热变形行为对20钢和10B21钢奥氏体晶粒形貌的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盘条也叫线材,主要供作拉丝的坯料,也可直接用作建筑材料和加工成机械零件。盘条的内在质量是保证盘条全长组织性能一致性的关键,盘条对表面质量、氧化铁皮的成分及厚度、脱碳层深度等,均有严格的要求。近年来紧固件工业的发展对高性能热轧盘条的需求日益迫切,而国产盘条存在诸如各种缺陷如耳子、折叠、裂纹、分层、混晶等一些问题,因此分析混晶产生原因对提高热轧盘条的综合性能有重要意义。
     本文以国内某钢铁企业生产的20钢和1OB21钢热轧盘条为研究对象,通过检验不同热处理后的奥氏体晶粒度,采用Gleeble一2000热模拟试验机研究两种钢不同条件下的热变形行为,确定其混晶程度及发生较严重混晶时的变形条件。所得主要结果如下:
     1.1OB21钢单道次变形时的混晶程度随着冷却速度的变大而增大,多道次变形时混晶程度随着冷却速度的变大而趋缓;20钢的混晶程度随着冷却速度的增大而减小。两种钢的晶粒尺寸都随着变形温度的升高而增大,在相同条件下(变形温度、变形量、冷却速度),1OB21钢平均晶粒大小明显小于20钢。
     2.多道次累积变形时,道次变形量只有在15%以上时才可得到细小均匀的等轴晶,而小于此变形量时都将会得到混晶组织。10821钢道次变形量为10%和12%变形后冷速较慢会加剧混晶现象发生。20钢除道次变形量8%外,其余变形量的多道次变形后加快冷速(4℃/s)有利于减轻混晶现象的发生
     3.单道次变形时,变形量对于20钢变形后的奥氏体晶粒形貌有显著的影响,而变形温度的影响较小。在70%的大变形量变形时,变形后的奥氏体晶粒除1050℃出现混晶外,其余各温度变形后都为较均匀的等轴晶,其平均晶粒度约为5级。变形温度为950℃和1000℃时,变形量为30%时混晶现象最严重。
     4.10B21钢单道次变形时,变形量为10%和70%时,在各变形温度变形后都可获得较均匀的细小晶粒,其它变形量变形后会出现混晶,变形量增加出现混晶的温度向高温推进。在850℃和1050℃温度下变形时,无论变形量大小,均能获得均匀细小的晶粒度。降低形变后的冷速有利于1OB21钢混晶的减轻或消除。
Also known as wire rod,drawing mainly for the billets, but also can be directly used as building materials and processed into machine parts.The intrinsic quality of rod is to ensure consistency in the performance of the key organizations.On the surface quality of wire rod,iron oxide composition and thickness of skin,the depth of decarburization layer and so on,have strict requirements.In recent years the development increasingly demand of industrial fasteners for high-performance hot-rolled rod. And the domestic wire rod exist a variety of defects such as the handle, folding, cracking, delamination, mixed grain and so on. Therefore the cause of mixed grain is signifigant to improve the performance of hot-rolled coil.
     In this paper, the specimen is from domestic iron and steel enterprise where produced 20 and 10B21 hot-rolled wire rod. By the examination of the austenite grain size with different heat treatment, use Gleeble-2000 thermal simulation machine to test two steel under different hot conditions. Make sure the extent of mixed grain and conditions when mixed grain occurred more serious. The main results obtained are as follows:
     1 10B21 steel,the degree of mixed grain size increases with the cooling rate raises when single-pass deform and increase slowly when multi-pass deform.20 steel,the degree of mixed grain size decreases with the cooling rate raises. The grain size of two types steel enhance when deformation temperature increase. Under the same conditions (deformation temperature,deformation,cooling rate), the average grain size of 10B21 steel is smaller than 20 steel.
     2 Multi-pass accumulation of deformation, small homogeneous grains only can be got when pass deformation at more than 15%,and mixed structure will be got when the deformation is less than the amount.10B21 steel pass deformation of 10% and 12% will increase mixed grain size when slower cooling rate after deformation. In addition to deformation 8% of 20 steel, The remaining deformation when speed up the cooling rate (4℃/s) will help reduce the occurrence of the phenomenon of mixed grain size after the multi-pass deformation.
     3 Single-pass deformation, the amount of deformation have significant effects on the 20 steel and little with deformation temperature. When 70% of the amount deformation, Deformed austenite grain of the remaining deformation are uniform in addition to 1050℃, and the average grain size is about 5. The deformation amount of 30% for the mixed grain size is the most serious with the temperature of 950℃and 1000℃.
     4 10B21 steel, single-pass deformation, the deformation of 10% and 70%, the small grain is got at every deformation temperature,other deformation will be mixed. Deformation appears to increase the temperature of mixed grain to high temperature to promote. At 850℃and 1050℃temperature deformation, no matter the size of deformation, have access to a small uniform grain size. Reduce the cooling rate after deformation in favor of mixed grain size of 10B21 steel to eliminate.
引文
1.曹树卫.棒线材控制轧制和控制冷却技术的研究与应用[J],河南冶金,2005,13(3):23-25.
    2.孙家宏.高强度螺栓连接的应用与设计[J],锅炉技术,1995,12(1):5-7.
    3.李维荣.我国线材产品质量状况综述[J],现代零部件,2004,7(5):42-44.
