用户名: 密码: 验证码:
新型储能电池电极材料研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源短缺与环境污染已经成为威胁人类生存和发展的严峻问题。解决能源与环境问题最有效的方法是大力发展可再生能源,然而这些可再生能源由于不连续性、不稳定性,需要采用储能装置进行转换和存储。在众多储能器件中,储能电池是其中重要的一种。锂离子电池具有工作电压高、比能量大、质量轻、体积小、循环寿命长、无记忆效应、可快速充放电和无环境污染等一系列显著的优点,是非常有前途的储能电池;同时钠离子电池由于资源丰富、成本低,也适合做储能电池。本文首先是对现有储能电池电极材料进行改性,开发了低温数层石墨烯包覆技术,得到数层石墨烯包覆的Li4Ti5O12复合材料;其次开发更高容量的电池电极材料,首次研究了LiNb3O8作为锂离子电池负极材料的电化学性能;最后研究了Na3V2(PO4)3/C作为钠离子电池材料的结构、电化学性能以及储钠机理。主要研究结论及成果如下:
     碳包覆技术对于提高材料的表面电子电导率和颗粒间的电子接触有着重要的作用。目前的碳包覆温度一般都在700℃以上,然而这么高的温度既不利于节约能源,也可能导致电极材料在包覆过程中被还原。我们开发了一种数层石墨烯低温包覆技术,这种包覆技术操作温度在400℃,利用该技术成功地在Li4Ti5O12表面包覆上均匀的数层石墨烯,形成离子、电子的混合导电网络。
     包覆后样品在5C和10C倍率下的容量分别达到131和104mAh/g,并且具有非常好的循环性能,2C倍率下2400周循环后,容量从最初的144.6降到124.4mAh/g,容量保持率为86%。同时采用该技术在Li2MnO3表面成功包覆上数层石墨烯,其循环性能也大大提高,结构仍然保持,Mn的价态也没有发生变化。这种技术方法简单,非常容易普及到其他电极材料。
     虽然包覆后的Li4Ti5O12电化学性能得到显著提高,但是由于其理论容量只有175mAh/g,这就要求我们开发新的替代产品以满足高能量密度锂离子电池的需要。由于Nb5+/Nb4+和Nb4+/Nb3+的氧化还原电对都在1-3V之间,能够避免SEI膜的生成,可能实现两电子转移,因此铌基化合物具有非常高的理论容量。我们首次将LiNb3O8作为锂离子电池负极材料,利用高能球磨将固相法制备的LiNb3O8与乙炔黑共混,降低颗粒尺寸,构建离子、电子的混合导电网络,可以更好地提高LiNb3O8材料的电化学性能,LiNb3O8纳微复合材料首周充放电容量分别为212和351mAh/g,对应于3.3个Li可逆地从Li6.4Nb3O8中脱出。放电态Nb5+不能完全转变成Nb3+,只能是由Nb3+和Nb4+共存;充电态也不能完全回到Nb5+,仍有部分Nb4+存在,说明LiNb3O8纳微复合材料可以部分实现两电子转移。同时采用溶胶-凝胶法制备了纳米LiNb3O8,利用非原位XRD和XANES技术,结合充放电曲线研究了LiNb3O8在充放电过程中结构变化。
     随着锂离子电池逐渐在电动汽车领域的大规模使用,锂的需求量不断增加,而锂的资源有限,为了缓解这个矛盾,钠离子电池目前受到广泛关注和研究,以替代锂离子电池材料在储能方面的应用。对比锂离子电池,钠离子电池具有潜在的优点,成本低,安全性能高。我们首次报道了采用一步固相法,成功制备了碳包覆Na3V2(PO4)3复合材料,形成离子、电子的混合导电网络。碳包覆Na3V2(PO4)3复合材料具有3.4和1.6V vs. Na+/Na两个平台。作为正极材料,3.4V平台高于目前报道的绝大部分钠离子电池正极材料的平均电压。通过优化电解液和包覆碳含量,首次采用NaFSI/PC新型电解液体系,碳包覆Na3V2(PO4)3复合材料首周库仑效率高达98.7%,随后每周库仑效率都高于99.8%,首周可逆容量高达107mAh/g,80周循环后容量仍然保持在99.5mAh/g,容量保持率为92.9%。循环稳定后,极化只有50mV,低于在其它电解液体系中的极化。
     采用XRD, in-situ XRD, NMR和STEM研究了Na3V2(PO4)3作为钠离子电池正极的储钠机理。Na3V2(PO4)3充放电过程是一个典型的两相反应,两相分别为Na3V2(PO4)3和NaV2(P04)3。充放电过程中结构变化可逆,由Na3V2(PO4)3转变为NaV2(PO4)3的体积变化仅为8.26%。Na3V2(PO4)3中Na有两种占位,分别为6b(Nal)和18e(Na2)位,其中Na2位置的数量约为Nal位置数量的2倍。Nal在结构变化中基本不发生变化,而18e位置的Na2可以进行可逆的脱嵌。
Energy shortage and environment pollution threat the survival and development of humanbeing. The most effective solution is to develop renewable resources. However, those resources, because of instability and discontinuity, need large-energy energy storage equipment which could achieve energy storage and transfer between different energy resources. As energy storage equipment, lithium ion batteries have been considered as promising stationary batteries because of their high output voltage, high energy density, high power density, long cycle life, no memory and environmental friendly features; sodium ion batteries could also be used as stationary batteries because of their abundant resources and low cost. In this Ph. D. dissertation, we coated the Li4Ti5O12with a few-layer graphene via a new low-temperature coating technique; secondly, we introduce a novel material of LiNb3O8with high capacity as an anode electrode for lithium ion batteries; we report the use of carbon coated Na3V2(PO4)3as a promising cathode material for sodium ion batteries and investigate the sodium storage mechanism. The main findings and conclusions are as follows:
     As far as we know, carbon coating is a powerful method to enhance the surface electrical conductivity of electrode materials. It is an effective way of improving electrochemical performance. Typically, carbon coating of electrode materials is conducted over700℃. Under such a high temperature, some electrode materials, including lithium transition metal oxides, may be reduced or may become unstable during the carbon coating process. We successfully coated few-layer graphene on the surface of Li4Ti5O12by a low-temperature carbon coating technique at400℃. Capacities of131and104mAh/g can be reached at current rates of5C and10C, respectively. Moreover, cyclic performance is significantly improved after coating. The capacity decreases from144.6to124.4mAh/g after2400cycles at a current rate of2C in a half cell versus Li+/Li, with high capacity retention of86%. Furthermore, few-layer graphene coated Li2MnO3was also prepared using the same approach. The crystalline structure and chemical state of Mn remain unchanged after few-layer graphene coating. The cyclic performance is also significantly improved. This new graphene-coating technique could be easily extended to other active electrode materials for electrochemical devices.
