南水北调超大口径PCCP预应力分析模型与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文结合南水北调中线输水工程的实际问题,从合理考虑钢丝刚度贡献及其行为特性的基本思想出发,建立了模拟分析PCCP管道预应力施加的缠丝模型,并对南水北调中线用4m内径超大口径埋置式PCCP管道进行了原型管试验,然后以原型管试验所发现的断丝响应规律为基础建立了PCCP管道的断丝模型,最后对管道进行了结构分析与承载力评价。论文的主要研究工作和创新点包括:
     一、从施工仿真的角度建立了超大口径埋置式PCCP管道预应力施加模拟分析的缠丝模型。模型实现了预应力钢丝缠丝过程的动态仿真模拟,合理考虑了钢丝与混凝土管芯之间的相互作用机理,以及钢丝刚度对管道整体刚度的贡献,钢丝自身的应力变形能够得到正确计算。然后,将缠丝模型应用于南水北调中线超大口径埋置式PCCP管道进行预应力场的施加模拟分析,并将计算结果与现有方法给出的结果进行对比分析,验证了缠丝模型的合理性。
     二、首次对南水北调中线超大口径埋置式PCCP管道进行现场原型管试验,包括抗裂外压试验、抗裂内压试验和断丝试验。获得了PCCP管道在压力作用下的受载响应规律;研究了钢丝断裂后,对旁侧未断钢丝及其自身受力状态的影响,发现了新的断丝响应规律,定义出了失锚长度的概念,用以描述钢丝断丝后与砂浆保护层重新建立起锚固所需的长度。
     三、以原型管试验所发现的断丝响应规律为基础,从过程仿真的角度建立了超大口径埋置式PCCP管道预应力丧失模拟分析的断丝模型。模型对失锚长度进行了定量化描述,得到了失锚长度内钢丝应力与握裹力分布,真实反映了钢丝断丝后的作用机理与响应规律,实现了断丝过程数值模拟。然后,将断丝模型应用于南水北调中线超大口径埋置式PCCP管道进行断丝过程数值模拟分析,并将计算结果与原型管试验结果进行了对比分析,验证了断丝模型的合理性。
     四、应用本文所建立的缠丝与断丝模型,对南水北调中线超大口径埋置式PCCP完好与断丝管道进行了抗裂外压和内压数值模拟分析,研究了管道的受载响应规律,评价了管道结构的承载能力,并提出了PCCP管道爆管的内外载影响机制等重要的工程结论。
Under the background of the Mid-route of South-to-North Water Diversion (MSNWD) project in China, some research works are done for the consideration of the stiffness and behavior of the wire of a PCCP. A new finite element model, called wire-wrapping model, is proposed to simulate the prestressing of a PCCP. Some prototype tests on the embedded PCCP with an ultra-diameter of 4m used in the MSNWD project are conducted. On the basis of the response patterns of the PCCP found in the prototype tests mention above, a new model, called wire-breaking model, is proposed to simulate the process of breaking wire. The analysis of the pipe structure and the evaluation of the load-bearing capacity of the embedded PCCP are performed. The main contents and the innovative points are summarized as follows.
     1. A wire-wrapping model is proposed to simulate the process of wrapping wire for the prestressing of an embedded PCCP with an ultra-diameter. The wire-concrete core interaction and the contribution of the wire stiffness are taken into account in this model. The stress and deformation of the wire could be calculated correctly. The wire-wrapping model is applied to simulate the prestressing of an ultra-diameter embedded PCCP used in the MSNWD project. The results obtained using the wire-wrapping model are analyzed and compared with those obtained using current methods for its verification.
     2. Some prototype tests on the ultra-diameter embedded PCCP used in the MSNWD project are conducted for the first time. The load-bearing response patterns of the PCCP under loads are obtained. The new wire-breaking response patterns are also found, which exhibite the effects of breaking wire on the stress states of the unbroken wire and broken wire itself. A new concept called bonding-lost length is presented, which describes a certain length to develop again the bonding effect with the mortar when a wire breaks.
