PANI-PVAm/PS纳米复合膜的制备及其CO_2/N_2渗透选择性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
捕集CO_2等酸性气体的膜分离技术研究已经成为关于能源和环境问题的重大课题之一。固定载体膜是一种用于CO_2捕集很有发展前景的气体分离膜。然而,捕集CO_2的固定载体膜尚处于前期开发阶段,还存在着膜材料种类少以及膜结构难以调控而导致膜性能有待提高的问题。本文首次将多种形貌聚苯胺(PANI)纳米粒子与固定载体膜材料聚乙烯胺(PVAm)混合,制备了一系列具有高CO_2/N_2渗透选择性能的新型CO_2分离膜。
     采用化学氧化聚合的方法制备出一系列具有不同形貌的盐酸掺杂的聚苯胺纳米粒子,包括聚苯胺纳米纤维,网状聚苯胺纳米纤维,聚苯胺纳米片。利用溶液共混法制备PANI纳米粒子-PVAm/聚砜(PS)复合膜。利用多种测试手段分析了所制膜的结构。使用CO_2/N_2纯气及混合气(体积比20/80)考察了膜的气体渗透性能。结果表明,PANI纳米粒子的加入扰乱了PVAm链段的堆积,从而减小了膜的结晶度,增加了膜的自由体积,由此提高了膜CO_2/N_2的渗透性能;PANI纳米粒子对于CO_2具有很好的渗透性;PANI纳米粒子对N_2的渗透具有阻隔作用,具有高形状比的PANI纳米片具有最好的N_2阻隔作用;PVAm使得PANI纳米粒子脱掺杂,脱掺杂导致PANI纳米粒子自由体积增加,更有利于小分子CO_2的渗透。
     考察了不同掺杂剂掺杂的PANI纳米粒子与PVAm混合制备的纳米复合膜CO_2/N_2渗透选择性能,发现采用水合离子半径小的掺杂剂掺杂的PANI纳米粒子与PVAm混合制备的纳米复合膜具有更高的CO_2/N_2选择性。
     研究了PANI纳米粒子的掺杂/脱掺杂过程对PANI-PVAm/PS膜的结构和性能的影响。发现通过PANI纳米粒子的掺杂/脱掺杂过程可以实现膜的微观结构的调控,从而提高膜的CO_2/N_2渗透选择性能。
     分析表明聚苯胺纳米颗粒-聚乙烯胺/聚砜复合膜具有理想的气体传递特性,这一特性导致该复合膜具有很好的CO_2/N_2渗透选择性能。
CO_2capture is one of the most important subjects about energy and environment.Fixed carrier membrane is a kind of promising gas separation membrane for CO_2capture. However, fixed carrier membrane for CO_2capture is in an early developmentstage, its performance is not very high due to few membrane materials and thedifficulty in structure control of membrane. In this paper, polyaniline (PANI)nanoparticles with various morphologies were added to the fixed carrier membranematerial polyvinylamine (PVAm) and a series of new membranes with remarkablehigh CO_2/N_2permselectivity were developed.
     Polyaniline nanofibers, netlike polyaniline nanofibers and polyaniline nanosheetswere prepared by chemical oxidative polymerization. The PANI-PVAm/polysulfone(PS) nanocomposite membranes were prepared by solution blending. Severaltechniques were employed to characterize the structure of the membrane.Thepermselectivity of nanocomposite membranes was investigated by the pure CO_2andN_2gases and gas mixture containing20vol.%CO_2and80vol.%N_2. The resultsdemonstrate that the inclusion of the PANI nanoparticles to PVAm increases the gasCO_2/N_2permeance of the membranes due to chain packing disruption of PVAmthereby decreasing crystallinity of the membrane and increasing free volume of themembrane; PANI nanoparticles have good CO_2permeance; PANI nanoparticles haveN_2barrier property and the PANI nanosheets due to high aspect ratio have the betterN_2barrier property than other PANI nanoparticles; the PANI nanoparticles werededoped by a reaction of PANI nanoparticles with PVAm; the increased free volumeof PANI nanoparticles by the reaction of PANI nanoparticles with PVAm was moreconducive to CO_2permeance through the PANI nanoparticles.
     The effect of dopant species of PANI on the performance of the PANI-PVAm/PSnanocomposite membranes was investigated. It was found that dopant with small sizeof hydrated ion was more conducive to CO_2/N_2selectivity.
     The effect of doping/dedoping process of PANI nanoparticles on structure andperformance of the nanocomposite membrane was investigated. The resultsdemonstrated that the microstructure of the membrane can be tuned by doping/dedoping process of PANI nanoparticles and thus good CO_2/N_2permselectivity of the nanocomposite membranes was obtained.