     Nevertheless, the theoretical capacity of Li4Ti5O12is only175mAh/g. In order to further improve the energy density of a battery, it is desirable to explore new anode materials with high reversible capacity. Here we exploited a novel anode material of LiNb3O8. For enhancing electrical contact and deducing the particle size of electrode material, the pure LiNb3O8was ball-milled with carbon black. The initial discharge/charge capacities of the resulting sample are351and212mAh/g, respectively. The partial two-electron transfer reaction from Nb5+to Nb3+is realized in this material The result is confirmed by XANES and ex-situ XRD.
     Due to the low abundance of lithium in the earth's crust, large-scale applications of lithium ion batteries become questionable. We first report the use of carbon to coat Na3V2(PO4)3materials by one-step solid state reaction approach. The sample shows flat voltage plateaus at3.4V and1.63V vs. Na+/Na. The storage voltage of3.4V is relatively higher than the average voltage of other cathode materials for sodium ion batteries. The capacity is improved by reducing carbon content of Na3V2(PO4)3/C and coulombic efficiency is enhanced by optimized electrolytes. The initial coulombic efficiency for sample after reducing carbon content inNaFSI/PC is up to98.7%and it can maintain at99.8%in the subsequent cycles. The initial reversible capacity is107.1mAh/g, which is close to its theoretical capacity and its capacity retention is92.9%after80cycles. The behavior of structural changes between charge/discharge of Na3V2(PO4)3/C is a typical two-phase reaction between Na3V2(PO4)3to NaV2(PO4)3with volume change of ca.8.26%.
引文
[1]Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature,2001,414:359-367.
    [2]Komaba S, Murata W, Ishikawa T, et al. Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries [J]. Advanced Functional Materials,2011,21:3859-3867.
    [3]全国工商联新能源商会储能专业委员会[J].储能产业研究白皮书,2011,1-10.
    [4]程时杰.储能电池在电网中的应用[J].高科技与产业化,2010,5:52-54.
    [5]祝铭.储能电池技术[J].科技综述,2010,3:24-29.
    [6]Guan X H, Luh P B, Yang H Z, et al. Optimization-based scheduling of hydrothermalpower-systems with pumped-storage units[J]. IEEE Transactions on Power Systems,1994,9:1023-1031.
    [7]Halladin J. Compressed air storage energy operating gear for high-voltage indoor circuit breakers [J]. Przeglad Elektrotechniczny,1972,48-49.
    [8]Greenblatt J B, Succar S, Denkenberger D C, et al. Baseload wind energy: modeling the competition between gas turbines and compressed air energy storage for supplemental generation[J]. Energy Policy,2007,35:1474-1492.
    [9]Prodromidis G N, Coutelieris F A. Simulations of economical and technical feasibility of battery and flywheel hybrid energy storage systems in autonomous projects[J]. Renewable Energy,2012,39:149-153.
    [10]Ribeiro P F, Johnson B K, Crow M L, et al. Energy storage systems for advanced power applications [J]. Proceedings of the IEEE,2001,89:1744-1756.
    [11]Hull J R, Mulcahy T M, Uherka K L, et al. Flywheel energy-storgy using superconducting magnetic bearings [J]. Applied Superconductivity,1994,2:449-455.
    [12]Futaba D N, Hata K, Yamada T, et al. Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes [J]. Nature Materials,2006,5:987-994.
    [13]Zhang Z A, Yang B C, Deng M G, et al. Progress of research on manganese oxide for electrode material of supercapacitors[J]. Journal of Inorganic Materials, 2005,20:529-536.
    [14]Chapin R E, Harris M W, Davis B J, et al. The effects of perinatal/juvenile methoxychlor exposure on adult rat nervous, immune, and reproductive system function[J]. Fundamental and Applied Toxicology,1997,40:138-157.
    [15]Oshima T, Kajita M, Okuno A. Development of sodium-sulfur batteries [J]. International Journal of Applied Ceramic Technology,2004,1:269-276.
    [16]Rydh C J, Sanden B A. Energy analysis of batteries in photovoltaic systems. Part I:Performance and energy requirements[J]. Energy Conversion and Management,2005,46:1957-1979.
    [17]Sun B, Sykllaskazacos M. Modification of graphite electrode materials for vandium redox flow battery application[J]. Electrochimica Acta,1992,37:1253-1260.
    [18]Hwang G J, Ohya H. Preparation of cation exchange membrane as a separator for the all-vanadium redox flow battery [J]. Journal of Membrane Science,1996, 120:55-67.
    [19]Rychcik M, Skyllaskazacos M. Characteristics of a new all-vanadium redox flow battery[J]. Journal of Power Sources,1988,22:59-67.
    [20]Fang B, Iwasa S, Wei Y, et al. Study of the Ce(III)/Ce(IV) redox couple for redox flow battery application[J]. Electrochimica Acta,2002,47:3971-3976.
    [21]Arico A S, Bruce P G, Scrosati B, et al Nanostructured materials for advanced energy conversion and storage devices[J]. Nature Materials,2005,4:366-377.
    [22]Armand M, Tarascon J M. Building better batteries [J]. Nature,2008,451:652-657.