     3. On the basis of the response patterns of the PCCP found in the prototype tests mention above, a wire-breaking model is proposed to simulate the process of breaking wire for the un-prestressing of an embedded PCCP with an ultra-diameter. The bonding-lost length could be determined quantitatively in this model. The distribution of wire stress and gripping power are obtained. The mechanism the response when a wire breaks can be reflected by the wire-breaking model. The wire-breaking model is applied to simulate the process of breaking wire of an ultra-diameter embedded PCCP used in the MSNWD project. The results obtained using the wire-breaking model are analyzed and compared with those obtained from prototype tests for its verification.
     4. The wire-wrapping model and the wire-breaking model proposed in this dissertation are applied to simulate and analyze the processes of three-edge bearing tests and hydrostatic pressure tests of the ultra-diameter embedded PCCP used in the MSNWD project. Here, two kinds of PCCP are considered: the PCCP with and without broken wires. The load-bearing resoponses of PCCP are analyzed and the load-bearing capacity of PCCP is evaluated in this part. Finally, some significant engineering conclusions about the mechanism of pipe rupture are presented.
引文
[1] Romer A E, Bell G E C, Ellison R D. Failure of prestressed concrete cylinder pipe // Najafi M, Osborn L. Pipelines 2007: Advances and Experiences with Trenchless Pipeline Projects. Boston, Massachusetts: ASCE, 2007: 1-17.
    [2]张亚平,赵铁军.世界最大的输水工程利比亚大人工河.北京:中国建筑工业出版社, 2003.
    [3]孙绍平,王贯明.预应力钢筒混凝土管的特性.市政技术, 2006, 24 (2): 121-125.
    [4] American Concrete Pressure Pipe Association. External protection of concrete cylinder pipe. Reston, Virginia: ACPPA.
    [5]温开亮. PCCP的发展和应用.山西水利科技, 2005, (1): 86-87.
    [6]沈之基. PCCP在中国的发展和讨论.给水排水, 2005, (4): 1-4.
    [7]孙绍平.预应力钢筒混管若干基本问题分析.特种结构, 2001, 18 (3): 17-20.
    [8]付云升. PCCP管道工程设计初探.北京水利, 2004 (2): 12-13.
    [9]黄毅. PCCP管在工程应用中的施工经验.中国给水排水, 2001, 17 (11): 60-62.
    [10]李全禄,段君才,温玉安.预应力钢筒混凝土管(PCCP)在引黄工程联接段输水工程中的应用.山西水利科技, 2004, (3): 54-55.
    [11]孙万功,樊安顺.山西万家寨引黄工程联接段设计特点.电力学报, 2006, 21 (3): 334-336.
    [12]唐忠德,应宪.大口径PCCP管施工方法介绍.中国给水排水, 2002, 18 (9): 88-90.
    [13]张迪士,张自然,王建军.大口径PCCP管在软土地基中的应用.中国给水排水, 2002, 18 (4): 88-89.
    [14]史勇,董建立.预应力钢筒混凝土管及其在内蒙古自治区的使用现状与发展展望.科技与经济, 2006, (21): 86-87.
    [15]王忠全,秦允斌,陈刚.预应力钢筒混凝土管在核电工程中的应用.混凝土与水泥制品, 2000, (2): 24-26.
    [16] American National Standards Institute. ANSI/AWWA C301-2007. AWWA standard for prestressed concrete pressure pipe, steel-cylinder type. Denver, Colorado: American Water Works Association, 2007.
    [17]中华人民共和国国家质量监督检验检疫总局. GB/T 19685-2005.中华人民共和国国家标准―预应力钢筒混凝土管.北京:中国标准出版社, 2005.
    [18]温开亮. PCCP管线静水压试验方法简介.山西水利, 2004, (6): 60, 68.
    [19] Arnaout S A. Investigation of mechanical restraint joints leaks on 48-inch prestressed concrete cylinder pipe // Vipulanandan C, Ortega R. Pipelines 2005: Optimizing Pipeline Design, Operations, and Maintenance in Today’s Economy. Houston, Texas: ASCE, 2005: 583-591.
    [20]苏胜,王志峰,牛永胜.预应力钢筒混凝土(PCCP)管道水压试验方法改进.中国给水排水, 2006, 22 (10): 100-101.
