螺内酯对醛固酮诱导的大鼠肾小球系膜细胞氧化应激及TGF-β1表达的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的观察螺内酯(Spironolactone,SPI)对醛固酮(Aldosterone,ALD)诱导的大鼠肾小球系膜细胞(Mesangial cells,MCs)氧化应激和转化生长因子β-1(Transforming growth factor-β1,TGF-β1)表达的影响,探讨ALD致糖尿病肾病(Diabetic nephropathy, DN)及SPI肾保护作用的可能机制。
     方法体外培养大鼠MCs,随机分组如下:
     ①NC组:正常对照组(低糖DMEM培养液,葡萄糖浓度为5.6 mmol/L);
     ②ALD组:醛固酮刺激组, ALD 1组:低糖DMEM培养液中加入醛固酮(10-5 mol/L)刺激; ALD 2组:低糖DMEM培养液中加入醛固酮(10-7 mol/L)刺激; ALD 3组:低糖DMEM培养液中加入醛固酮(10-9 mol/L)刺激。
     ③SPI组:螺内酯干预组, SPI 1组:醛固酮(10-7 mol/L)刺激的同时加入螺内酯(10-7 mol/L)干预; SPI 2组:醛固酮(10-7 mol/L)刺激的同时加入螺内酯(10-8 mol/L)干预; SPI 3组:醛固酮(10-7 mol/L)刺激的同时加入螺内酯(10-9 mol/L)干预。48小时后分别收集细胞及上清液。应用流式细胞术检测细胞内活性氧(Reactive oxygen species,ROS)水平; RT-PCR(Reverse transcription polymerase chain reaction,RT-RCR)方法检测细胞TGFβ-1、醛固酮合成酶(CYP11B2)、醛固酮受体( Mineralocorticoid receptor , MR )和11β-羟类固醇脱氢酶2(11β-hydroxysteroid dehydrogenase 2,11β-HSD2)mRNA表达;ELISA(Enzyme linked immunosorbent assay,ELISA)法检测细胞培养上清液中TGF-β1蛋白浓度。
     结果
     1 RT-PCR法检测结果显示MCs表达CYP11B2、MR和11β-HSD2 mRNA;
     2 ALD对肾小球MCs内ROS产生的影响ALD刺激MCs48h后,细胞内ROS水平显著增加,ALD 1,2,3组分别为(21.77±0.87)、(17.33±0.49)、(15.25±0.63),组间差异显著,P<0.01;与NC组(4.28±0.50)相比,差异显著(P均<0.01)。
     3 ALD对肾小球MCs TGFβ-1 mRNA表达及蛋白分泌的影响半定量RT-PCR检测发现,NC组系膜细胞可低水平表达TGFβ-1 mRNA(1.22±0.14)及蛋白(0.78±0.12 ng/ml)。ALD作用48 h后,TGFβ-1 mRNA表达及蛋白分泌显著增加,两指标在不同浓度ALD组之间分别比较,组间差异显著(P均<0.05)。
     4螺内酯对醛固酮诱导的肾小球MCs内ROS产生的影响醛固酮(10-7 mol/L)刺激的同时加入螺内酯干预后,SPI 1,2,3组细胞内ROS水平显著降低,分别为(7.34±0.89)、(9.25±0.65)、(10.9±0.97),组间差异显著,P<0.01;与ALD 2组(17.33±0.49)相比,差异显著(P均<0.05)。SPI 1组ROS水平稍高于NC组,差异无显著性(P>0.05)。
     5 SPI对ALD诱导的肾小球MCs TGFβ-1 mRNA表达及蛋白分泌的影响醛固酮(10-7 mol/L)刺激的同时加入螺内酯干预后,SPI 1,2,3组MCs TGFβ-1 mRNA表达及蛋白分泌均较ALD2组显著下降(P <0.01或0.05),两指标分别进行组间比较,差异具有显著性(P均<0.0 5)。
     6肾小球MCs ROS产生和TGFβ-1 mRNA表达及蛋白分泌的相关性分析MCs产生的ROS和TGFβ-1 mRNA表达及蛋白分泌分别呈正相关(r=0.866,P<0.01;r=0.823,P<0.01)。
     结论系膜细胞表达CYP11B2、MR和保护其配体特异性的11β-HSD2mRNA;醛固酮可与系膜细胞的MR特异性结合,促进细胞内ROS生成增多、TGF-β1mRNA和蛋白表达增多,参与肾脏损伤;螺内酯与醛固酮竞争性结合MR,拮抗醛固酮介导的肾小球系膜细胞内ROS生成及TGF-β1 mRNA及蛋白的表达,其可能是螺内酯参与DN时肾脏保护作用机制之一。
Objective To observe the effects of spironolactone on aldosterone mediated oxidative stress and transforming growth factorβ-1 (TGF-β1) expression in glomerular mesangial cells and explore its renoprotective mechanism.
