snurr. Applications of molecular modeling in heterogeneous catalysis research. Applied Catalysis A:General,2000, Vol.200 (1-2):23-46.
    [138]R.A. van Santen. Computational-chemical advances in heterogeneous catalysis. Proceedings of the 8th International Symposium on the Relations between Homogeneous and Heterogeneous Catalysis,1996, Vol.107 (1-3):5-12.
    [139]J. Sauer. Molecular models in ab initio studies of solids and surfaces:from ionic crystals and semiconductors to catalysts. Chemical Reviews,1989, Vol.89 (1):199-255.
    [140]Z.K. Zheng, B.B. Huang, Z.Y. Wang, et al. Crystal Faces of Cu2O and Their Stabilities in Photocatalytic Reactions. Journal of Physical Chemistry C,2009, Vol.113 (32):14448-14453.
    [141]B.Z. Sun, W.K. Chen, Y.J. Xu. Coadsorption of CO and NO on the Cu2O(111) surface:A periodic density functional theory study. Journal of Chemical Physics,2009, Vol.131 (17):174503
    [142]B.Z. Sun, W.K. Chen, S.H. Liu, et al. A DFT study on the chemisorption of NO on Cu2O(111) surface. Chinese Journal of Inorganic Chemistry,2006, Vol.22 (7):1215-1221.
    [143]A. Soon, T. Sohnel, H. Idriss. Plane-wave pseudopotential density functional theory periodic slab calculations of CO adsorption on Cu2O(111) surface. Surface Science,2005, Vol.579 (2-3): 131-140.
    [144]B.-Z. Sun, W.-K. Chen, Y.-J. Xu. Reaction mechanism of CO oxidation on Cu2O(111):A density functional study. The Journal of Chemical Physics,2010, Vol.133 (15):154502-154507.
    [145]Z.J. Zuo, W. Huang, P.D. Han, et al. Solvent effects for CO and H2 adsorption on Cu2O (111) surface: A density functional theory study. Applied Surface Science,2010, Vol.256 (8):2357-2362.
    [146]B.Z. Sun, W.K. Chen, X.L. Xu. Theoretical studies of the adsorption and dissociation of two NO molecules on Cu2O(111) surface. Acta Physico-Chimica Sinica,2006, Vol.22 (9):1126-1131.
    [147]B.Z. Sun, W.K. Chen, X. Wang, et al. A theoretical study of O2 adsorption and dissociation on Cu2O(111) surface. Chinese Journal of Inorganic Chemistry,2008, Vol.24 (3):340-350.
    [148]M. Casarin, C. Maccato, N. Vigato, et al. A theoretical study of the H2O and H2S chemisorption on Cu2O(111). Applied Surface Science,1999,Vol.142(1-4):164-168.
    [149]A. Onsten, M. Gothelid, U.O. Karlsson. Atomic structure of Cu2O(111). Surface Science,2009, Vol.603 (2):257-264.
    [150]M.M. Islam, B. Diawara, V. Maurice, et al. Bulk and surface properties of Cu2O:A first-principles investigation. Journal of Molecular Structure-Theochem,2009, Vol.903 (1-3):41-48.
    [151]M.M. Islam, B. Diawara, V. Maurice, et al. First principles investigation on the stabilization mechanisms of the polar copper terminated Cu2O(111) surface. Surface Science,2009, Vol.603 (13): 2087-2095.
    [152]G Pacchioni. Oxygen Vacancy: The Invisible Agent on Oxide Surfaces. ChemPhysChem,2003, Vol.4(10):1041-1047.
    [153]J.A. Dean, J.-f. Shang, Lange's handbook of chemistry (in Chinese), Beijing, Science Press, 1991.
    [154]M.E. Straumanis, L.S. Yu. Lattice parameters, densities, expansion coefficients and perfection of structure of Cu and of Cu-In [alpha] phase. Acta Crystallographica Section A,1969, Vol.25 (6): 676-682.
    [155]R. Restori, D. Schwarzenbach. Charge density in cuprite, Cu2O. Acta Crystallographica Section B,1986, Vol.42 (3):201-208.