    [21]张宝军,周玫生.大口径钢筒预应力混凝土管的中间试压技术.中国给水排水, 2004, 20 (12): 101-103
    [22] Tremblay A W. Combined load testing of prestressed concrete cylinder pipe // Kienow K K. Pipeline Design and Installation. New York: ASCE, 1990: 310-322.
    [23] Zarghamee M S. Hydrostatic pressure testing of prestressed concrete cylinder pipe with broken wires // Najafi M. Pipelines 2003: New Pipeline Technologies, Security, and Safety. Baltimore, Maryland: ASCE, 2003: 294-303.
    [24] Zarghamee M S, Ojdrovic R P, Dana W R. Coating delamination by radial tension in prestressed concrete pipe I: experiments. Journal of Structure Engineering, 1993, 119 (9): 2701-2719.
    [25]贾伟智.预应力钢筒混凝土管原材料的特殊要求与控制分析.特种结构, 2005, 22 (2): 89-91.
    [26]刘江宁.南水北调用PCCP原材料控制探讨.北京水利, 2005, (2): 26-27.
    [27]蔡建平.浅谈预应力钢筒混凝土管原材料质量控制.南水北调与水利科技, 2005, 3 (3): 49-51.
    [28] Scali M J, Scheiner P, Aquino W. Analysis and performance of PCCP mortar coating // Najafi M. Pipelines 2003: New Pipeline Technologies, Security, and Safety. Baltimore, Maryland: ASCE, 2003: 972-982.
    [29] Jana D, Lewis R A. Acid attack on PCCP mortar coating // Galleher J J, Stift M T. Pipelines 2004: Pipeline Engineering and Construction: What’s on the Horizon? San Diego, California: ASCE, 2004: 1-10.
    [30]张许平,贺红效,张学文. PCCP管道沿线环境的侵蚀性分析.山西水利科技, 2004, (4): 71-75.
    [31] Holley M, Rittenhouse S. Corrosion of prestressing wire in prestressed concrete cylinder pipe. [2007-8-9]. http://www.puretechnologiesltd.com/html.
    [32] Valiente A. Stress corrosion failure of large diameter pressure pipe of prestressed concrete. Engineering Failure Analysis, 2001, (8): 245-261.
    [33] Lewis R A, Wheatley M. Prestressed concrete cylinder pipe evaluation, a toolbox approach // Najafi M. Pipelines 2003: New Pipeline Technologies, Security, and Safety. Baltimore, Maryland: ASCE, 2003: 276-285.
    [34] Biehler R. Evaluation and management of prestressed concrete cylinder pipe assets // Vipulanandan C, Ortega R. Pipelines 2005: Optimizing Pipeline Design, Operations, and Maintenance in Today’s Economy. Houston, Texas: ASCE, 2005: 116-129.
    [35] Almughery A, Zaid P G M, Fernandes B, et al. Inductive scan imaging technique in detecting and visuallzing corrosion for large scale pre-stressed concrete cylinder pipes // Vipulanandan C, Ortega R. Pipelines 2005: Optimizing Pipeline Design, Operations, and Maintenance in Today’s Economy. Houston, Texas: ASCE, 2005: 980-988.
    [36] Bell G E C, Kendall D R, Mulligan S B. An assessment and reliability program for PCCP // Castronovo J P. Pipelines 2001: Advances in Pipelines Engineering & Construction. San Diego, California: ASCE, 2001: 1-10.
    [37] Fitamant R L, Lewis R A, Tanzi D J, et al. PCCP sanitary sewer force main evaluation and management - a case study // Galleher J J, Stift M T. Pipelines 2004: Pipeline Engineering and Construction: What’s on the Horizon? San Diego, California: ASCE, 2004: 1-10.
    [38] Weare R E. PCCP sewerage force main structural condition assessment and asset management approach // Najafi M, Osborn L. Pipelines 2007: Advances and Experiences with Trenchless Pipeline Projects. Boston, Massachusetts: ASCE, 2007.
    [39] Essamin O, Holley M. Great Man Made River Authority (GMRA) the role of acoustic monitoring in the management of the worlds largest prestressed concrete cylinder pipe project // Galleher J J, Stift M T. Pipelines 2004: Pipeline Engineering and Construction: What’s on the Horizon? San Diego, California: ASCE, 2004.