     The gas transport characteristic in PANI-PVAm/PS membranes was analysed,which indicated that the characteristic is beneficial for improving the CO_2/N_2separation performance of the membranes.
引文
[1] Mitchell J. K., On the penetrativeness of fluids, American Journal of Medicine,1830,13:36-67
    [2] Henis J. M. S., Tripodi M. K., A novel approach to gas separations usingcomposite hollow fiber membranes, Sep. Puri. Tech.,1980,15:1059~1068
    [3] Baker R. W., Future directions of membrane gas separation technology, Ind. Eng.Chem. Res.,2002,41:1393~1411
    [4] Henis J. M. S., Paul D. R., Yampol Skii Y. P., Commercial and practical aspectsof gas separation membranes, in Polymeric Gas Separation Membranes, Eds.:CRC Press: Boca Raton, FL,1994
    [5]时钧,袁权,高从堦,膜技术手册,北京:化学工业出版社,2001
    [6] Baker R. W., Future directions of membrane gas separation technology, Ind. Eng.Chem. Res.,2002,41:1393-1411
    [7] Figueroa, J. D., Fout T., Plasynski S., McIlvried H., Srivastava R. D., Advances inCO2capture technology—the U.S. department of energy’s carbon sequestrationprogram, International Journal of Greenhouse gas control,2008,2:9-20
    [8]李建基,电力行业如何应对全球变暖与温室气体,高科技与产业化,2009,5:106-108
    [9] IPCC, Climate change2001-the science of climate change, Technical summary ofthe working group I report,Cambridge university,2002,28-47
    [10] http://www.unfccc.int
    [11] http://baike.baidu.com/view/3064595.htm
    [12] http://baike.baidu.com/view/3096428.htm
    [13] http://unfccc.int/ghg_data/ghg data unfece/items/4146.php
    [14] hnp://news.xinhuanet.corn/polities/2009-11//26/contem_12545939.htm
    [15]胡秀莲,姜克隽,中国温室气体减排技术选择及对策评价,北京:中国环境科学出版社,2001
    [16] Herzog H. J., What Future for Carbon Capture and sequestration, Environ. Sci.Technol.,2001,35:148-153
    [17] Lal R. Sequestration of atmospheric CO2in global carbon pools, Energy Environ.Sci.,2008,1:86-100
    [18] Song C S. Global challenges and strategies for control,conversion and utilizationof CO2for sustainable development involving energy, catalysis, adsorption andchemical processing, Catal. Today,2006,115:2-32
    [19] Aresta M., Dibenedetto A., Utilisation of CO2as a chemical feedstockopportunities and challenges, Dalton Trans.,2007,27:2975-2992
    [20] Yu K.M. K.,Curcic I.,Gabriel J.,et al. Recent advances in CO2capture andutilization, Chem. Sus. Chem,2008,1:893-899
    [21] Ma J.,Sun N. N.,Zhang X. L. et al., A short review of catalysis for CO2Conversion, Catal. Today,2009,148:221-231
    [22] Liang X. L.,Dong X.,Lin G. D.,et al., Carbon nanotube-supported Pd-ZnOcatalyst for hydrogenation of CO2to methanol, Appl. Catal. B,2009,88:315-322
    [23]金红光,张希良,高林,岳立,何建坤,蔡睿贤,控制CO2排放的能源科技战略综合研究,中国科学E辑:技术科学,2008,38(9):1495-1506
    [24] Metz B., Davidson O., Coninck H. D., Loos M., Meyer L., Special report oncarbon dioxide and storage, International Panel on Climate Change, Geneva,Switzerland,2005
    [25]孙丽梅,白艳英,CO2温室气体减排现状及对策,上海电力学院学报,2010,26(3):237-241
    [26]黄黎明,陈赓良,二氧化碳的回收利用与捕集储存,石油与天然气化工,2006,35(5):354-358
    [27]王政伟,吕宏伟,张光斌,富氧燃烧技术及其节能环保特性分析,化工机械,2011,38(3):260-263
    [28] http://www.ieagreen.org.uk