    [156]M.H. Manghnani, W.S. Brower, H.S. Parker. Anomalous elastic behavior in Cu2O under pressure. physica status solidi (a),1974, Vol.25 (1):69-76.
    [157]A. Werner, H.D. Hochheimer. High-pressure x-ray study of Cu2O and Ag2O. Physical Review B, 1982, Vol.25 (9):5929.
    [158]D.R. Lide, CRC Handbook of Chemistry and Physics, internet Version 2007, CRC, Boca Raton, FL,2007.
    [159]A. Martinez-Ruiz, M.G. Moreno, N. Takeuchi. First principles calculations of the electronic properties of bulk Cu2O, clean and doped with Ag, Ni, and Zn. Solid State Sciences,2003, Vol.5 (2): 291-295.
    [160]G. Henkelman, A. Amaldsson, H. Jonsson. A fast and robust algorithm for Bader decomposition of charge density. Computational Materials Science,2006, Vol.36 (3):354-360.
    [161]T. Lippmann, J.R. Schneider. Topological analyses of cuprite, Cu2O, using high-energy synchrotron-radiation data. Acta Crystallographica Section A,2000, Vol.56 (6):575-584.
    [162]R. Laskowski, P. Blaha, K. Schwarz. Charge distribution and chemical bonding in Cu2O. Physical Review B,2003, Vol.67 (7)
    [163]Z. Yang, L.A. Zhansheng, G. Luo, et al. Oxygen vacancy formation energy at the Pd/CeO2(111) interface. Physics Letters A,2007, Vol.369 (1-2):132-139.
    [164]B. Li, H. Metiu. DFT Studies of Oxygen Vacancies on Undoped and Doped La2O3 Surfaces. The Journal of Physical Chemistry C,2010, Vol.114(28):12234-12244.
    [165]S.R. Bahn, K.W. Jacobsen. An object-oriented scripting interface to a legacy electronic structure code. Computing in Science & Engineering,2002, Vol.4 (3):56-66.
    [166]I.F. Galvan, M.J. Field. Improving the efficiency of the NEB reaction path finding algorithm. J Comput Chem,2008, Vol.29 (1):139-143.
    [167]G. Henkelman, H. Jonsson. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. The Journal of Chemical Physics,2000, Vol.113 (22):9978-9985.
    [168]G. Henkelman, B.P. Uberuaga, H. Jonsson. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. The Journal of Chemical Physics,2000, Vol.113 (22):9901-9904.
    [169]Y. Hori, S. Suzuki. Electrolytic Reduction of Bicarbonate Ion at a Mercury Electrode. Journal of the Electrochemical Society,1983, Vol.130 (12):2387-2390.
    [170]C.J. Stalder, S. Chao, M.S. Wrighton. Electrochemical reduction of aqueous bicarbonatc to formate with high current efficiency near the thermodynamic potential at chemically denvatized electrodes. Journal of the American Chemicai Society,1984, Vol.106 (12):3673-3675.
    [171]C.J. Stalder, S. Chao, D.P. Summers, et al. Supported palladium catalysts for the reduction of sodium bicarbonate to sodium formate in aqueous solution at room temperature and one atmosphere of hydrogen. Journal of the American Chemical Society,1983, Vol.105 (20):6318-6320.
    [172]A.D. Becke. Density-Functional Exchange-Energy Approximation with Correct Asymptotic-Behavior. Physical Review A,1988, Vol.38 (6):3098-3100.
    [173]C.T. Lee, W.T. Yang, R.G. Parr. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron-Density. Physical Review B,1988, Vol.37 (2):785-789.
    [174]A.D. Becke. Density-Functional Thermochemistry.3. The Role of Exact Exchange. Journal of Chemical Physics,1993, Vol.98 (7):5648-5652.
    [175]徐昕,吕鑫,王南钦,等.金属氧化物表面化学吸附和反应的量子化学簇模型方法研究(英文).物理化学学报,2004,(特辑1):1045-1054.