    [40] Kong X, Mergelas B. Condition assessment of small diameter water transmission mains // Vipulanandan C, Ortega R. Pipelines 2005: Optimizing Pipeline Design, Operations, and Maintenance in Today’s Economy. Houston, Texas: ASCE, 2005: 252-262.
    [41] Mergelas B, Kong X, Roy D, et al. Using a combination of condition based asset management techniques to manage a water transmission system // Vipulanandan C, Ortega R. Pipelines 2005: Optimizing Pipeline Design, Operations, and Maintenance in Today’s Economy. Houston, Texas: ASCE, 2005: 782-792.
    [42] Lewis R A, Schaefer R R. PCCP water transmission main evaluation and rehabilitation - a case study // Galleher J J, Stift M T. Pipelines 2004: Pipeline Engineering and Construction: What’s on the Horizon? San Diego, California: ASCE, 2004.
    [43] Galleher J J, Bell G E C, Romer A E. Comparation of two electromagnetic techniques to determine the physical condition of PCCP // Vipulanandan C, Ortega R. Pipelines 2005: Optimizing Pipeline Design, Operations, and Maintenance in Today’s Economy. Houston, Texas: ASCE, 2005: 401-410.
    [44] Bambei J H, Lewis R A. Correlation of wire breaks on prestressed concrete cylinder pipe with predictions from electromagnetic testing // Vipulanandan C, Ortega R. Pipelines 2005: Optimizing Pipeline Design, Operations, and Maintenance in Today’s Economy. Houston, Texas: ASCE, 2005: 989-1000.
    [45] Mergelas B, Shatat S, Kong X, et al. RFEC/TC technology advancement through GMRA experience // Najafi M. Pipelines 2003: New Pipeline Technologies, Security, and Safety. Baltimore, Maryland: ASCE, 2003: 687-695.
    [46] Oligo O, Catalano L, Worthington W. Validation of PCCP pipeline non-destructive test results // Kurz G E. Pipelines 2002: Beneath Our Feet: Challengers and Solutions. Cleveland, Ohio: ASCE, 2002.
    [47]刘雨生,翟荣申.预应力钢筒混凝土管的结构计算方法简介.特种结构, 2003, 20 (4): 10-13.
    [48] American National Standards Institute. ANSI/AWWA C304-2007. AWWA Standard for Design of Prestressed Concrete Cylinder Pipe. Denver, Colorado: American Water Works Association, 2007.
    [49] Marston A. The theory of external loads on closed conduits in the light of latest experiments. Bulletin 96, Iowa: Iowa State Engineering Experiment Station, Iowa State University, 1930.
    [50] American National Standards Institute. AWWA Manual M9-95. Concrete Pressure Pipe. Denver, Colorado: American Water Works Association, 1995.
    [51] Olander H C. Stress analysis of concrete pipe // US Bureau of Reclamation. Engineering Monographs. Denver, Colo: US Bureau of Reclamation, 1950.
    [52] Paris J M. Stress coefficients for large horizontal pipes. Engineering News Record, 1921, 87 (19): 768-771.
    [53]中国工程建设标准化协会. CECS140: 2002.中国工程建设标准化协会标准―给水排水工程埋地管芯缠丝预应力混凝土管和预应力钢筒混凝土管管道结构设计规程.北京:中国计划出版社, 2002.
    [54]中华人民共和国建设部. GB50332-2002.中华人民共和国国家标准―给水排水工程管道结构设计规范.北京:中国建筑工业出版社, 2002.
    [55]中华人民共和国建设部. GB50010-2002.中华人民共和国国家标准―混凝土结构设计规范.北京:中国建筑工业出版社, 2002.
    [56] Zarghamee M S. Evaluation of combined load tests of prestressed concrete cylinder pipe // Kienow K K. Pipeline Design and Installation. New York: ASCE, 1990.
    [57] Zarghamee M S. A multilayered model for analysis of composite pipes // Bennett B A. Pipeline Infrastructure. New York: ASCE, 1988.
    [58] Zarghamee M S, Fok K. Analysis of prestressed concrete cylinder pipe under combined loads. Journal of Structure Engineering, 1990, 116: 2022-2039.