    [29]刘振东,最新实用节能手册,北京:地震出版社,1994
    [30]毛松柏,NCMA法脱碳新技术及应用,化学工业与工程技术,2007,28(3):1-3
    [31] Zhang J, Xiao P, Li G, et al., Effect of flue gas impurities on CO2captureperformance from flue gas at coal-fired power stations by vacuum swing adsorption,Energy Procedia,2009,1(1):1115-1122
    [32]费维扬,艾宁,陈健,温室气体的捕集和分离-分离技术面临的挑战与机遇,化工进展,2005,24(1):1-4
    [33]Pandey P., Chauhan R. S., Membranes for gas separation, Prog. Polym. Sci.,2001,26:853-893
    [34]刘茉娥等,膜分离技术,北京:化学工业出版社,1998,1
    [35] Cook P. J., Carbon dioxide capture&storage, Research Development&Demonstration In Australia, A Technology Roadmap,2004
    [36] Barrie J., Gupta M., CO2capture and storage technology roadmap, CanadianCC&S Technology Roadmap,2005
    [37] Evan J. G., Thomas O. B., Review of novel methods for carbon dioxideseparation from flue and fuel gases, Fuel Process. Technol.,2005,86:1423-1434
    [38] Mulder M.著,李琳译,Basic principles of membrane technology,2nd ed.,膜技术基本原理,北京:清华大学出版社,1999
    [39] Koros W. J., Fleming G. K., Membrane-based gas separation, J. Membr. Sci.,1993,83:1-80
    [40] Asad Javaid, Membranes for solubility-based gas separation applications,J.Chem. Eng.,2005,112:219~226
    [41] Baker R. W., Membrane technology and applications,2nd ed., Chichester,England: John Wiley&Sons,2004
    [42]黄仲涛,曾昭槐,钟邦克,庞先燊,王乐夫,无机膜技术及应用,北京:中国石化出版社,1999
    [43]李传峰,钟顺和,无机膜的气体传递机理和模型,膜科学与技术,2000,20:33-37
    [44] E.L.柯斯乐,扩散-流体系统中的传质,化学工业出版社,2002
    [45] Bauer J. M., Elyassini J., Moncorge G., Nodari T., Totino E., New developmentsand application of carbon membranes, Key Eng. Mater,1991,61/62:207-212
    [46] Koresh J. E., Soffer A., The carbon molecular sieve membranes, Generalproperties and the permeability of CH4/H2mixture, Sep. Sci. Tech,1987,22:973-982
    [47] Shiflett M. B., Foley H C. Ultrasonic deposit ion of hig h selectivity nanoporouscarbon membranes, Science,1999,285:1902-1904
    [48]Zhang B., Wang T. H., Wu Y. H., et al., Peparation and gas permeatio n ofcomposite carbon membr anes from poly (phthalazinone ether sulfone ketone), Sep.Purif. Technol.,2008,60:259-263
    [49] Barsema J. N., Klijnstra S. D., Balster J. H., et al., Intermediate polymer to carbon gas separation membranes based on Matrimid PI, J. Membr.Sci.,2004,238:93-102
    [50] Kusuki Y.,EP0390992,1994
    [51]彭福兵,刘家祺,气体分离膜材料研究进展,化工进展,2002,21(11):820-823
    [52] Nunes S. P., Peinemann K. V., Membrane technology in the chemical industry,Weinheim, Federal Republic of Germany: Wiley-VCH Verlag GmbH,2001
    [53] Graham T., On the law of the diffusion of gases, Philos. Mag.,1988,32:401-420
    [54]汪锰,王湛,李政雄编著,膜材料及其制备,北京:化学工业出版社(材料科学与工程出版中心),2003
    [55] Freeman M., Membranes for gas separation, Chem. Eng. News,2005,83(40):49-57
    [56] Bird R. B., Stewart W. E., Lightfoot E. N., Transport phenomena,2nd ed., NewYork, USA: John Wiley&Sons,2002
    [57]张颖,王志,王世昌,高分子膜结构对气体传递的影响,高分子材料科学与工程,2004,20:24-27
    [58] Fujita H., Diffusion in Polymer-diluent systems, Fortschr. Hochpolym. Forsch,1964,3(3):1-47
    [59] Frisch H. L., Stern S. A., Diffusion of small molecules in polymers, CRC Crit.Rev. Solid State Mater. Sci,1983,11:123-187.
