钠离子电池正极材料NaVPO_4F及其掺杂化合物的电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在近年发展起来的可充电电池中,锂离子电池由于其优良的性能而在电子工业和电子产品中得到广泛的应用,如果能开发出具有更好电化学性能的钠离子电池,相对于锂离子电池来说,它将具有更多的优势,如它能明显地降低原材料的成本和能采用分解电压更低的电解液。因此,钠离子电池将是一种有前景的新型电池。
     本论文报道了用两段高温固相法制备NaVPO_4F作为钠离子电池正极材料,并用傅立叶红外光谱(FT-IR),原子吸收(AAS),热重分析(TG/DTG),X-射线衍射(XRD),扫描电镜(SEM),恒流充放电,循环伏安,交流阻抗等对其结构和性能进行了测试和表征。结果表明:600℃左右反应可以获得结构稳定、结晶性好的NaVPO_4F,其晶型为简单单斜晶型。SEM测试表明NaVPO_4F的粒径分布均匀,其大小在微米级,材料首次放电容量为86.3mAh/g。循环伏安曲线中有两对氧化还原峰,和充放电曲线上出现的两个充放电平台一致。
     本论文在高温固相法合成NaVPO_4F的同时,掺杂Fe元素得到了NaV_(1-x)Fe_xPO_4F(x=0-0.1)。红外光谱测试表明掺杂后的材料的振动吸收峰增强,Fe掺入越多,峰越往高波数方向移动,说明掺杂Fe可增强V-O键强度,掺杂Fe使材料的晶胞发生收缩,因此由于掺杂Fe元素,材料结构稳定性增加,循环性能更好。XRD测试证实了掺杂少量的Fe元素不影响材料的晶体结构,Fe成功地取代了V的位置得到了单相固溶体,掺杂Fe的量越多,吸收峰越锐利,峰强度越大,说明材料的结晶性能越好,电化学循环过程中材料的循环稳定性亦越好。掺Fe后的材料电化学循环稳定性得到较好的改善,其中NaV_(0.96)Fe_(0.04)PO_4F和NaV_(0.94)Fe_(0.06)PO_4F的首次放电容量分别为81.6mAh/g和74.5mAh/g,20次循环后的放电容量分别为66.7mAh/g和68.4mAh/g,而NaVPO_4F的首次放电容量为86.3mAh/g,20次循环后的放电容量为62.9mAh/g。
     本论文还通过高温固相法合成掺杂Al元素的NaV_(1-x)Al_xPO_4F(x=0,0.02)。红外光谱研究表明掺杂后的材料的振动吸收峰增强,掺杂Al后使材料的晶胞发生收缩,材料的结构稳定性增加,有利于循环稳定性的提高。XRD测试表明NaV_(0.98)Al_(0.02)PO_4F与NaVPO_4F具有相同的晶型,都为简单单斜晶型。SEM测试表明NaV_(0.98)Al_(0.02)PO_4F的粒径分布更加均匀,均匀的结晶有利于材料电化学性能的改善。电化学性能测试表明:掺入Al后的材料电化学循环稳定性得到较好的改善,NaVPO_4F的首次放电容量为86.3mAh/g,30次循环后的放电容量为50.4mAh/g,容量保持率为58.4%,NaV_(0.98)Al_(0.02)PO_4F的首次放电容量为80.4mAh/g,30次循环后的放电容量为68.3mAh/g,容量保持率为85%。
Lithium-ion batteries are currently one of the most popular types of rechargeable battery commonly used in consumer electronics. If sodium-ion rechargeable batteries with good performance characteristics could be developed, it would have some significant advantages over lithium-ion batteries, notably a reduction in raw materials cost and the ability to utilize electrolyte systems of lower decomposition (due to the higher half-reaction potential for sodium relative to lithium). If so, sodium-ion batteries will be a kind of promising novel batteries.
     In this thesis, the cathode materials of sodium-ion battery, NaVPO_4F, were prepared under the protection of argon atmosphere by two step high temperature solid-state reactions. The structure and performance of as-prepared cathode material was characterized by Flourier-Infrared Spectra (FT-IR), Atomic Absorption Spectra (AAS), Thermogravimetric Analysis(TG/DTG), X-ray Diffractometer (XRD), Scanning Electron Microscope (SEM), the galvanostatic charge/discharge, Cyclic voltammograms(CV) and Electrochemical Impedance Spectroscopy(EIS). The results showed that NaVPO_4F with a good crystal stability can be obtained about a temperature of 600℃. Its crystal system was monoclinic. The SEM micrograph showed that the size of NaVPO_4F is micron-class, and the distribution of particle was uniform, the first discharge capacity of material was 86.3 mAh/g and the discharge capacity of NaVPO_4F was declined to 58.4%of its initial discharge capacity after 30 charge/discharge cycles.. The cyclic voltammogram showed two couples of peaks in cathodic sweep and anodic sweep. It agreed well with the two voltage plateaus of the curve of the charge/discharge curves for NaVPO_4F.