    [59]孙绍平,萧岩,王光明. PCCP保护层应力分析.特种结构, 2005, 22 (3): 62-64.
    [60] Zarghamee M S, Ojdrovic R P, Dana W R. Coating delamination by radial tension in prestressed concrete pipe II: analysis. Journal of Structure Engineering, 1993, 119 (9): 2720-2732.
    [61] Diab Y G, Bonierbale T. A numerical modeling and a proposal for rehabilitation of PCCP’s // Castronovo J P. Pipelines 2001: Advances in Pipelines Engineering & Construction. San Diego, California: ASCE, 2001.
    [62] Lotfi H R, Oesterle R G, Roller G. Reliability assessment of distressed prestressed concrete cylinder pipe // Vipulanandan C, Ortega R. Pipelines 2005: Optimizing Pipeline Design, Operations, and Maintenance in Today’s Economy. Houston, Texas: ASCE, 2005.
    [63] Gomez R, Munoz D, Vera R, et al. Structural model for stress evaluation of prestressed concrete pipe of the Cutzamala system // Galleher J J, Stift M T. Pipelines 2004: Pipeline Engineering and Construction: What’s on the Horizon? San Diego, California: ASCE, 2004.
    [64]张社荣,张彩秀.预应力钢筒混凝土管(PCCP)的数值仿真分析//曹楚生,谢世楞.新世纪水利工程科技前沿.天津:天津大学出版社, 2005.
    [65]张彩秀.预应力钢筒混凝土管(PCCP)的有限元分析[硕士学位论文].天津:天津大学, 2005.
    [66]吴坤占. PCCP管道结构有限元分析研究[硕士学位论文].西安:西安理工大学, 2008.
    [67] Zarghamee M S, Eggers D W, Ojdrovic R P. Finite-element modeling of failure of PCCP with broken wires subjected to combined loads // Kurz G E. Pipelines 2002: Beneath Our Feet: Challengers and Solutions. Cleveland, Ohio: ASCE, 2002.
    [68] Zarghamee M S, Eggers D W, Ojdrovic R P, et al. Risk analysis of prestressed concrete cylinder pipe with broken wires // Najafi M. Pipelines 2003: New Pipeline Technologies, Security, and Safety. Baltimore, Maryland: ASCE, 2003.
    [69]林鐘輝.預力鋼襯混凝土管(PCCP)結構分析與評估[硕士学位论文].中国台湾:國立成功大學, 2008.
    [70]李晓克.预应力混凝土压力管道受力性能与计算方法的研究[博士学位论文].大连:大连理工大学, 2003.
    [71] Lewis R O. Improving prestressing wire reliability in prestressed concrete cylinder pipe. Materials Performance, 2002, 41(7): 48-54.
    [72] Essamin O, Sahli K E, Hovhanessian G, et al. Risk management system for prestressed concrete cylinder pipeline: practical results and experience on the Great Man Made River // Vipulanandan C, Ortega R. Pipelines 2005: Optimizing Pipeline Design, Operations, and Maintenance in Today’s Economy. Houston, Texas: ASCE, 2005.
    [73]应仲烈.立式差速缠丝机.混凝土与水泥制品, 1994, (3): 25-32.
    [74]赵顺波.环形预应力混凝土技术及其在圆筒形结构中的应用//压力管道.郑州:黄河水利出版社, 1998.
    [75] Carreira D J, Chu K. Stress-strain relationship for plain concrete in compression. ACI Journal, 1985, 82(6): 797-804.
    [76] Pauw A. Static modulus of elasticity of concrete as affected by density. ACI Journal, 1960, 57(6): 679-688.
    [77] Raphael J M. Tensile strength of concrete. ACI Journal, 1984, 81(2): 158-165.
    [78] Gopalaratnam V S, Shah S P. Softening response of plain concrete in direct tension. ACI Journal, 1985, 82(3): 310-323.
    [79] American Society for Testing and Materials. A648. Standard specification for steel wire, hard drawn for prestressing concrete pipe. Philadelphia, Pennsylvania: American Society for Testing and Materials, 1989.
    [80] Anand L. A constitutive model for interface friction. Computational Mechanics, 1993, 12:197-213.