     Methods Rat glomerular mesangial cells were cultured in the medium with nomal glucose (5.6 mmol/l) and then treated with medium containing 10-5mol/L (group ALD1), 10-7mol/L (group ALD2) and 10-9mol/L (group ALD3) aldosterone, respectively. Another, different concentrations of spironolactone (group SPI1 10-7 mol/L, group SPI2 10-8 mol/L and group SPI3 10-9 mol/L) were added into group ALD2, respectively. Cells and supernatants were collected after 48h separately. The levels of intracellular reactive oxygen species (ROS) were measured by flow cytometry. The expressions of TGF-β1, CYP11B2, MR and 11β-HSD2 mRNA were detected by semi-quantitative RT-PCR, while the levels of TGF-β1 protein in supernatants were measured by ELISA.
     Results (1) CYP11B2, MR and 11β-HSD2 mRNA were detected in cultured rat glomerular mesangial cells. (2) Compared with group NC, the levels of ROS and the expression of TGF-β1 mRNA and protein were all significantly increased in group ALD (P<0.05 or P<0.01), moreover, a dose-dependent manner was detected among group ALD1, group ALD2 and group ALD3 (P<0.05 or P<0.01). (3) Compared with group ALD2 (17.33±0.49), the levels of ROS in group SPI1 (7.34±0.89), SPI2 (9.25±0.65) and SPI3 (10.9±0.97) were all decreased significantly (P<0.05). Concomitantly, the expressions of TGF-β1 mRNA and protein were also significantly inhibited by spironolactone. (4) The changes in ROS were positively correlated with the change in TGFβ-1 mRNA and protein, respectively (r=0.866, P<0.01; r=0.823, P<0.01, respectively.).
     Conclusions CYP11B2, MR and 11β-HSD2 mRNA were detected in cultured glomerular mesangial cells by RT-PCR. Spironolactone can competitively binding with MR, then suppress aldosterone mediated oxidative stress and TGF-β1 expression in a dose-dependent manner in rat glomerular mesangial cells, which may partly contribute to its reno-protection.
引文
1 Jaki(?) M, Jaki(?) M, Zibar L, et al. Diabetic nephropathy and prevention of diabetic nephropathy caused chronic renal insufficiency[J]. Lijec Vjesn, 2009, 131(7-8): 218-225.
    2 Joseph AJ, Friedman EA. Diabetic nephropathy in the elderly[J]. Clin Geriatr Med, 2009,25(3):373-389.
    3 Soldatos G, Cooper ME. Diabetic nephropathy: important pathophysiologic mechanisms. Diabetes Res Clin Pract. 2008, 13; 82 (Suppl 1):S75-79.
    4 Dronavalli S, Duka I, Bakris GL. The pathogenesis of diabetic nephropathy. Nat Clin Pract Endocrinol Metab. 2008;4(8):444-452.