    [60] Ganesh K., Nagrajan R., Duda J. L., Rate of gas transport in glassy polymers: Afree volume based predictive model, Ind. Eng. Chem. Res.,1992,31:746-755
    [61] Odani H., Uchikura M., Kurata M., Permeation of gas mixtures throughpolymer membranes, Polym. Prepr. Am. Chem. Soc. Div. Polym. Chem,1983,24:81-82
    [62] Alentiev A. Y., Yampolskii Y. P., Free volume model and trade off relations ofgas permeability and selectivity in glassy polymers, J. Membr. Sci,2000,165:201-216
    [63] Stern S. A., Fang S. M., Frisch H. L., Effect of pressure on gas permeabilitycoefficients. A new application of “free volume” theory, J. Polym. Sci, Part A-2,1992,10:201-219
    [64] Shantarovich V. P., Kevdina I. B., Yampolskii Yu. P., and Alentiev A. Yu.,Positron Annihilation Lifetime Study of High and Low Free Volume Glassy Polymers:Effects of Free Volume Sizes on the Permeability and Permselectivity,Macromolecules,2000,33:7453-7466
    [65] Vieth W. R., Howell J. M., Hsieh J. H., Dual sorption theory, J. Membr. Sci.,1976,1:177-220
    [66] Paul D. R., Gas sorption and transport in glassy polymers, Ber. Bunsenges. Phys.Chem.,1979,83:294-302
    [67] Danesi P. R., Yinger L. R., Rickert P. G., Lifetime of supported liquidmembranes: the influence of interfacial properties, chemical composition andwater transport on the long-term stability of the membranes, J. Membr. Sci.,1987,31:117-145
    [68] Fabiani C., Merigiola M., Scibona G., Castagnola A. M., Degradation ofsupported liquid membranes under an osmotic pressure gradient, J. Membr. Sci.,1987,30:97-104
    [69] Teramoto M., Takeuchi N., Maki T., Matsuyama H., Facilitated transport ofCO2through liquid membrane accompanied by permeation of carrier solution,Sep. Purif. Technol.,2002,27:25-31
    [70] Kim M.J., Park Y.I., Youm K.H., Lee K.H.,Facilitated transport of CO2throughethylenediamine-fixed cation-exchange polysaccharide membranes, J. Membr.Sci.,2004,245:79-86
    [71] Tarditi A. M., Lombardo E.A., Influence of exchanged cations (Na+, Cs+, Sr2+and Ba2+) on xylene permeation through ZSM-5/SS tubular membranes, Sep. Purif.Technol.,2008,61:136-147
    [72] Danckwerts P. V., Reaction of CO2with ethanolamines, Chem. Eng. Sci.1979,34:443–446
    [73] Zhang Y., Wang Z., Wang S. C., Synthesis and characteristics of novel fixedcarrier membrane for CO2separation, Chem. Lett.2002,31:430-431
    [74] Wang Z., Ling M., Cai Y., Wang J. X., Wang S. C., Novel CO2selectivelypermeating membranes containing PETEDA dendrimer, J. Membr. Sci.2007,290:250-258
    [75] Yu X. W., Wang Z., Wei Z. H., Yuan S. J., Zhao J., Wang J. X., Wang S.C.,Novel tertiary amino containing thin film composite membranes prepared byinterfacial polymerization for CO2capture, J. Membr. Sci.,2010,362:265-278
    [76] Francisco G. J., Chakma A., Feng X. S., Membranes comprising ofalkanolamines incorporated into poly(vinyl alcohol) matrix for CO2/N2separation, J.Membr. Sci.2007,303:54-63
    [77]Wang Z., Lu Q., Li B. A., Wang S. C., Structure and performance of a newcomposite membrane used for CO2separation, Polymer Materials Science andEngineering [in Chinese]2000,16:5-7
    [78] Wang Z., Dong C. M., Lu Q. and Wang S. C., Preparation and CO2separationperformance of polyvinylamine/polyacrylonitrile composite membrane, J Chem. Ind.Eng.[in Chinese]2003,54:1188-1191
    [79] L. Y. Deng, T. J. Kim, M. B. H gg, Facilitated transport of CO2in novel PVAm/PVA blend membrane, J. Membr. Sci.340(2009)154-163.
    [80] Yi C. H., Wang Z., Li M., Wang J. X., Wang S.C., Facilitated transport of CO2through polyvinylamine/polyethylene glycol blend membranes, Desalination2006,193:90-96
    [81] Dong C. M., Wang Z., Yi C. H., Wang S. C., Preparation of polyvinylamine/polysulfone composite hollow-fiber membranes and their CO2/CH4separationperformance, J. Appl. Polym. Sci.2006,101:1885-1891