    [23]Bruce P G, Scrosati B, Tarascon J M. Nanomaterials for rechargeable lithium batteries [J]. Angewandte Chemie-International Edition,2008,47:2930-2946.
    [24]Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials,2007,6: 183-191.
    [25]Zhu G-N, Liu H-J, Zhuang J-H, et al. Carbon-coated nano-sized Li4Ti5O12 nanoporous micro-sphere as anode material for high-rate lithium-ion batteries [J]. Energy & Environmental Science,2011,4:4016-4022.
    [26]Centi G, Perathoner S. The role of nanostructure in improving the performance of electrodes for energy storage and conversion[J]. European Journal of Inorganic Chemistry,2009,2009:3851-3878.
    [27]Hirscher M. Nanoscale materials for energy storage[J]. Materials Science and Engineering B,2004,108:1-1.
    [28]Jiang C, Hosono E, Zhou H. Nanomaterials for lithium ion batteries [J]. Nano Today,2006,1:28-33.
    [29]Kaskhedikar N A, Maier J. Lithium storage in carbon nanostructures[J]. Advanced Materials,2009,21:2664-2680.
    [30]Kern K, Maier J. Nanoionics and nanoelectronics[J]. Advanced Materials,2009, 21:2569-2569.
    [31]Li H Q, Zhou H S. Enhancing the performances of Li-ion batteries by carbon-coating:present and future[J]. Chemical Communications,2012,48:1201-1217.
    [32]Manthiram A, Vadivel Murugan A, Sarkar A, et al Nanostructured electrode materials for electrochemical energy storage and conversion[J]. Energy & Environmental Science,2008,1:621-638.
    [33]Palacin M R Recent advances in rechargeable battery materials:A chemist's perspective[J]. Chemical Society Reviews,2009,38:2565-2575.
    [34]Whittingham M S. Lithium batteries and cathode materials [J]. Chemical Reviews,2004,104:4271-4302.
    [35]Zhou Z, Xu J, Liu X, et al. Non-spherical racemic polylactide microarchitectures formation via solvent evaporation method[J]. Polymer,2009,50:3841-3850.
    [36]Ritchie A G. Recent developments and future prospects for lithium rechargeable batteries [J]. Journal of Power Sources,2001,96:1-4.
    [37]Bandyopadhyay G. Ceramic-coated positive current collectors for Li-Al-LiCl-KCl-FeS2 batteries [J]. Journal of the Electrochemical Society,1981,128:2545-2552.
    [38]Armand M. Materials for advanced batteries[M]. Plenum Press, New York,1980.
    [39]Scrosati B. Recent advances in lithium ion battery materials [J]. Electrochimica Acta,2000,45:2461-2466.
    [40]Alper J. Batteries-The battery:not yet a terminal case[J]. Science,2002,296: 1224-1226.
    [41]Nagamura T, Tazawa K. Lithium ion rechargeable battery[J]. Prog. Batteries. Sol Cells,1990,9:209-217.
    [42]Hosono E, Kudo T, Honma I, et al. Synthesis of single crystalline spinel LiMn2O4 nanowires for a lithium ion battery with high power density[J]. Nano Letters,2009,9:1045-1051.
    [43]Wu Y M, Wen Z H, Li J H. Hierarchical carbon-coated LiFePO4 nanoplate microspheres with high electrochemical performance for Li-ion batteries [J]. Advanced Materials,2011,23:1126-1129.
    [44]Thackeray M M, Kang S H, Johnson C S, et al.Comments on the structural complexity of lithium-rich Li1+xMi-xO2 electrodes (M=Mn, Ni, Co) for lithium batteries [J]. Electrochemistry Communications,2006,8:1531-1538.
    [45]Kim J M, Chung H T. The first cycle characteristics of Li Ni1/3Co1/3Mn1/3O2 charged up to 4.7 V[J]. Electrochimica Acta,2004,49:937-944.
    [46]Needham S A, Calka A, Wang G X, et al. A new rapid synthesis technique for electrochemically active materials used in energy storage applications [J]. Electrochemistry Communications,2006,8:434-438.
    [47]Nakahara K, Nakajima R, Matsushima T, et al. Preparation of particulate Li4TisO12 having excellent characteristics as an electrode active material for power storage cells[J]. Journal of Power Sources,2003,117:131-136.
    [48]Ohzuku T, Ueda A, Yamamoto N. Zero-strain insertion material of LiLi1/3TiI5/3O4 for rechargable lithium cells [J]. Journal of the Electrochemical Society,1995,142:1431-1435.
    [49]Zaghib K, Armand M, Gauthier M. Electrochemistry of anodes in solid-state Li-ion polymer batteries[J]. Journal of the Electrochemical Society,1998,145: 3135-3140.
    [50]Peramunage D, Abraham K M. The Li4Ti5O12//PAN electrolyte//LiMn2O4 rechargeable battery with passivation-free electrodes [J]. Journal of the Electrochemical Society,1998,145:2615-2622.
    [51]Abe Y, Matsui E, Senna M. Preparation of phase pure and well-crystallized Li4Ti5O12 nanoparticles by precision control of starting mixture and calcining at lowest possible temperatures[J]. Journal of Physics and Chemistry of Solids, 2007,68:681-686.
    [52]Prosini P P, Mancini R, Petrucci L, et al Lu4Ti5O12 as anode in all-solid-state, plastic, lithium-ion batteries for low-power applications [J]. Solid State Ionics, 2001,144:185-192.
    [53]Matsui E, Abe Y, Senna M, et al. Solid-state synthesis of 70 nm Li4Ti5O12 particles by mechanically activating intermediates with amino acids [J]. Journal of the American Ceramic Society,2008,91:1522-1527.
    [54]Hao Y, Lai Q, Lu J, et al Synthesis and characterization of spinel Li4Ti5O12 anode material by oxalic acid-assisted sol-gel method[J]. Journal of Power Sources,2006,158:1358-1364.
    [55]Jiang C H, Zhou Y, Honma I, et al. Preparation and rate capability of Li4Ti5O12 hollow-sphere anode material[J]. Journal of Power Sources,2007,166:514-518.