    5 Han JS, Choi BS, Yang CW, et al. Aldosterone-induced TGF-beta1 expression is regulated by mitogen-activated protein kinases and activator protein-1 in mesangial cells[J]. J Korean Med Sci, 2009, 24 (Suppl 1): S195-203.
    6 Miyata K, Rahman M, Shokoji T, et al. Aldosterone Stimulates Reactive Oxygen Species Production through Activation of NADPH Oxidase in Rat Mesangial Cells[J]. J Am Soc Nephrol, 2005, 16(10):2906-2912.
    7 Ha H, Lee HB. Reactive oxygen species amplify glucose signalling in renal cells cultured under high glucose and in diabetic kidney[J]. Nephrology (Carlton), 2005, 10 Suppl:S7-10.
    8 Iglesias-De La Cruz MC, Ruiz-Tortes P, et a1. Hydrogen peroxide increases extracellular matrix mRNA through TGF-beta in human mesangial cells[J]. Kidney Int, 2001, 59(1):87-95.
    9 Buranakarl C,K itjtawonrat A , Pondeenana S, etal. Comparison of dipyridamole and fosinopril on renal progression in nephrectomized rats[J]. Nephrology (Carlton), 2003, 8 (2) : 80-91.
    10 Akahori H,Ota T,Torita M,etal.Tranilast prevents the progression of experimental diabetic nephropathy through suppression of enhanced extracellular matrix gene expression[J]. J Pharmacol Exp Ther, 2005,314 (2):514.
    11 Lagranha CJ, Fiorino P, Casarini DE, etal. Molecular Bases of Diabetic Nephropathy [J]. Arq Bras Endocrinol Metab, 2007,51(6):901-912.
    12 Guihua Zhou,Cai Li, Lu Cai. Advanced Glycation End-Products Induce Connective Tissue Growth Factor-Mediated Renal Fibrosis Predominantly through Transforming Growth Factor TGF-β-Independent Pathway[J]. American Journal of Pathology, 2004,165(6):2033-43.
    13 Singh R, Alavi N, Singh AK, Leehey DJ. Role of angiotensin II in glucose-induced inhibition of mesangial matrix degradation. Diabetes. 1999;48(10):2066-2073.
    14 Zimpelmann J, Kumar D, Levine DZ, et al. Early diabetes mellitus stimulates proximal tubule renin mRNA expression in the rat. Kidney Int. 2000;58(6): 2320-2330.
    15 Sechi LA, Novello M, Lapenna R, et al. Long-term renal outcomes in patients with primary aldosteronism[J]. JAMA. 2006, 295(22):2638-2645.
    16 Fujisawa G, Okada K, Muto S, et al. Spironolactone prevents early renal injury in streptozotocin-induced diabetic rats[J]. Kidney Int, 2004,66(4):1493-1502.
    17 Lu SC. Regulation of glutathione synthesis. Curr Top Cell Regul. 2000;36:95-116.
    18 Ha H, Hwang IA, Park JH, et al. Role of reactive oxygen species in the pathogenesis of diabetic nephropathy[J]. Diabetes Res Clin Pract, 2008, 82 Suppl 1: S42-45.
    19 Forbes JM, Coughlan MT, Cooper ME. Oxidative stress as a major culprit in kidney disease in diabetes[J]. Diabetes, 2008, 57(6):1446-1454.
    20 Kakkar R, Mantha SV, Radhi J, et al. Antioxidant defense system in diabetic kidney: a time course study. Life Sci. 1997;60(9):667-679.
    21 Ziyadeh FN. Mediators of diabetic renal disease:the case for TGF-βas the majormediator[J].J Am Soc Nephrol, 2004,15(Suppl 1):S55-57.
    22 Jing ZP, Seo J, Ha H, et a1. ROS mediate TGF-B 1-induced plasminogen activator inhibitor-I upregulation mesangial cells[J]. Biochem Biophys Res Commun, 2003, 309(4): 961-966.