    [82] Sandru M., Haukeb S. H., H gg M. B., Composite hollow fiber membranes forCO2capture, J. Membr. Sci.,2010,346:172-186
    [83] Yuan S. J., Wang Z., Qiao Z. H., Wang M. M., Wang J. X., Wang S. C.,Improvement of CO2/N2separation characteristics of polyvinylamine by modifyingwith ethylenediamine, J. Membr. Sci.,2011,378:425-437
    [84] Zhen H. F., Wang Z., Li B. A., Wang S. C., A review of polymeric membrane forcarbon dioxide separation, Polymeric Materials Science and Technology [in Chinese],1999,15(6):29-31
    [85] Zhen, H. F., Wang Z., Li B. A., Ren Y., Wang S. C., Gas sorptive property ofnovel membrane used for CO2separation, J Chem. Ind. Eng.[in Chinese],2000,51(6):823-826
    [86] Zhang Y., Wang Z., Wang S. C., Selective permeation of CO2through newfacilitated transport membranes, Desalination,2002,145:385-388
    [87]张颖,王志,伊春海,王纪孝,王世昌,VSA-SA/PS固定载体复合膜的制备及其CO2/CH4分离性能,化工学报,2006,57:163-168
    [88] Zhang Y., Wang Z., Wang S. C., Novel fixed-carrier membranes for CO2separation, J. Appl. Polym. Sci.,2002,86:2222-2226
    [89] El-Azzami L. A., Grulke E. A., Carbon dioxide separation from hydrogen andnitrogen Facilitated transport in arginine salt–chitosan membranes, J. Membr. Sci.,2009,328:15-22
    [90] Nobel R. D., Analysis of facilitated transport with fixed site carrier membrane,J. Membr. Sci,1990,50:207-214
    [91] Nobel R. D., Generalized microscopic mechanism of facilitated transport in fixedsite carrier membrane, J. Membr. Sci,1992,75:121-129
    [92] Cluster E. L., Aris R., Bhown A., On the limits of facilitated diffusion, J. Membr.Sci,1989,43:149-164
    [93] Kang Y. S., Hong J. M., Kim U. Y., Analysis of facilitated transport in solidmembranes with fixed site carriers Ⅰ: single RC circuit model, J. Membr. Sci,1996,109(2):149-157
    [94] Hong J. M., Kang Y. S., Jang J., Analysis of facilitated transport in polymericmembranes with fixed site carriers Ⅱ: single RC circuit model, J. Membr. Sci,1996,109(2):159-163
    [95] Robeson L. M., The upper bound revisited, J. Membr. Sci.2008,346:390-400
    [96] Aroon M. A., Ismail A. F., Matsuura T., Montazer-Rahmati M. M., Performancestudies of mixed matrix membranes for gas separation: A review, Sep. Purif. Technol.2010,75:229-242
    [97] Cong H. L., Radosz M., Towler B. F., Shen Y. Q., Polymer–inorganicnanocomposite membranes for gas separation, Sep. Purif. Technol.2007,55:281-291
    [98] Matteucci S., Kusuma V. A., Sanders D., Swinnea S., Freeman B. D., Gastransport in TiO2nanoparticle-filled poly (1-trimethylsilyl-1-propyne), J. Membr. Sci.2008,307:196-217
    [99] Vu D. Q., Koros W.J., Miller S. J., Mixed matrix membranes using carbonmolecular sieves, I. Preparation and experimental results, J. Membr. Sci.,2003,211:311-334
    [100] Funk C. V., Lloyd D. R., Zeolite-filled microporous mixed matrix (ZeoTIPS)membranes: prediction of gas separation performance, J. Membr. Sci.2008,313:224-231
    [101] Basu S., Cano-Odena A., Vankelecom I. F. J., Asymmetric Matrimid/
    [Cu3(BTC)2] mixed-matrix membranes for gas separations, J. Membr. Sci.,2010,362:478-487
    [102] Ahn J., Chung W. J., Pinnau I., Song J. S., Du N. Y., Robertson G. P., Gastransport behavior of mixed-matrix membranes composed of silica nanoparticles in apolymer of intrinsic microporosity (PIM-1), J. Membr. Sci.,2010,346:280-287
    [103] Xing R., Ho W. S. W., Crosslinked polyvinylalcohol-polysiloxane/fumed silicamixed matrix membranes containing amines for CO2/H2separation, J. Membr. Sci.,2011,367:91-102
    [104] Kim J. K., Hu C., Woo R. S. C., Sham. M. L., Moisture barrier characteristicsof organoclay-epoxy nanocomposites, Compos. Sci. Technol.,2005,65:805-813.