    [56]Alias N A, Kufian M Z, Teo L P, et al. Synthesis and characterization of Li4Ti5O12[J]. Journal of Alloys and Compounds,2009,486:645-648.
    [57]Sorensen E M, Barry S J, Jung H K, et al.Three-dimensionally ordered macroporous Li4Ti5O12:effect of wall structure on electrochemical properties [J]. Chemistry of Materials,2006,18:482-489.
    [58]Doi T, Iriyama Y, Abe T, et al. Electrochemical insertion and extraction of lithium ion at uniform nanosized Li4/3Ti5/3O4 particles prepared by a spray pyrolysis method[J]. Chemistry of Materials,2005,17:1580-1582.
    [59]Ju S H, Kang Y C. Effects of preparation conditions on the electrochemical and morphological characteristics of Li4Ti5O12 powders prepared by spray pyrolysis[J]. Journal of Power Sources,2009,189:185-190.
    [60]Yoshikawa D, Kadoma Y, Kim J-M, et al. Spray-drying synthesized lithium-excess Li4+xTi5-xO12-δ and its electrochemical property as negative electrode material for Li-ion batteries [J]. Electrochimica Acta,2010,55:1872-1879.
    [61]Zhu G-N, Liu H J, Zhuang J H, et al. Carbon-coated nano-sized Li4Ti5O12 nanoporous micro-sphere as anode material for high-rate lithium-ion batteries [J]. Energy & Environmental Science,2011,4:4016-4022.
    [62]Zhao L, Hu Y-S, Li H, et al. Porous Li4Ti5O12 coated with N-doped carbon from ionic liquids for Li-ion batteries [J]. Advanced Materials,2011,23:1385-1388.
    [63]Borghols W J H, Wagemaker M, Lafont U, et al. Size effects in the Li4+xTi5O12 spinel[J]. Journal of the American Chemical Society,2009,131:17786-17792.
    [64]Cui G, Hu Y-S, Zhi L, et al. A one-step approach towards carbon-encapsulated hollow tin nanoparticles and their application in lithium batteries [J]. Small,2007, 3:2066-2069.
    [65]Guerfi, A. Nano-particle Li4Ti5O12 spinel as electrode for electrochemical generators[J]. Journal of Power Sources,2003,119-121:88-94.
    [66]Guo Y G, Hu Y-S, Sigle W, et al. Superior electrode performance of nanostructured mesoporous TiO2 (Anatase) through efficient hierarchical mixed conducting networks[J]. Advanced Materials,2007,19:2087-2091.
    [67]Hosono E, Wang Y, Kida N, et al. Synthesis of triaxial LiFePO4 nanowire with a VGCF core column and a carbon shell through the electrospinning method[J]. ACS Applied Materials & Interfaces,2010,2:212-218.
    [68]Hu Y-S, Guo Y G, Dominko R, et al. Improved electrode performance of porous LiFePO4 using RuO2 as an oxidic nanoscale interconnect[J]. Advanced Materials, 2007,19:1963-1966.
    [69]Hu Y-S, Kienle L, Guo Y G, et al. High lithium electroactivity of nanometer-sized rutile TiO2[J]. Advanced Materials,2006,18:1421-1426.
    [70]Hu Y-S, Demir-Cakan R, Titirici M-M, et al. Superior storage performance of a Si@SiOx/C nanocomposite as anode material for lithium-ion batteries[J]. Angewandte Chemie International Edition,2008,47:1645-1649.
    [71]Hu Y-S, Liu X, Miiller J-O, et al. Synthesis and electrode performance of nanostructured V2O5 by using a carbon tube-in-tube as a nanoreactor and an efficient mixed-conducting network[J]. Angewandte Chemie International Edition,2009,48:210-214.
    [72]Dong J, Hu Y, Zhu S, et al. A highly selective and sensitive dopamine and uric acid biosensor fabricated with functionalized ordered mesoporous carbon and hydrophobic ionic liquid[J]. Analytical and Bioanalytical Chemistry,2010,396: 1755-1762.
    [73]Fan X, Zou L, Zheng Y-P, et al. Electrospinning preparation of nanosilicon/disordered carbon composite as anode materials in Li-ionbattery[J]. Electrochemical and Solid-State Letters,2009,12:A199-A201.
    [74]Huang Y, Ren H, Peng Z, et al. Synthesis of LiFePO4/carbon composite from nano-FePO4 by a novel stearic acid assisted rheological phase method[J]. Electrochimica Acta, 2009, 55: 311-315.
    [75]Kim S-W, Ryu J, Park C B, etaL Carbon nanotube-amorphous FePO4 core-shell nanowires as cathode material for Li ionbatteries[J]. Chemical Communications, 2010,46:7409.
    [76]Pan A Q, Liu J, Zhang J G, et al.Nano-structured Li3V3(PO4)3/carbon composite for high-rate lithium-ion batteries[J]. Electrochemistry Communications, 2010, 12:1674-1677.
    [77]Yang L, Gao L. Li4Ti5O12/C composite electrode material synthesized involving conductive carbon precursor for Li-ion battery[J]. Journal of Alloys and Compounds, 2009,485: 93-97.
    [78]Li J R, Tang Z L, Zhang Z T. Controllable formation and electrochemical properties of one-dimensional nano structured spinel Li4Ti5O12[J]. Electrochemistry Communications, 2005, 7: 894-899.
    [79]Huang S, Wen Z, Zhu X, et al. Preparation and electrochemical performance of spinel-type compounds Li4AlyTi5-yOn (y=0, 0.10, 0.15, 0.25) [J]. Journal of the Electrochemical Society, 2005, 152: A186-A190.
    [80]Robertson A D, Tukamoto H, Irvine J TS. Li1+xFe1-3xTi1+2x04 (0.0 <= x<= 0.33) based spinels: Possible negative electrode materials for future Li-ion batteries [J]. Journal of the Electrochemical Society, 1999, 146:3958-3962.