     In this thesis, NaV_(1-x) Fe xPO_4F (x=0-0.1) powders were synthesized with a high temperature solid state reaction. In the FT-IR spectrum of Fe doped materials, it was observed that the absorbance of peak increased comparing to the un-doped materials, and the band peak was moving to higher wave numbers as the doped amount of Fe increase. So, it explained that the strength of V-O band increased with the doped Fe, and the crystal cell shrunk. Moreover, it could be expected that the stability of materials would be enhanced and the cycle performance would be better with the introduction of Fe. The XRD results clearly confirmed that Fe substitution for V sites was successful and the single-phase solid solution was formed when the doped amount of Fe was increase to x=0.06. A small amount of Fe doping gave rise to the electrochemical cycling properties of NaV_(1-x) Fe xPO_4F. The as-prepared Fe-doped materials had a better cycle stability than the un-doped one, an initial reversible discharge capacity of NaV_(0.96)Fe_(0.04)PO_4Fand NaV_(0.94)Fe_(0.06)PO_4F are 81.6 mAh/g and 74.5mAh/g , respectively; the discharge capacity of NaV_(0.96)Fe_(0.04)PO_4F and NaV_(0.94)Fe_(0.06)PO_4F are 66.7 mAh/g and 68.4 mAh/g after 20 charge/discharge cycles. However, the first discharge capacity of NaVPO_4F is 86.3 mAh/g, the discharge capacity of NaVPO_4F is 62.9 mAh/g after 20 charge/discharge cycles.
     In addition, NaV_(1-x)Al_xPO_4F (x=0,0.02)powders were also synthesized with a high temperature solid state reaction. In the FT-IR spectrum of Al doped materials, it was observed that the absorbance of peak increased comparing to the un-doped materials, the crystal cell shrunk. So, it could be expected that the stability of materials would be enhanced and the cycle performance would be better with the introduction of Al. The XRD results clearly confirmed that the crystal phases of both samples are identified to be a monoclinic structure. The SEM results indicated that the Al doping sample had a smaller and uniform particle size than the un-doped sample; the electrochemical performance of the NaV_(0.98)Al_(0.02)PO_4F is known to be good, because the insertion and de-insertion of sodium ions during the charge and discharge processes can be facilitated when electrode materials are smaller in size. A small amount of Al doping gave rise to the electrochemical cycling properties of NaV_(1-x)Al_xPO_4F. The as-prepared Al-doped materials indicate a better cycle stability than the un-doped one. The initial reversible capacity of NaV_(0.98)Al_(0.02)PO_4F is 80.4 mAh/g,the discharge capacity of NaV_(0.98)Al_(0.02)PO_4F is 68.3mAh/g after 30 charge/discharge cycles, and the capacity retention at the 30th cycle is 85%.
引文
[1] P. Thomas, D. Billaud. Electrochemical insertion of sodium into hard carbons[J]. Electrochim. Acta, 2002,47:3303-3307.
    [2] 吴振军,陈宗璋,汤宏伟,等.钠离子电池研究进展[J].电池,2002,32(1):45-47.
    [3] R. A1cantara, F. J. Fernandez.Characterisation of mesocarbon microbeads (MCMB)as active electrode material in Lithium and sodium cells[J].Carbon,2000,38:1031-1041.
    [4] D. A. Stevens, J. R. Dahn. High capacity anode materials for rechargeable sodium-ion batteries[J]. J.Electrochemical Soc, 2000,147:1271-1274.
    [5] R. Taiguang Jow .Rechargeable sodium alloy anode[P] .USP:5168020, 1992.
    [6] P. Ge, M. Fouletier. Electrochemical intercalation of sodium in graphite [J].Solid State Ionics, 1988, 28:1172-1175.
    [7] M. M. Doeff, SJ.Visco, L. C. Dejonghe. Electrochemical insertion of sodium into carbon[J]. J.Electrochem.Soc. 1993, 140, L169- L170.