    [105] Kumar S. A., He Y., Ding Y., Yang L., Kumaran M. G., Thomas S.,Membranes gas transport through nano poly(ethylene-co-vinyl acetate) composite, Ind.Eng. Chem. Res.,2008,47:4898-4904
    [106] Nik O. G., Chen X.Y., Kaliaguine S., Amine-functionalized zeolite FAU/EMT-polyimide mixed matrix membranes for CO2/CH4separation, J. Membr. Sci.,2011,379:468–478
    [107] Ge L., Zhu Z.H., Rudolph V., Enhanced gas permeability by fabricatingfunctionalized multi-walled carbon nanotubes and polyethersulfone nanocompositemembrane, Sep. Purif. Technol.,2011,78:76-82
    [108] Sadeghi M., Semsarzadeh M. A., Barikani M., Chenar M. P., Gas separationproperties of polyether-based polyurethane–silica nanocomposite membranes, J.Membr. Sci.,2011,376:188-195
    [109] Gusev A. A. and Guseva O., Rapid mass transport in mixed matrix nanotube/polymer membranes, Adv. Mater.,2007,19:2672-2676
    [110] Iyer P., Iyer G., Coleman M., Gas transport properties of polyimide-POSSnanocomposites, J. Membr. Sci.,2010,358:26-32
    [111] Kong Y., Du H., Yang J., Shi D., Wang Y., Zhang Y., Xin W., Study onpolyimide/TiO2nanocomposite membranes for gas separation, Desalination,2002,146:49-55
    [112]杜宏伟,孔瑛,气体分离用PI/TiO2纳米复合膜的制备,应用化学,2003,20(5):462-465
    [113] Hu Q., Marand E., Dhingra S., Fritsch D., Wen J., Wilkes G.,Poly(amideimide)/TiO2nano-compositegas separation membranes: fabrication and characterization, J.Membr. Sci.,1997,135:65-79
    [114] Merkel T.C., He Z., Pinnau I., Freeman B. D., Meakin P., Hill A. J., Effect ofnanoparticles on gas sorption and transport in poly(1-trimethylsilyl-1-propyne),Macromolecules,2003,36:6844-6855
    [115] Shao L., Samseth J., H gg M. B., Crosslinking and Stabilization ofNanoparticle Filled Poly(1-trimethylsilyl-1-propyne) Nanocomposite Membranes forGas Separations, Journal of Applied Polymer Science,2009,113:3078-3088
    [116] Sitter K. D., Andersson A., D’Haen J., Leysen R., Mullen S., Maurer F.H.J. andVankelecom I.F.J., Silica filled poly(4-methyl-2-pentyne) nanocomposite membranes:Similarities and differences with poly(1-trimethylsilyl-1-propyne)–silica systems, J.Membr. Sci.,2008,321:284-292
    [117]宋东升,杜启云,王薇,有机-无机杂化膜的研究进展,高分子通报,2010,3:12-15
    [118]李传峰,邵怀启,钟顺和,有机无机杂化膜材料的制备技术,化学进展,2004,16(1):83-89
    [119] Althues H., Henle.J, Kaskel S., Functional inorganic nanofillers for transparentpolymers, Chem. Soc. Rev.,2007,36:1454-1465
    [120] Nune, S.P., Peinemann K.V., Ohlrogge K., Alpers A., Keller M., Pires, A.T.N.,Membranes of poly(ether imide) and nanodispersed silica, J. Membr. Sci.,1999,157:219-226
    [121] Iwata M., Adachi T., Tomidokoro M., Ohta M., Kobayashi T., Hybrid sol-gelmembranes of polyacrylonitrile–tetraethoxysilane composites for gas permselectivity,J. Appl. Polym. Sci.,200388:1752-1759
    [122] Maxwell J. C., A treatise on electricity and magnetism, third ed., Dover, NewYork,1954
    [123] Banhegyi G., Comparison of electrical mixture rules for composites, ColloidPolym. Sci.,1986,264:1030-1050
    [124] Nielson L., Models for the permeability of filled polymer systems, J. MacromolSci.(Chem).,1967,5:929-942
    [125] Bouma R. H. B., Checchetti A., Chidichimo G., Drioli E., Permeation through aheterogeneous membrane: the effect of the dispersed phase, J. Membr. Sci.,1997,128:141-149
    [126] Moore T. T., Hybrid membrane materials comprising organic polymers withrigid dispersed phases, AIChE J.,2004,50:311-321
    [127] Higuchi A., Agatsuma T., Uemiya S., Kojima T., Mizoguchi K., PinnauI.,Nagai K., Freeman B.D., Preparation and gas permeation of immobilized fullerenemembranes, J. Appl. Polym. Sci.,2000,7:529-537
    [128] Merkel, T. C., Freeman, B. D., Spontak R. J., He Z., Pinnau I., Meakin P., HillA. J., Ultrapermeable, reverse-selective nanocomposite membranes, Science,2002,296:519-522
    [129] Hibshman C., Cornelius C.J., Marand E., The gas separation effects ofannealing polyimide-organosilicate hybrid membranes, J.Membr.Sci.,2003,211:25-40
    [130] He Z., Pinnau I., Morisato A., Nanostructured poly(4-methy-2-pentyne)/silicahybrid membranes for gas separation, Desalination,2002,146:11-15