    [81]Kubiak P, Garcia A, Worries M, et al. Phase transition in the spinel Li4Ti5O12 induced by lithium insertion - influence of the substitutions Ti/V, Ti/Mn, Ti/Fe[J]. Journal ofPower Sources, 2003, 119:626-630.
    [82]Cheng L, Yan J, Zhu G-N, et aL General synthesis of carbon-coated nanostructure Li4Ti5O12 as a high rate electrode material for Li-ion intercalation[J]. Journalof Materials Chemistry, 2010, 20:595-602.
    [83]Ding Z, Zhao L, Suo L, et al. Towards understanding the effects of carbon and nitrogen-doped carbon coating on the electrochemical performance of Li4Ti5O12 in lithium ion batteries: a combined experimental and theoretical study[J]. Physical Chemistry Chemical Physics, 2011, 13: 15127-15133.
    [84]Jung H-G, Myung S-T, Yoon C S, et al. Microscale spherical carbon-coated Li4Ti5O12 as ultra high power anode material for lithium batteries[J]. Energy & Environmental Science,2011,4:1345-1351.
    [85]Shen L F, Yuan C Z, Luo H J, et al. Facile synthesis of hierarchically porous Li4Ti5O12 microspheres for high rate lithium ion batteries[J]. Journal of Materials Chemistry,2010,20:6998-7004.
    [86]Prakash A S, Manikandan P, Ramesha K, et al. Solution-combustion synthesized nanocrystalline Li4Ti5O12 as high-rate performance Li-ion battery anode[J]. Chemistry of Materials,2010,22:2857-2863.
    [87]Pan H-L, Hu Y-S, Li H, et al. Significant effect of electron transfer between current collector and active material on high rate performance of Li4Ti5O12[J]. Chinese Physics B,2011,20:1-4.
    [88]Xu K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries[J]. Chemical Reviews,2004,104:4303-4417.
    [89]Xu S, Zhang J, He A, et al. Electrospinning of native cellulose from nonvolatile solvent system[J]. Polymer,2008,49:2911-2917.
    [90]Gachot G, Grugeon S, Armand M, et al. Deciphering the multi-step degradation mechanisms of carbonate-based electrolyte in Li batteries [J]. Journal of Power Sources,2008,178:409-421.
    [91]Aurbach D. Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries[J]. Journal of Power Sources,2000, 89:206-218.
    [92]Smith A J, Burns J C, Zhao X M, et al. A high precision coulometry study of the SEI growth in Li/graphite cells[J]. Journal of the Electrochemical Society,2011, 158:A447-A452.
    [93]Ferg E, Gummow R J, Dekock A, et al. Spine anodes for lithium-ion batteries[J]. Journal of the Electrochemical Society,1994,141:L147-L150.
    [94]Ok Kyung Park, Yonghyun Cho, Sanghan Lee, et al. Who will drive electric vehicles, olivine or spinel?[J]. Energy and Environmental Science,2011,4: 1621-1633.
    [95]Goodenough J B. Reports of DOE, [M].2009.
    [96]Armstrong A R, Armstrong G, Canales J, et al. Lithium-ion intercalation into TiO2-Bnanowires[J]. Advanced Materials,2005,17:862-865.
    [97]Cao F F, Wu X L, Xin S, et al. Facile synthesis of mesoporous TiO2-C nanosphere as an improved anode material for superior high rate 1.5 V rechargeable Li ion batteries containing LiFePO4-C cathode[J]. Journal of Physical Chemistry C,2010,114:10308-10313.
    [98]Zukalova M, Prochazka J, Bastl Z, et al. Facile conversion of electrospun TiO2 into titanium nitride/oxynitride fibers[J]. Chemistry of Materials,2010,22: 4045-4055.
    [99]Kim Y, Park K-s, Song S-h, et al. Access to M3+/M2+redox couples in layered LiMS2 sulfides (M=Ti, V, Cr) as anodes for Li-ion battery[J]. Journal of the Electrochemical Society,2009,156:A703-A708.
    [100]Kim Y, Goodenough J B. Lithium insertion into transition-metal monosulfides: tuning the position of the metal 4s band[J]. Journal of Physical Chemistry C, 2008,112:15060-15064.
    [101]Lu X, Jian Z L, Fang Z, et al. Atomic-scale investigation on lithium storage mechanism in TiNb2O7[J]. Energy & Environmental Science,2011,4:2638-2644.
    [102]Colin J F, Pralong V, Hervieu M, et al. Lithium insertion in an oriented nanoporous oxide with a tunnel structure:Ti2Nb2O9[J]. Chemistry of Materials, 2008,20:1534-1540.
    [103]Colin, J. F. Pralong, V. Caignaert, V., et al. A novel layered titanoniobate LiTiNbO5:Topotactic synthesis and electrochemistry versus lithium[J]. Inorganic Chemistry,2006,45:7217-7223.
    [104]Le Viet A, Reddy M V, Jose R, et al. Nanostructured Nb2O5 polymorphs by electrospinning for rechargeable lithium batteries[J]. Journal of Physical Chemistry C,2010,114:664-671.
    [105]Reddy M A, Varadaraju U V. Facile insertion of lithium into nanocrystalline AINbO4 atroomtemperature[J]. Chemistry of Materials,2008,20:4557-4559.
    [106]Son J T. Novel electrode material for Li ion battery based on polycrystalline LiNbO3[J]. Electrochemistry Communications,2004,6:990-994.
    [107]Wang G X, Yao P, Bradhurst D H, et al. Structure characterisation and lithium insertion in La0.33NbO3 perovskite[J]. Solid State Ionics,1999,124:37-43.
    [108]Nakazawa H, Sano K, Abe T, et al. Charge-discharge characteristics of all-solid-state thin-filmed lithium-ion batteries using amorphous Nb2O5 negative electrodes[J]. Journal of Power Sources,2007,174:838-842.
    [109]Kumagai N, Koishikawa Y, Komaba S, et al. Thermodynamics and kinetics of lithium intercalation into Nb2O5 electrodes for a 2 V rechargeable lithium battery[J]. Journal of the Electrochemical Society,1999,146:3203-3210.