    [176]吕鑫,徐听,王南钦,等.簇模型选取的配位数原则——CO/ZnO吸附体系的ab initio研究.高等学校化学学报,1998,Vo1.(5):783-788.
    [177]吕鑫,徐听,王南钦,等.CO在Cu/ZnO上吸附的簇模型研究.物理化学学报,1997,Vol.13(11):1005-1009.
    [178]P. Huang, E.A. Carter. Advances in correlated electronic structure methods for solids, surfaces, and nanostructures. Annu Rev Phys Chem,2008, Vol.59 261-290.
    [179]I. Czekaj, J. Wambach, O. Krocher. Modelling Catalyst Surfaces Using DFT Cluster Calculations. International Journal of Molecular Sciences,2009, Vol.10 (10):4310-4329.
    [180]V.A. Glezakou, W.A. deJong. Cluster-models for uranyl(Ⅵ) adsorption on alpha-alumina. J Phys Chem A,2011, Vol.115(7):1257-1263.
    [181]W.R. Wadt, P.J. Hay. Abinitio Effective Core Potentials for Molecular Calculations-Potentials for Main Group Elements Na to Bi. Journal of Chemical Physics,1985, Vol.82 (1):284-298.
    [182]P.S. Bagus, C.W. Bauschlicher, C.J. Nelin, et al. A Proposal for the Proper Use of Pseudopotentials in Molecular-Orbital Cluster Model Studies of Chemisorption. Journal of Chemical Physics,1984, Vol.81 (8):3594-3602.
    [183]G. Pacchioni, G. Cogliandro, P.S. Bagus. Molecular-Orbital Cluster Model Study of Bonding and Vibrations of CO Adsorbed on MgO Surface. International Journal of Quantum Chemistry,1992, Vol.42 (5):1115-1139.
    [184]X. Xu, H. Nakatsuji, M. Ehara, et al. SPC cluster modeling of metal oxides:ways of determining the values of point charges in the embedded cluster model. Science in China Series B: Chemistry,1998, Vol.41 (2):113-121.
    [185]X. Lu, X. Xu, N. Wang, et al. N2O Decomposition on MgO and Li/MgO Catalysts:A Quantum Chemical Study. The Journal of Physical Chemistry B,1999, Vol.103 (17):3373-3379.
    [186]S.F. Boys, F. Bernardi. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Molecular Physics,2002, Vol.100 (1): 65-73.
    [187]X. Deng, A. Verdaguer, T. Herranz, et al. Surface Chemistry of Cu in the Presence of CO2 and H2O. Langmuir,2008, Vol.24 (17):9474-9478.
    [188]C. Doornkamp, V. Ponec. The universal character of the Mars and Van Krevelen mechanism. Proceedings of the 8th International Symposium on the Relations between Homogeneous and Heterogeneous Catalysis,2000, Vol.162 (1-2):19-32.
    [189]J. Gracia, F. Prinsloo, J. Niemantsverdriet. Mars-van Krevelen-like Mechanism of CO Hydrogenation on an Iron Carbide Surface. Catalysis Letters,2009, Vol. i33 (3):257-261.
    [190]M.V. Ganduglia-Pirovano, A. Hofmann, J. Sauer. Oxygen vacancies in transition metal and rare earth oxides:Current state of understanding and remaining challenges. Surface Science Reports,2007, Vol.62 (6):219-270.
    [191]R. Zhang, H. Liu, H. Zheng, et al. Adsorption and dissociation of O2 on the Cu2O(111) surface: Thermochemistry, reaction barrier. Applied Surface Science,2011, Vol.257 (11):4787-4794.
    [192]R. Zhang, B. Wang, L. Ling, et al. Adsorption and dissociation of H2 on the Cu2O(111) surface: A density functional theory study. Applied Surface Science,2010, Vol.257 (4):1175-1180.
    [193]B.Z. Sun, W.K. Chen, X. Wang, et al. A density functional theory study on the adsorption and dissociation of N2O on Cu2O(111) surface. Applied Surface Science,2007, Vol.253 (18):7501-7505.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700