    [131] Nielsen L., Thermal conductivity of particulate filled polymers, J. Appl. Polym.Sci.,1973,17:3819-3820
    [132] Chung T.S., Jiang L.Y., Kulprathipanja S., Mixed matrix membranes (MMMs)comprising organic polymers with dispersed inorganic fillers for gas separation, Prog.Polym. Sci.,2007,32:483-507
    [133] Gomes D., Nunes S., Peineman K., Membrane for gas separation based onpoly(1-trimetylsilyl-1-propyne)-silica nanocomposites, J. Membr. Sci.,2005,246:13-25
    [134] Kim J., Lee Y., Gas separation properties of poly(amide-6-b-ethyleneoxide)-silica hybrid membranes, J. Membr. Sci.,2001,193:209-225
    [135] Cong H., Hu X., Radosz M., Shen Y., Brominated poly(2,6-diphenyl-1,4-phenylene oxide) and its SiO2nanocomposite membranes for gas separation, Ind. Eng.Chem. Res.,2007,46(8):2567-2575
    [136] Shirakawa H., Louis E. J., MacDiarmid A.G., Chiang C.K., HeergerA.J.,Synthesis of electrically conducting organic polymers:halogen derivatives ofpolyacetylene,(CH)x, J Chem.Soc., Chem.Comm.,1977,579-580
    [137] MacDiarmid A.G., Chiang J. C., Richter A. F., Polyaniline: a new concept inconducting polymers, Synth.Met.,1987,18:285-290
    [138] Kolla H.S., Surwade S.P., Zhang X., MacDiarmid A.G., Manohar S.K.,Absolute molecular weight of polyaniline, J. Am. Chem. Soc.,2005,127:16770-16771
    [139] Huang J., Syntheses and applications of conducting polymer polyanilinenanofibers, Pure Appl. Chem.,2006,78:15-27
    [140] Virji S., Fowler J. D., Baker C. O., Huang J.X., Kaner R. B. and Weiller B. H.,Polyaniline Nanofiber Composites with Metal Salts: Chemical Sensors for HydrogenSulfide,Small,2005,1(6):624-627
    [141] Virji S., Huang, J.X., Kaner R. B. and and Weiller B. H., Polyaniline NanofiberGas Sensors: Examination of Response Mechanisms,Nano Letters,2004,4(3):491-496
    [142] Li D., Huang J.X., Kaner R. B., Polyaniline Nanofibers: A unique polymernanostructure for versatile applications, Acc. Chem. Res,2009,42:135-145
    [143] Anderson M. R., Mattes B. R., Reiss H., Kaner R. B., Conjugated polymer filmsfor gas separations, Science,1991,252:1412-1415
    [144] Pellegrino J., The use of conducting polymers in membrane-based separations,Ann. N. Y. Acad. Sci.,2003,984:289-305
    [145] Lee Y.M., Ha Y., Lee Y.K., Suh D.H., Hong S.Y., Gas separation throughconductive polymer membranes.2. polyaniline membranes with high oxygenselectivity, Ind. Eng. Chem. Res.,1999,38,1917-1924
    [146] Chanc M. J., Liao Y. H., Myerson A.S., Kwei T. K., Gas transport properties ofpolyaniline membranes, J. Appl. Polym. Sci.,1996,62:1427-1436
    [147] Mattes B.R., Anderson M.R., Conklin J.A. and et al., Morphologicalmodification of polyaniline films for the separation of gases, Synth. Met.,1993,55-57:3655-3660
    [148] Huang S. C., Ball I. J., Kaner R. B., Polyaniline membranes for pervaporationof carboxylic acids and water, Macromolecules,1998,31:5456-5464
    [149] Naidu B., Sairam M., Raju K., Aminabhavi T., Pervaporation separation ofwater and isopropanol mixtures using novel nanocomposite membranes of poly(vinylalcohol) and polyaniline, J. Membr. Sci.,2005,260:142-155
    [150] Hasbullah H., Kumbharkar S., Ismail A.F., Li K., Preparation of polyanilineasymmetric hollow fiber membranes and investigation towards gas separationperformance, J. Membr. Sci.,2011,366:116-124
    [151] Kuwabata S., Martin C. R., Investigation of the gas-transport properties ofpolyaniline, J. Membr. Sci.,1994,91:1
    [152] Illing G., Hellgardt K., Schonert M., Wakeman R. J., Jungbauer A., Towardsultrathin polyaniline films for gas separation, J. Membr. Sci.,2005,253:199-208
    [153] Gupta Y., Hellgardt K., Wakeman R. J., Enhanced permeability of polyanilinebased nano-membranes for gas separation, J. Membr. Sci.,2006,282:60-70
    [154] Su T. M., Ball I. J., Conklin J. A., Huang S.C., Larson R. K., Nguyen S. L., LewB.M., Kaner R. B., Polyaniline/polyimide blends for pervaporation and gas separationstudies, Synth. Met.,1997,84:801-802