    [110]Han J-T, Liu D-Q, Song S-H, et al. Lithium ion intercalation performance of niobium oxides:KNb5O13 and K.6Nb10.8030[J]. Chemistry of Materials,2009, 21:4753-4755.
    [111]Han J T, Goodenough J B.3-V full cell performance of anode framework TiNb2O7/spinel LiNio.5Mn1.504[J]. Chemistry of Materials,2011,23:3404-3407.
    [112]Li Y, Sun C, Goodenough J B. Electrochemical lithium intercalation in monoclinic Nb12O29[J]. Chemistry of Materials,2011,23:2292-2294.
    [113]Han J-T, Huang Y-H, Goodenough J B. New anode framework for rechargeable lithium batteries [J]. Chemistry of Materials,2011,23:2027-2029.
    [114]Padhi A K, Nanjundaswamy K S, Goodenough J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries [J]. Journal of the Electrochemical Society,1997,144:1188-1194.
    [115]Rousse G, Rodriguez-Carvajal J, Patoux S, et al. Magnetic structures of the triphylite LiFePO4 and of its delithiated form FePO4[J]. Chemistry of Materials, 2003,15:4082-4090.
    [116]Padhi A K, Nanjundaswamy K S, Masquelier C, et al. Effect of structure on the Fe3+/Fe2+redox couple in iron phosphates[J]. Journal of the Electrochemical Society,1997,144:1609-1613.
    [117]Chung S Y, Bloking J T, Chiang Y M. Electronically conductive phospho-olivines as lithium storage electrodes[J]. Nature Materials,2002,1:123-128.
    [118]Prosini P P, Lisi M, Zane D, et al. Determination of the chemical diffusion coefficient of lithium in LiFePO4[J]. Solid State Ionics,2002,148:45-51.
    [119]Andersson A S, Kalska B, Haggstrom L, et al. Lithium extraction/insertion in LiFePO4:an X-ray diffraction and Mossbauer spectroscopy study[J]. Solid State Ionics,2000,130:41-52.
    [120]Ravet N, Besner S, Sinoneau M, et al. Abstract,#127.196th ECS Meeting[C]. 1999, Oct.17-22.
    [121]Yamada A, Chung S C, Hinokuma K. Optimized LiFePO4 for lithium battery cathodes[J]. Journal of the Electrochemical Society,2001,148:A224-A229.
    [122]Huang H, Yin S C, Nazar L F. Approaching theoretical capacity of LiFePO4 at room temperature at high rates[J]. Electrochemical and Solid State Letters, 2001,4:A170-A172.
    [123]Ravet N, Abouimrane A, Armand M. From our readers-on the electronic conductivity of phosphoolivines as lithium storage electrodes [J]. Nature Materials,2003,2:702-702.
    [124]Herle P S, Ellis B, Coombs N, et al. Nano-ne twork electronic conduction in iron and nickelolivine phosphates[J]. Nature M terials,2004,3:147-152.
    [125]Wang Y G, Wang Y R, Hosono E J, et al. The design of a LiFePO4/carbon nanocomposite with a core-shell structure and its synthesis by an in situ polymerization restriction method[J]. Angewandte Chemie-International Edition,2008,47:7461-7465.
    [126]Nishimura S, Kobayashi G, Ohoyama K, et a. Experimental visualization of lithium diffusion in LixFePO4[J]. Nature Materials,2008,7:707-711.
    [127]Ouyang C Y, Shi S Q, Wang Z X, et al. First-principles study of Li ion diffusion in LiFePO4[J]. Physical Review B,2004,69:1-5.
    [128]Morgan D, Van der Ven A, Ceder G. Li conductivity in LixMPO4 (M=Mn, Fe, Co, Ni) olivine materials [J]. Electrochemical and Solid State Letters,2004,7: A30-A32.
    [129]Palomares V, Serras P, Villaluenga I, et al. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems [J]. Energy & Environmental Science,2012,5:5884-5901
    [130]Barker J, Saidi M Y, Swoyer J L. A sodium-ion cell based on the fluorophosphate compound NaVPO4F[J]. Electrochemical and Solid State Letters,2003,6:A1-A4.
    [131]Sauvage F, Quarez E, Tarascon J M, et al. Crystal structure and electrochemical properties vs. Na+ of the sodium fluorophosphate Na1.5VOPO4F0.5[J]. Solid State Sciences,2006,8:1215-1221.
    [132]Kawabe Y, Yabuuchi N, Kajiyama M, et al. Synthesis and electrode performance of carbon coated Na2FePO4F for rechargeable Na batteries[J]. Electrochemistry Communications,2011,13:1225-1228.
    [133]Yasushi U, ToshiyasuK, Shigeto O, et al. Electrochemial sodium insertion into the 3D-framework of Na3M2(PO4)3 (M=Fe, V) [J]. The reports of Institute of Advanced Material Study, Kyushu University,2002,16:1-5.
    [134]Plashnitsa L S, Kobayashi E, Noguchi Y, et al. Performance of NASICON symmetric cell with ionic liquid electrolyte [J]. Journal of the Electrochemical Society,2010,157:A536-A543.
    [135]II Park S, Gocheva I, Okada S, et al. Electrochemical properties of NaTi2(PO4)3 anode for rechargeable aqueous sodium-ion batteries[J]. Journal of the Electrochemical Society,2011,158:A1067-A1070.
    [136]Znaidi L, Launay S, Quartpn M. Crystal chemistry and electrical properties of Na1+xcScNb(PO4)3 phases[J]. Solid State Ionics,1997,93:273-277.
    [137]Naoaki Yabuuchi, Masataka Kajiyama, Junichi Iwatate, et al. P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries[J]. Nature Materials,2012, doi:10.1038/nmat3309.
    [138]Berthelot R, Carlier D, Delmas C. Electrochemical investigation of the P2-NaxCoO2 phase diagram[J]. Nature Materials,2011,10:74-U3.