    [8] P. Thomas, J. Ghanbaja, D. Billaud. Electrochemical insertion of sodium in pitch-based carbon fibres in comparison with graphite in NaClO4-ethylene carbonate electrolyte[J].Electrochim. Acta, 1999, 45:423-428.
    [9] P. Thomas, D. Billaud. Effect of mechanical grinding of pitch-based carbon fibers and graphite on their electrochemical sodium insertion properties[J].Electrochim. Acta, 2000,46(1): 39-47.
    [10] P. Thomas, D. Billaud. Sodium electrochemical insertion mechanisms in various carbon fibres[J]. Electrochimica Acta, 2001, 46 (22):3359-3366.
    [11]R. Alcantra, J.M.J-Metaeos, P.Lavela,etal. Carbon black:apromising electrode material for sodium-ion batteries[J]. Electrocehmistry Communication, 2001, 3:639-642.
    [12] Shishikura, Toshikazu. Secondary battery[P].USP:5051325,1991.
    [13] R. Taiguang Jow. Rechargeable sodium alloy anode[P] .USP:4753858, 1988.
    [14] R. Alcantara, M. Jaraba, P. Lavela, et al. NiCo2O4 spinel: First report on a transition metal oxide for the negative electrode of sodium-ion batteries[J].Chem.Mater,2002,14:2847-2848.
    [15]封伟,韦玮等.可溶导电聚苯胺的合成及其性能研究[J].功能高分子学报,1998,11(2):71-74.
    [16]李念兵,张胜涛等.高分子固体电解质研究进展[J].材料导报,2000,14(6):55-58.
    [17] 王标兵,顾利霞等 . 高分子固体电解质 (SPE) 研究进展 [J]. 材料导报 , 2000,14(7):45-49.
    [18]娄永兵,剧金兰等. EAA高分子固体电解质的制备与性能研究[J].功能材料,2000,31(3):319-320.
    [19]张升水,邓正华等.聚氧化乙烯-聚磷酸钠共混物的钠离子导电性[J].高分子材料科学与工程,1992,2:68-71.
    [20]方瞒飞,李光远等.含NaI的环氧树脂-PEO互穿网络高分子固体电解质的离子电导研究[J].功能高分子学报,1998 ,11(1):237-240.
    [21] R. Pupon, B. L. Papka. Influence ion pairing on cation transport in the polymer electrolytes formed by poly(ethylene oxide)with sodium tetrofluoroborate and sodium tetrahydroborate[J].J Chem Soc,1982,104:6 247-6 251.
    [22]张雄伟,黄锐等.高分子复合导电材料及其应用发展趋势[J].功能材料,1994,25(6):492-499.
    [23]Plichta, J. Edward, K. Behl Wishvender. Method of making a flexible solid electrolyte for use in solid state cells[P].USP:5264308,1993.
    [24]Hartwig. Process for the production of thermodynamically stable ion conductor materials[P].USP:4386020, 1983.
    [25]杨萍华,张振军等.硫酸钠基固体电解质材料的改性研究[J].硅酸盐学报,1994,22(4):387-391.
    [26] Shacklette. Rechargable battery cathode from sodium cobalt dioxide in theO3.O’3.P3 and/or P’3 phase[P].USP:4780381, 1988.
    [27] Doeff. Secondary cell with orthorhombic alkali metal/manganese oxide phase active cathode material[P].USP:5558961, 1996.
    [28] A. Meni Boure, C. Delmas. Electrochemical intercalation and deintercalation 0f Nax MnO2 bronzes[J]. Solid State Chemistry ,1985,(57):323-331.
    [29] M. M. Doeff, T. J. Richardson, J. Hollingsworth, et al. Synthesis and charecterization of a copper-substitute manganese oxide with the Na0.44MnO2[J] . Journal of power sources, 2002, 112:294-297.
    [30] R. J. Balsys, R. L. Davisb. Refinement of the structure ofNa0.74CoO2using neutron powder diffraction[J].Solid State Ionics1996, 93:279-282.
    [31] Claude Delmas, Jean-Jacques Braconnier, Claude Fouassier, et al.Electrochemical intercalation of sodium in NaxCoO2 bronzes[J].Solid State Ionics, 1981,3-4:165-169.
    [32] Yasuhiko Takahashi, Junji Akimoto, Norihito Kijima, et al. Structure and electron density analysis of Na0.74CoO2 by single-crystal X-ray diffraction[J].Solid State Ionics, 2004,172(1-4):505-508.
    [33] Masayuki Tsuda,Hajime Arai,Yasue Nemoto, et al. Electrode performance of sodium and lithium-Type Romanechite[J]. Journal of the Electrochemical Society, 2003, 150(6):A659-A664.