    23 Lee EA, Seo JY, Jiang Z, et a1. Reactive oxygen species mediate high glucose- induced plasminogen activator inhibitor-1 up-regulation in mesangial cells and in diabetic kidney[J]. Kidney Int. 2005, 67(5) :1762-1771.
    24 Slight SH, Joseph J, Ganjam VK, Weber KT. Extra-adrenal mineralocorticoids and cardiovascular tissue. Mol Cell Cardiol. 1999;31(6):1175-1184.
    25 Sun Y, Zhang J, Zhang JQ, et a1. Local angiotensin II and transforming growth factor-l in renal fibrosis of rats[J]. Hypertension, 2000, 35(5):1078-1084.
    26姚丽,佐楠,王力宁,等.氧化应激及丝裂原活化蛋白激酶在醛固酮加盐诱导肾脏损害中的作用.中华肾脏病杂志, 2007; 23(5) : 323-327.
    27袁军,贾汝汉,包艳,等.活性氧和转化生长因子-β1在醛固酮上调纤溶酶原激活物抑制剂1中的作用[J].中华肾脏病杂志, 2006, 22(12);758-762.
    28 Miyata K, Rahman M, Shokoji T, et al. Aldosterone stimulates reactive oxygen species production through activation of NADPH oxidase in rat mesangial cells[J]. J Am Soc Nephrol, 2005, 16(10):2906-2912
    29张敏敏,顾勇,赖凌云,等.醛固酮可通过钠氢交换子1诱导肾小球系膜细胞外基质增生[J].中华肾脏病杂志. 2006, 22(8):477-482.
    30 Brown NJ, Nakamura S, Ma L, et a1. Aldosterone modulates plasminogen activator inhibitor-1 and glomerulosclerosis in vivo[J]. Kidney Int. 2000, 58(3): 1219-1227.
    31 Chrysostomou A, BeCkerg. Spironolactone in addition to ACE inhibition to reduce proteinuria in patients with chronic renal disease[J]. N Engl J Med, 2001, 345(12): 925.
    32李建飞,温黎青,赵勤.醛固酮受体拮抗剂对慢性肾脏病蛋白尿的影响[J].中国医学工程, 2007, 15(5):413.
    33曾建,陈晓军.螺内酯联合ACEI治疗糖尿病肾病蛋白尿及其对肾素-血管紧张素-醛固酮系统的影响[J].武警医学, 2008, 19(8):746-747.
    34 Taira M, Toba H, Murakami M, et al. Spironolactone exhibits direct renoprotective effects and inhibits renal renin-angiotensin-aldosterone system in diabetic rats[J]. Eur J Pharmacol. 2008, 589(1-3):264-271.
    35 Lastra G, Whaley-Connell A, Manrique C, et al. Low-dose spironolactone reduces reactive oxygen species generation and improves insulin-stimulated glucose transport in skeletal muscle in the TG(mRen2)27 rat[J]. Am J Physiol Endocrinol Metab. 2008, 295(1):E110-116.
    36袁军,贾汝汉,包艳,等.螺内酯对糖尿病大鼠肾小球保护作用的机制探讨[J].中华肾脏病杂志, 2007, 23(8):524-528.
    37李晓东,郭志军,高山林,等.醛固酮及其受体拮抗剂对肾小球系膜细胞转化生长因子β1基因表达的影响[J].中国现代医学杂志,2006,16(13):1937-1940.
    38 Han SY, Kim CH, Kim HS,et al. Spironolactone prevents diabetic nephropathy through an anti-inflammatory mechanism in type 2 diabetic rats. J Am Soc Nephrol. 2006;17(5):1362-72.
    39 Seckl JR. 11beta-hydroxysteroid dehydrogenases: changing glucocorticoid action[J]. Curr Opin Pharmacol, 2004, 4(6):597-602.