    [139]Komaba S, Takei C, Nakayama T, et al. Electrochemical intercalation activity of layered NaCrO2 vs. LiCrO2[J]. Electrochemistry Communications,2010,12: 355-358.
    [140]Kim D, Lee E, Slater M, et al. Layered Na[Nii/3Fe1/3Mn1/3]O2 cathodes for Na-ion battery application[J]. Electrochemistry Communications,2012, DOI: 10.1016/j.elecom. 2012.02.020.
    [141]Kim D, Kang S-H, Slater M, et al. Enabling sodium batteries using lithium-substituted sodium layered transition metal oxide cathodes[J]. Advanced Energy Materials,2011,1:333-336.
    [142]Stevens D A, Dahn J R. High capacity anode materials for rechargeable sodium-ion batteries[J]. Journal of the Electrochemical Society,2000,147: 1271-1273.
    [143]Wenzel S, Hara T, Janek J, et al. Room-temperature sodium-ion batteries: Improving the rate capability of carbon anode materials by templating strategies [J]. Energy & Environmental Science,2011,4:3342-3245.
    [144]Zhao L, Pan H-L, Hu Y-S, et al. Spinel lithium titanate (Li4Ti5O12) as novel anode material for room-temperature sodium-ion battery[J]. Chinese Physics B, 2012,21:1-4.
    [145]Senguttuvan P, Rousse G, Seznec V, et al. Na2Ti3O7:lowest voltage ever reported oxide insertion electrode for sodium ion batteries [J]. Chemistry of Materials,2011,23:4109-4111.
    [146]Hamani D, Ati M, Tarascon J M, et al. NaxVO2 as possible electrode for Na-ion batteries[J]. Electrochemistry Communications,2011,13:938-941.
    [147]Tepavcevic S, Xiong H, Stamenkovic V R, et al. Nanostructured bilayered vanadium oxide electrodes for rechargeable sodium-ion batteries[J]. Acs Nano, 2012,6:530-538.
    [148]Xiong H, Slater M D, Balasubramanian M, et al. Amorphous TiO2 nanotube anode for rechargeable sodium ion batteries[J]. Journal of Physical Chemistry Letters,2011,2:2560-2565.
    [149]Jong-Seon K, Gyu-Bong C, Ki-Won K, et al. The addition of iron to Ni3S2 electrode for sodium secondary battery[J]. Current Applied Physics,2011,11: S215-S218.
    [150]Kim J, Cho J. Spinel Li4Ti5O12 nanowires for high-rate Li-ion intercalation electrode[J]. Electrochemical and Solid-State Letters,2007,10:A81-A84.
    [151]Cheng L, Yan J, Zhu G-N, et al. General synthesis of carbon-coated nanostructure Li4Ti5O12 as a high rate electrode material for Li-ion intercalation[J]. Journal of Materials Chemistry,2010,20:595-602.
    [152]Cheng L, Li X-L, Liu H-J, et al. Carbon-coated Li4Ti5O12 as a high rate electrode material for Li-ion intercalation[J]. Journal of the Electrochemical Society,2007,154:A692-A697.
    [153]Liu R, Mahurin S M, Li C, et al. Dopamine as a carbon source:the controlled synthesis of hollow carbon spheres and Yolk-structured carbon nanocomposites[J]. Angewandte Chemie-International Edition,2011,50:6799-6802.
    [154]Zhang B, Wang X J, Liu Z J, et al. Enhanced electrochemical performances of carbon coated mesoporous LiFeo.2Mn0.8PO4[J]. Journal of the Electrochemical Society,2010,157:A285-A288.
    [155]Cao Q, Zhang H P, Wang G J, et al. A novel carbon-coated LiCoO2 as cathode material for lithium ion battery[J]. Electrochemistry Communications,2007,9: 1228-1232.
    [156]Cai J, Ruffieux P, Jaafar R, et al. Atomically precise bottom-up fabrication of graphene nanoribbons[J]. Nature,2010,466:470-473.
    [157]Hsiao K C, Liao S C, Chen J M. Microstructure effect on the electrochemical property of Li4Ti5O12 as an anode material for lithium-ion batteries[J]. Electrochimica Acta,2008,53:7242-7247.
    [158]Ferrari A C, Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon[J]. Physical Review B,2000,61:14095-14107.
    [159]Wang Y, Zhou H. To draw an air electrode of a Li-air battery by pencil[J]. Energy & Environmental Science,2011,4:1704-1707.
    [160]Lee V, Whittaker L, Jaye C, et al. Large-area chemically modified graphene films:electrophoretic deposition and characterization by soft X-ray absorption spectroscopy[J]. Chemistry of Materials,2009,21:3905-3916.
    [161]Sun Y, Shiosaki Y, Xia Y, et al. The preparation and electrochemical performance of solid solutions LiCoO2-Li2MnO3 as cathode materials for lithium ion batteries[J]. Journal of Power Sources,2006,159:1353-1359.
    [162]Yabuuchi N, Yoshii K, Myung S-T, et al. Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-LiCo1/3Ni1/3Mn1/3O2[J]. Journal of the American Chemical Society,2011,133:4404-4419.
    [163]Kaskhedikar N A, Maier J. Lithium storage ion carbon nanostructures [J]. Advanced Materials,2009,21:2664-2680.
    [164]Kim M G, Cho J. Reversible and high-capacity na no structured electrode materials for Li-ion batteries [J]. Advanced Functional Materials,2009,19: 1497-1514.
    [165]Su D S, Schlogl R. Nanostructured carbon and carbon nanocomposites for electrochemical energy storage applications[J]. ChemSusChem,2010,3:136-168.
    [166]Li H, Wang Z X, Chen L Q, et al. Research on advanced materials for Li-ion batteries [J]. Advanced Materials,2009,21:4593-4607.
    [167]Guo Y G, Hu J S, Wan L J. Nanostructured materials for electrochemical energy conversion and storage devices[J]. Advanced Materials,2008,20:4384-4384.