    [34]O.I.Velikokhatnyi, C.-C.Chang, P.N.Kumta. Phase stability and electronic structure of NaMnO2[J]. Journal of the Electrochemical Society, 2003,150(9):A1262-A1266.
    [35]Masayuki Tsuda, Hajime Arai, Yoji Sakurai. Improved cyclability of Na-birnessite partially substituted by cobalt[J]. Journal of Power Sources, 2002, 110(1): 52-56.
    [36] K. west, B. zachau-christiansen, T. Jacobsen. Sodium insertion in vanadium oxides[J].Solide state Ionics,1988, 28-30(2):1128-1131.
    [37] S. Bach, M. Millet, J. P. Periera-Ramos, et al. Electrochemical sodium insertion into MnCo oxide[J]. Electrochem. Solid-State Lett, 1999, 2 (11):545-546.
    [38] J. Barker, M. Y. Saidi, J. L. Swoyer. A Sodium-Ion Cell Based on the Fluorophosphate Compound NaVPO4F[J]. Electrochemical and Solid-State Letters,2003,6:A1-A4.
    [39] J. Barker, M. Y. Saidi, J. L. Swoyer. A comparative investigation of the Li insertion properties of the novel Fluorophosphate phases, NaVPO4F and LiVPO4[J]. J. Electrochemical Soc,2004, 151(10):A1670-A1677.
    [40] J. Meins, M. Crosnier, A. Hemon, et al. Phase transitions in the Na3M2(PO4)2F3 family (M=Al3+,V3+, Cr3+, Fe3+, Ga3+):Synthesis, Thermal, Structural, and Magnetic studies[J].Journal of solid state chemistry,1999,148:260-277.
    [41] J. Barker, R. K. B. Gover, P. Burns, et.al.Hybrid-ionA Lithium-ion cell based on a sodium insertion material[J]. Journal of Solid State Chemistry, 2006, 9(4):A190-A192.
    [42] 卓海涛,王先友,唐安平等.钠离子电池正极材料NaVPO4F的合成及其电化学性能[J].材料科学与工程学报,2006,24(3):414-417.
    [43] 刘汉三,李 劫,龚正良,张忠如,杨勇. LiNi0.8-y Tiy Co0.2O2电极材料中钛离子掺杂作用机理的研究[J].电化学,2005,11(1):46-52.
    [44] D. Morgan, G.. Ceder, M. Y. Saidi, et al. Experimental and computational study of the structure electrochemical properties of LixM2(PO4)3 compounds with themonoclinic and rhombohedral stucture[J].chem.Mater, 2002,14:4684-4693.
    [45]D. Morgan, G.. Ceder, M. Y. Saidi, et al. Experimental and computational study of the structure and electrochemical properties of monoclinic LixM2(PO4)3 compounds[J]. Journal of power sources, 2003, 119-121:755-759.
    [46]王志兴,陈健.李新海等.Al掺杂对锰酸锂结构与性能的影响[J].电池,2005,35(2):119-120. [47李晓干,仇卫华.林传刚等. LiAlyNi1 - yO2作为锂离子电池正极材料的研究[J].电化学,2000,6(3):357-362.
    [48]倪江锋, 周恒辉,陈继涛,苏光耀.铬离子掺杂对LiFePO4电化学性能的影响[J].物理化学学报,2004,20(6):582-58.
    [49]毕渭滨,高海春,孙长敏等.L iM xM n2- xO 4 (M = Cr、A l) 尖晶石相阴极材料研究[J].盐湖研究,2001,9(3):38-42.
    [50]罗穗莲,李伟善,邱仕洲.掺杂元素对LiMn2O4结构和性能的影响[J].电池,2001,31(1):44-47.
    [51]阮艳莉,唐致远.Mg2+掺杂对LiFePO4结构及电化学性能的影响[J].中国有色金属学报, 2005,15(9):1416-1420.
    [52] 卓海涛,王先友,唐安平等. NaV1-xCrx PO4F的合成及电化学性能[J].中国有色金属学报,2006,6(7):1276-1280.
    [53]C.H. Mi, G. S. Cao ,X. B. Zhao. Low-cost, one-step process for synthesis of carbon-coated LiFePO4 cathode Materials Letters[J].Materials Letters, 2005,59(1): 127-130.
    [54]Jaephil Cho, Hyemin Kim, Byungwoo Park. Comparison of overcharge of AlPO4-coated LiCoO2 and LiNi0.8Co0.1Mn0.1O2 cathode materials in Li-ion cells[J]. Journal of the Electrochemical Society, 2004, 151(10):A1707-A1711.