    40 Glorioso N, Filigheddu F, Parpaglia PP, et al. 11beta-Hydroxysteroid dehydrogenase type 2 activity is associated with left ventricular mass in essential hypertension[J]. Eur Heart J, 2005, 26(5):498-504.
    41 Patni H, Mathew JT, Luan L, et al. Aldosterone promotes proximal tubular cell apoptosis: role of oxidative stress[J]. Am J Physiol Renal Physiol. 2007, 293(4): F1065-1071.
    1. Wolf G.Cell cycle regulation in diabetic nephropathy[J]. Kidney Int, 2000, 58(Suppl 77):S59-66.
    2. Buranakarl C, K itjtawonrat A , Pondeenana S, et al. Comparison of dipyridamole and fosinop ril on renal p rogression in nephrectomized rats[J]. Nephrology (Carlton), 2003,8 (2) : 80-91.
    3. Ziyadeh FN. Mediators of diabetic renal disease:the case for TGF-βas the major mediator[J]. J Am Soc Nephrol, 2004,15(Suppl 1):S55-7.
    4. Dessapt C, Baradez MO, Hayward A, et al. Mechanical forces and TGF{beta}1 reduce podocyte adhesion through {alpha}3{beta}1 integrin downregulation[J].Nephrol Dial Transplant, 2009,24(9):2645-55.
    5. Lee EY, Chung CH, Khoury CC, et al. The monocyte chemoattractant protein-1/CCR2 loop, inducible by TGF-beta, increases podocyte motility and albumin permeability[J]. Am J Physiol Renal Physiol, 2009,297(1):F85-94.
    6. Tuttle KR. Linking metabolism and immunology:diabetic nephropathy is an inflammatory dissase[J]. J Am Soc Nephrol, 2005,16(6):1537-8.
    7. Francesco P, Schena, Loreto, Gesualdo. Pathogenetic Mechanisms of Diabetic Nephropathy[J]. J Am Soc Nephrol. 2005, 16 (suppl 1): S30-33.
    8. Akahori H, Ota T, Torita M, et al. Tranilast prevents the progression of experimental diabetic nephropathy through suppression of enhanced extracellular matrix gene expression[J]. J Pharmacol Exp Ther, 2005, 314 (2):514.
    9. Lagranha CJ, Fiorino P, Casarini DE, et al.Molecular Bases of Diabetic Nephropathy[J]. Arq Bras Endocrinol Metab, 2007, 51(6):901-12.
    10. Guihua Zhou,Cai Li, Lu Cai. Advanced Glycation End-Products Induce Connective Tissue Growth Factor-Mediated Renal Fibrosis Predominantly through Transforming Growth Factor TGF-β-Independent Pathway[J]. American Journal of Pathology, 2004,165(6):2033-43.
    11. Fukami K, Ueda S, Yamagishi S, et a1. AGEs activate mesangial TGF-beta-Smad signaling via an angiotension type I receptor interaction[J]. Kidney Int, 2004, 66(6):2137-47.
    12. Yoo CW,Song CY,Kim BC, et a1. Glycated albumin induces superoxide generation in mesangial cells[J]. Cell Physiol Biochem, 2004, l4(4 ):361-368.
    13. Christiane Ru¨ster ,Gunter Wolf. Renin-Angiotensin-Aldosterone System and Progression of Renal Disease[J]. J Am Soc Nephrol, 2006 , 17(11): 2985-2991.
    14. J-S Han, B-S Choi, C-W Yang, et al. Aldosterone-induced TGF-β1 Expression is Regulated by Mitogen-Activated Protein Kinases and Activator Protein-1 inMesangial Cells[J]. J Korean Med Sci, 2009, 24 (Suppl 1): S195-203.
    15. Huang Y, Wongamorntham S, Kasting J, et al. Renin increases mesangial cell transforming growth factor-beta1 and matrix proteins through receptor-mediated, angiotensin II-independent mechanisms[J]. Kidney Int, 2006, 69(1):105-13.