    [168]Gao X P, Yang H X. Multi-electron reaction materials for high energy density batteries[J]. Energy & Environmental Science,2010,3:174-189.
    [169]Goodenough J B, Kim Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials,2010,22:587-603.
    [170]Wang G J, Zhao N H, Yang L C, et al. Characteristics of an aqueous rechargeable lithium battery (ARLB) [J]. Electrochimica Acta,2007,52:4911-4915.
    [171]Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Physical Review B,1990,41:7892-7895.
    [172]Payne M C, Teter M P, Allan D C, et al. Iterative minimization techniques for ab initio total-energy calculations; molecular dynamics and conjugate gradients[J]. Reviews of Modern Physics,1992,64:1045-1097.
    [173]Lu X H, Kang L, Zhou L, et al. Growth and characterization of a kind of nitrogen-rich niobium nitride for bolometer applications at terahertz frequencies[J]. Chinese Physics Letters,2008,25:4076-4078.
    [174]Yoon S, Yoon J, Kim K, et al. Microwave dielectric properties of LiNb3O8 ceramics with TiO2 additions[J]. Journal of the European Ceramic Society, 2006,26:2031-2034.
    [175]Gaubicher J, Wurm C, Goward G, et al. Rhombohedral form of Li3V2(PO4)3 as a cathode in Li-ion batteries[J]. Chemistry of Materials,2000,12:3240-3242.
    [176]Cushing B L, Goodenough J B. Li2NaV2(PO4)3:A 3.7 V lithium-insertion cathode with the rhombohedral NASICON structure [J]. Journal of Solid State Chemistry, 2001, 162:176-181.
    [177]Gopalakrishnan J, Rangan K K. V2(PO4)3-A novel NASICON-type vanadium phosphate synthesized by oxidative deintercalation od sodium from Na2V2(PO4)3[J]. Chemistry of Materials, 1992, 4: 745-747.
    [178]Zatovsky I V. NASICON-type Na3V2(PO4)3[J]. Acta Crystallographica Section E-Structure Reports Online, 2010, 66:112-U194.
    [179]Kabbour H, Coillot D, Colmont M, et al. alpha-Na3M2(PO4)3 (M = Ti, Fe): absolute cationic ordering in NASICON-type phases[J]. Journal of the American Chemical Society, 2011, 133:11900-11903.
    [180]Pintardserepel M, Yvoire F D, Remy F. Polymorphism and ionic-conduction of phosphate NaFe2(PO4)3[J]. Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences Serie C, 1978, 286: 381-383.
    [181]Nogai A, Kalinin V B, Stefanovich S Y, et aL Ionic-conductivity and phase-transitions in the Na3Sc2(PO4)3-Na3Fe2(PO4)3 system[J]. Zhurnal NeorganicheskoiKhimii, 1985, 30: 2939-2944.
    [182]Le Meins J M, Bohnke O, Courbion G. Ionic conductivity of crystalline and amorphous Na3Al2(PO4)2F3[J]. Solid State Ionics, 1998, 111: 67-75.
    [183]Tuinstra F, Koenig J L. Raman spectrum of graphite[J]. Journal of Chemical Physics, 1970,53:1126-1131.
    [184]Kubota K, Nohira T, Goto T, et al. Novel inorganic ionic liquids possessing low melting temperatures and wide electrochemical windows: binary mixtures of alkali bis (fluorosulfonyl) amides[J]. Electrochemistry Communications, 2008, 10:1886-1888.
    [185]Li L F, Zhou S S, Flan H B, et aL Transport and electrochemical properties and spectral features of non-aqueous electrolytes containing LiFSI in linear carbonate solvents [J]. Journal of the Electrochemical Society, 2011, 158: A74-A82.
    [186]Han H B, Zhou S S, Zhang D J, et al. Lithium bis(fluorosulfonyl) imide (LiFSI) as conducting salt for nonaqueous liquid electrolytes for lithium-ion batteries: physicochemical and electrochemical properties[J]. Journal of Power Sources, 2011,196:3623-3632.
    [187]Scheer J, Johansson P. Transport and electrochemical properties and spectral features of non-aqueous electrolytes containing LiFSI in linear carbonate solvents[J]. Journal of the Electrochemical Society,2012,159:S7-S7.
    [188]Hu Y-S, Kong W H, Hong L, et al. Experimental and theoretical studies on reduction mechanism of vinyl ethylene carbonate on graphite anode for lithium ion batteries[J], Electrochemistry Communications,2004,6:126-131.
    [189]Hu Y-S, Kong W H, Wang Z X, et al. Tetrachloroethylene as new film-forming additive to propylene carbonate-based electrolytes for lithium ion batteries with graphitic anode[J]. Solid State Ionics,2005,176:53-56.
    [190]Hu Y-S, Kong W H, Wang Z X, et al. Effect of morphology and current density on the electrochemical behavior of graphite electrodes in PC-based electrolyte containing VEC additive [J]. Electrochemical and Solid State Letters,2004,7: A442-A446.
    [191]Grey C P, Lee Y J. Lithium MAS NMR studies of cathode materials for lithium-ion batteries [J]. Solid State Sciences,2003,5:883-894.
    [192]Grey C P, Dupre N. NMR studies of cathode materials for lithium-ion rechargeable batteries[J]. Chemical Reviews,2004,104:4493-4512.
    [193]Key B, Bhattacharyya R, Morcrette M, et al. Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries[J]. Journal of the American Chemical Society,2009,131:9239-9249.
    [194]Pan C J, Lee Y J, Ammundsen B, et al. Li-6 MAS NMR studies of the local structure and electrochemical properties of Cr-doped lithium manganese and lithium cobalt oxide cathode materials for lithium-ion batteries [J]. Chemistry of Materials,2002,14:2289-2299.
    [195]Zaghib K, Tatsumi K, Sawada Y, et al.7Li-NMR of well-graphitized vapor-grown carbon fibers and natural graphite negative electrodes of rechargeable lithium-ion batteries[J]. Journal of the Electrochemical Society,1999,146: 2784-2793.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700