    4.缑庆林.我国低碳钢热轧圆盘条技术水平分析[J],金属制品,2001,27(5):23-26
    5.李建设姜亚飞.我国优线盘条结构现状及发展趋势分析[J],金属制品,2008,10:29-32
    6.于丛林.低碳钢热轧盘条机械性能研究[J],四川冶金,2003,5(6):2-9
    7.孔庆福,李致清,邓翠青等.拉丝用低碳钢热轧圆盘条标准与生产[J],冶金标准化与质量,2000,41(5):15-16
    8.翁宇庆.“从盘条到钢丝及钢丝制品”国际研讨会议[C],钢丝,2006,10
    9.吴始栋.第二代HTS线材的应用研究[J],中外船舶科技,2008,10(5):21-26
    10.王世亮.从近期监督抽查看低碳钢热轧圆盘条的质量和标准[J],冶金标准化与质量,2003,10:21-25
    11.祖荣祥.优良的冷成型螺栓材料——低碳硼钢[J],装备环境工程,1988,1:47-50.
    12.田亚强,张国滨.热轧16MnR中板再结晶规律[J],河北理工学院学报,2007,29(2):48-52
    13. DU Lin-xiu, ZHANG Zhong-ping, SHE Guang-fu, LIU Xiang-hua, WANG Guo-dong. Austenite Recrystallization and Controlled Rolling of Low Carbon Steels[J], Journal of Iron and Steel Research,2006,13 (3):31-35.50
    14.姚振华,王正茂,潘玉琛.SWRCH6A钢丝临界变形量研究[J],金属制品,2008,34(5):6-8
    15.高燕,张建华,周满春等.IF钢热变形铁素体的静态再结晶行为[J],河北理工大学学报,2007,29(3):45-47
    16.王有铭.完全再结晶区多道次变形时晶粒的变化[J],北京科技大学学报,2005,12(3):238-241
    17.杨王明,胡安民,孙祖庆.低碳钢奥氏体晶粒尺寸的控制[J],金属学报,2000,36 (10):1050-1054
    18.马柏生,魏元春,李友荣等.中碳Cr-Ni-Mo-V钢热变形奥氏体静态再结晶晶粒特征研究[J],兵器材料科学与工程,1998,21(7):44-47
    19.董岚枫,钟约先,马庆贤等.20SiMn钢锻造过程动态再结晶行为研究[J],中国机械工程,2008,19(10):1245-1248
    20.田永君,吴浩泉,郭景海等.奥氏体不锈钢在高温变形过程中的动态再结晶[J],东北重型机械学院学报,1987,4:16-23
    21.伍来智,陈军,张鸿冰.40Cr钢奥氏体动态再结晶及晶粒细化[J],上海交通大学学报,2008,42(5):786-790
    22.胡德林.奥氏体混晶的形成与消除[J],西北工业大学学报,1997,15(7):54-59
    23.罗新民,王安东,陈彩凤.不均匀因子与工具钢奥氏体晶粒长大的控制[J],金属热处理,1999,23(5):35-37
    24.刘清友,董瀚,孙新军等.CSP工艺中含Nb钢的混晶问题及改善方法[J],钢铁,2003,38(8):16-19
    25.王子孝.奥氏体晶粒的两类长大机构及混晶的形成[J],武汉大学学报,1979,4:85-91.
    26. Won Hyuck-Chul, Im Yong-Taek. Process design for refinement and homogenization of microstructure in bar rolling[J], Journal of Materials Processing Technology,2005,2 (4):273-282.
    27.孙启飞.34CrNi3Mo中混晶改善和贝氏体相变[D],北京:北京科技大学,2006.
    28.丁炎.合金钢奥氏体混晶的形成与消除[J],上海钢研,2001,2(1):9-13
    29.何建中,刘雅政,常大勇等.CSP生产X60管线钢的化学成分和轧制工艺对混晶的影响[J],特殊钢2005,26(5):25-29
    30.刘荣运,欧金玉,王乃宣.关于几种合金钢奥氏体晶粒混晶长大机构的研究[J],特殊钢,1983,2:54-63.
    31.卢文增,何宜柱.15MnV钢热轧条件下混晶的产生[J],钢铁钒钛,1984,4:35-38.
    32. Bontcheva N, Petzov G. Total simulation model of the thermo-mechanical process in shape rolling of steel rods[J], Computational Materials Science,2005 (34):377-388.
    33.曹秋野.棒材热连轧奥氏体再结晶过程及流变应力模拟研究[D],昆明:昆明理工大学,2006.
    34.李壮,张平礼,周晓光等.热轧钢板奥氏体再结晶晶粒尺寸的预测模型[J],机械工程材料,2005,29(9):16-17
    35. Kim S Y, ImYT. Three-dimensional finite element analysis of non-isothermal shape rolling[J], Journal of Materials Processing Technology,2002,127(1):57-63.
    36.刘英义.热变形奥氏体静态再结晶行为的研究[J],鞍山科技大学学报,2004,27(6):414-416.
    37.杜凤山,王敏婷,郑炀曾.控制轧制对晶粒尺寸变化影响的理论及实验研究[D],秦皇岛:燕山大学,2006
    38.韩德伟,张建新.金相试样制备与显示技术[M],长沙,中南大学出版社,2005,134-143.
    39.毛卫民,赵新兵.金属的再结晶与晶粒长大[M],北京:冶金工业出版社,1994,120-192.
    40.兰英斌.一种显示奥氏体晶界的方法[J],理化检验—物理分册,1999,34(6):5-6
    41.崔忠圻,覃耀春.金属学与热处理[M],北京:机械工业出版社,2007,210.
    42.包永千等.金属学基础[M],北京:冶金工业出版社,1986,347-353.
    43. E. L'opez-Chipres, I. Mej'ia, C. Maldonado,A. Bedolla-Jacuinde, M. El-Wahabi b, J.M. Cabrera. Hot flow behavior of boron microalloyed steels[J], Materials Science and Engineering:2008,12 (5):49-55
    44.杨堃,紧固件用低碳钢组织演变的研究[D],沈阳:东北大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700