    16. Ha H, Lee HB. Reactive oxygen species amplify glucose signalling in renal cells cultured under high glucose and in diabetic kidney[J]. Nephrology(Carlton), 2005, 10( Suppl):S7-10.
    17. Iglesias-De La Cruz MC, Ruiz-Tortes P, Alcami J, et a1. Hydrogen peroxide increases extracellular matrix mRNA through TGF-beta in human mesangial cells[J]. Kidney Int , 2001, 59(1):87-95.
    18. Hao CM, Breyer MD. Roles of lipid mediators in kidney injury[J]. Semin Nephrol, 2007, 27 (3):338-51.
    19. Gnudi L, Thomas SM, Viberti G. Mechanical forces in diabetic kidney disease: a trigger for impaired glucose metabolism[J]. J Am Soc Nephrol, 2007, 18(8):2226 -32
    20. Durvasula RV, Petermann AT, Hiromura K, Blonski M. Activation of a local tissue angiotensin system in podocytes by mechanical strain[J]. Kidney Int, 2004, 65(1):30-39
    21. Forbes JM, Fukami K, Cooper ME. Diabetic nephropathy: where hemodynamics meets metabolism[J]. Exp Clin Endocrinol Diabetes, 2007, 115(2):69-84 .
    22. Baoliang Guo, Daisuke Koya, Motohide Isono, et al. Peroxisome Proliferator– Activated Receptor-γLigands Inhibit TGF-β1-Induced Fibronectin Expression in Glomerular Mesangial Cells[J]. Diabetes, 2004, 53(1):200-208.
    23. Giovanna Giannico, Pedro Cortes, Mohammed H, et al. Glibenclamide prevents increased extracellular matrix formation induced by high glucose concentration in mesangial cells[J]. Am J Physiol Renal Physiol, 2007, 292(1): F57-65.
    24. Zequan Ji, Cuiwen Huang, Chengjie Liang, et al.Protective Effects of Blocking Renin-Angiotensin System on the Progression of Renal Injury in Glomerulo- sclerosis[J]. Cellular & Molecular Immunology, 2005, 2(2):150-4.
    25. Langham RG, Kelly DJ, Gow RM et al. Transforming growth factor -beta in human diabetic nephropathy: effects of ACE inhibition [J]. Diabetes Care, 2006, 29(12): 2670-75.
    26. Song JH, Cha SH, Lee HJ,et al. Effect of low-dose dual blockade of renin– angiotensin system on urinary TGF-βin type 2 diabetic patients with advanced kidney disease[J]. Nephrol Dial Transplant , 2006, 21(3): 683-689.
    27. Kang YS, Ko GJ, Lee MH,et al. Effect of eplerenone, enalapril and their combination treatment on diabetic nephropathy in type II diabetic rats[J]. Nephrol Dial Transplant, 2009,24(1):73-84.
    28.李萍,张海燕,刘国良等.阿托伐他汀对人肾小球系膜细胞增殖、TGF-β1mRNA和p38MAPK表达的影响[J].中国组织化学与细胞化学杂志, 2007, 11(16):3184-8.
    29. Kim SI, Han DC, Lee HB. Lovastatin inhibits transforming growth factor-beta1 expression in diabetic rat glomeruli and cultured rat mesangial cells[J]. J Am Soc Nephrol, 2000, 11(1):80-87.
    30. Cojocel C, Al-Maghrebi M, Thomson MS,et al. Modulation of the transforming growth factor beta1 by vitamin E in early nephropathy[J]. Med Princ Pract,2005, 14(6):422-429.
    31. Shinya Mizuno ,Toshikazu Nakamura. Suppressions of chronic glomerular injuries and TGF-β1 production by HGF in attenuation of murine diabetic nephropathy[J]. Am J Physiol Renal Physiol , 2004, 286(1): F134-143.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700