    [155] Chatzidaki E., Favvas S., Aminabhavi T. and et al., New polyimide-polyanilinehollow fibers: Synthesis, characterization and behavior in gas separation, Europeanpolymer journal,2007,43:5010-5016
    [156] Jimenez P., Master W., Castell P.and et al.,Nanofibrilar polyaniline:Directroute to carbon nanotube water dispersion of high concentration, MacromolecularRapid Communication,2009,30:418-422
    [157] Qgura K., Shiigi H., Tonosaki T., A CO2sensor with polymer compositesoperating at ordinary temperature, J. Electrochem. Soc.,2000,147:4351-4355
    [158] Gospodinova N., Terlemezyan L., Conducting polymers prepared by oxidativepolymerization: Polyaniline, Prog. Polym. Sci.,1998,23:1443-1484
    [159] Wan M. X., Li J. C., Formation mechanism of polyaniline microtubulessynthesized by a template-free method, J. Polym. Sci. A: Polym. Chem.,2000,38(13):2359-2364
    [160] Stejskal J., Sapurina I., Solid-state protonation and electrical conductivity ofpolyaniline, Macromolecules,1998,31(7):2218-2222
    [161] Pouget J.P., Hsu C.H., MacDiarmid A.G., Epstein A.J., Structural investigationof metallic PAN-CSA and some of its derivatives, Synth. Met.,1995,69:119-120
    [162]伊春海,含氨基固定载体膜制备及其CO2传递特性研究:[博士学位论文],天津:天津大学,2007
    [163]远双杰,分离CO2固定载体复合膜制备装置及制备工艺研究:[硕士学位论文],天津:天津大学,2007
    [164] Huang S.H., Hung W.S., Liaw D.J., Lo C.H., Chao W.C., Hu C.C., Li C.L., LeeK.R., Lai J.Y., Interfacially polymerized thin-film composite polyamide membranes:Effects of annealing processes on pervaporative dehydration of aqueous alcoholsolutions, Sep. Purif. Technol.,2010,72:40-47
    [165] Asad Ali S., Kumar R., Nambissan P.M.G., Singh F., P. Rajendra, positronannihilation lifetime and Doppler broadening study in50MeV Li3+ion irradiatedpolystyrene films, Instrum. Methods Phys. Res., Sect. B,2010,268:1890-1812
    [166] Zhao P., Gerhard E.N., Helmut N., et al., Protonation and electrochemical redoxdoping processes of polyaniline in aqueous solutions: Investigations using in situFTIR-ATR spectroscopy and a new doping system, J. Chem. Soc., Faraday Trans.,1997,93(1):121-129
    [167] Yave W., Car A., Funari S. S., Nunes S. P. and Peinemann K.V.,CO2-philicpolymer membrane with extremely high Separation performance,Macromolecules,2010,43:326-333
    [168] Compan V., Castillo L. F. D., Heranandez S. I., Marlopez-Gonzalez M., RiandeE., Crystallinity effect on the gas transport in semicrystalline coextruded films basedon linear low density polyethylene, J. Polym. Sci., Part B: Polym. Phys.,2010,48:634-642
    [169]远双杰,强化含氨基固定载体膜CO2/N2渗透选择性能研究:[博士学位论文],天津:天津大学,2011
    [170] Yave W., Huth.H., Car A., Schick C., Peculiarity of a CO2-philic blockcopolymer confined in thin films with constrained thickness:“a super membrane forCO2-capture”, Energy Environ. Sci.,2011,4,4656-4661
    [171] Pellegrino J., Radebaugh R., Gas Sorption in Polyaniline.1. Emeraldine Base,Macromolecules,1996,29:4985-4991
    [172] Won, J., Seo J. S., Kim J. H., Kim H. S., Kang Y. S., Kim, S. J., Kim Y., JegalJ., Coordination compound molecular sieve membranes, Adv. Mater.,2005,17:80-84
    [173] Cai Y., Wang Z., Yi C. H., Bai Y. H., Wang J. X., Wang S. C., Gas transportproperty of polyallylamine-poly(vinyl alcohol)/polysulfone composite membranes, J.Membr. Sci.,2008,310:184-196
    [174] Francisco G. J., Chakma A., Feng X. S., Membranes comprising ofalkanolamines incorporated into poly(vinyl alcohol) matrix for CO2/N2separation, J.Membr. Sci.,2007,303:54-63
    [175] El-Azzami L. A., Grulke E. A.,Parametric study of CO2fixed carrier facilitatedtransport through swollen chitosan membranes, Ind. Eng. Chem. Res.,2009,48:894-902
    [176] Conway B. E., Ionic Hydration in Chemistry and Biophysics, Amsterdam:Elsevier,1981
    [177] Li B., Xu D., Zhang X. F., Jiang Z. Y., Wang Y., Ma J., Dong X., and Wu H.,
    Rubbery polymer-inorganic nanocomposite membranes: Free volume characteristics
    on separation property, Ind. Eng. Chem. Res.,2010,49:12444-12451

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700