    [55]Ho-Jin Kweon,Sue Joo Kim,Dong Con Pork.Modification of Lil-xNil-yCoyO2 by applying a surface coating of MgO[J]. J. Power Sources, 2000,88:255-261.
    [56]米常焕,曹高劭,赵新兵. 碳包覆LiFePO4的一步固相法制备及高温电化学性能[J].无机化学学报,2005,2l (4):556-560.
    [57]邹启凡,苏玉长,禹萍等.Al2 O3包覆Li Mn2O4正极材料的合成和电化学性能研究[J].矿冶工程,2004,24(1):95-99.
    [58]高虹 , 杨勤峰.锂离子电池正极材料 LiCoO2 的碳包覆研究 [J]. 有色矿冶,2006,22(2):30-33.
    [59]马国胜,高虹,杨国生等.锂离子电池正极材料LiMn2O4的LiCoO2包覆性能研究[J].辽宁化工,2005,34(7):285-289.
    [60]王志兴,刑志军,李新海等.非均匀成核法表面包覆氧化铝的尖晶石LiMn2O4研究[J].物理化学学报,2004,20(8):790-794.
    [61] A.J.巴德, L.R.福克纳. 电化学方法、原理及应用 [M].北京:化学工业出版社, 1984: 372-406.
    [62]叶世海,吕江英,高学平,宋德瑛.球磨促进高温固相反应合成尖晶石相 LiMn2O4[J]. 电源技术,2002,26(2):151-153.
    [63]闻辂主编.矿物红外光谱学[M].重庆:重庆大学出版社,1989: 65-68.
    [64]S. C. Lin, J. T. Vaughey, W. T. A. Harrison, et al. Redox transformations of simple vanadium phosphates: the synthesis of ε-VOPO4[J]. Solid state ionics, 1996,84:219-226.
    [65]Wen-Sheng Dong, Jonathan K. Bartley, Nian-Xue Song, et al. Synthesis and Characterization of Vanadyl Hydrogen Phosphite Hydrate [J]. Chem.Mater, 2005, 17:2757-2764.
    [66]日本化学会编.无机固态反应[M]. 董万堂, 董绍俊译. 北京:科学出版社,1985.
    [67] H. T. Zhuo, X. Y. Wang, A. P. Tang, et al.. The preparation of NaV1-xCrxPO4Fcathode materials for sodium-ion battery [J], J Power Sources, 2006, 160: 698-701.
    [68]刘志明,王先友,卓海涛等.NaV1-x Fe xPO4F 的合成及电化学性能研究[J].电池,2006,36(5):335-337.
    [69]J. Kim, B. H. Kim,Y. H. Baik,et al. Effect of (Al, Mg) substitution in LiNiO2 electrode for lithium batteries[J], J Power Sources,2006,158:641-645.
    [70]Jierong Ying, Min Lei, Changyin Jiang, et al. Preparation and characterization of high-density spherical Li0.97Cr0.01FePO4/C cathode material for lithium ion batteries[J], J Power Sources,2006,158:543-549.
    [71]Decheng Li,Yuki Sasaki,Koichi Kobayakawa,et al. Morphological, structural, and electrochemical characteristics of LiNi0.5Mn0.4M0.1O2 (M = Li, Mg, Co, Al) [J], J Power Sources,2006,157:488-493.
    [72]徐峙晖,赖琼钰,吉晓洋.用碳热还原法合成LiFePO4及其电化学性能研究[J]. 四川大学学报(工程科学版), 2005,37(4):77-80.
    [73]J. Barker, M. Y. Saidi, J. L. Swoyer. Electrochemical properties of beta-LiOPO4 prepared by carbothermal reducion[J]. Journal of the Electrochemical Society, 2004,151(6):A796-A800.
    [74]J. Barker, M. Y. Saidi, J. L. Swoyer. Carbothermal reduction method for thepreparation of electroactive materials for lithium ion application[J]. Journal of the Electrochemical Society, 2003,150(6):A684-A688.
    [75] E. Alda, B. Bazan, J. L. Mesa, et al. A new vanadium(III) fluorophosphates with ferromagnetic interactions, (NH4)[V(PO4)F] [J].Journal of solid state chemistry,2003,173:101-108.
    [76]刘志明,王先友,卓海涛等.NaV1-xAlxPO4F 的合成及电化学性能研究[J].电源技术,已采稿.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700