    [81] Gearing B P, Moon H S, Anand L. A plasticity model for interface friction: application to sheet metal forming. International Journal of Plasticity, 2001, 17: 237-271.
    [82] Bathe K-J, Chaudhary A B. A solution method for planar and axisymmetric contact problem. International Journal of Numerical Methods in Engineering, 1985, 21 (1): 65-88.
    [83] Chaudhary A B, Bathe K-J. A solution method for static and dynamic analysis of three-dimensional contact problems with friction. Computers & Structures, 1986, 24(6): 855-873.
    [84] Bathe K-J. Finite element procedures. New Jersey: Prentice Hall, 1982.
    [85] Underhill W R C, Dokainish M A, Oravas G E. A method for contact problems using virtual elements. Computer methods in applied mechanics and engineering, 1997, 143: 229-247.
    [86]庄茁,张帆,岑松,等. ABAQUS非线性有限元分析与实例.北京:科学出版社, 2005.
    [87]中华人民共和国国家质量监督检验检验总局、中国国家标准化管理委员会. GB/T 16752-2006.中华人民共和国国家标准―混凝土和钢筋混凝土排水管试验方法.北京:中国标准出版社, 2006.
    [88]中华人民共和国国家质量监督检验检验总局. GB/T 15345-2003.中华人民共和国国家标准―混凝土输水管试验方法.北京:中国标准出版社, 2003.
    [89] Rao Y-J. In-fiber bragg grating sensors. Measurement Science and Technology, 1997, 8(4): 355-375.
    [90]李川,张以谟,李永贵,等.光纤光栅原理、技术与传感应用.北京:科学出版社, 2005.
    [91]李科,陈峰华.光纤Bragg光栅传感原理及其应用.山西科技, 2008, (1): 132-139.
    [92]马卫东,施伟,付浩军,等.光纤光栅传感器的工作原理及研究进展.光通信研究, 2001, (4): 58-62.
    [93] Gonzalez R C. Digital image processing 2nd edition. New Jersey: Prentice Hall, 2002.
    [94] Gonzalez R C, Woods R E. Digital Image Processing Using MATLAB. New Jersey: Prentice Hall, 2003.
    [95] Somayaji S, Shah S P. Bond stress versus slip relationship and cracking response of tension members. ACI Journal, 1981, 78 (3): 217-224.
    [96] Somayaji S. Composite response, bond stress-slip relationships and cracking in ferrocement and reinforced concrete [PhD Dissertation]. University of Illinois at Chicago Circle, 1979.
    [97]赵羽习.钢筋混凝土结构粘结性能和耐久性的研究[博士学位论文].杭州:浙江大学, 2001.
    [98] Gan Y. Bond stress and slip modeling in nonlinear finite element analysis of reinforced concrete structures [PhD Dissertation]. University of Toronto, 2000.
    [99] Tassios T P, Yannopoulos P J. Analytical studies on reinforced concrete members under cyclic loading based on stress-slip relationships. ACI Journal, 1981, 78(3): 206-216.
    [100] David Z Y. New finite element for bond-slip analysis. Journal of Structure Engineering, 1984, 111 (7): 1533-1542.
    [101]宋玉普,赵国藩.钢筋与混凝土间的粘结滑移性能研究.大连工学院学报, 1987, 26 (2): 93-100.
    [102]叶永,寇国祥,伏义淑.钢筋混凝土结构粘结滑移关系的应力函数法.三峡大学学报, 2004, 26 (3): 248-250.
    [103]徐有邻,邵卓民,沈文都.钢筋与混凝土的粘结锚固强度.建筑科学, 1988, (4): 8-14.
    [104] Hooputra H, Gese H, Dell H, Werner H. A comprehensive failure model for crashworthiness simulation of aluminium extrusions. International Journal of Crashworthiness, 2004, 9(5): 449-464.
    [105] Hillerborg A, Modeer M, Petersson P-E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement and Concrete Research, 1976, 6: 773-782.
    [106] Lee J, Fenves G L. Plastic-damage model for cyclic loading of concrete structures. Journal of Engineering Mechanics, 1998, 124 (8): 892-900.
    [107] Lubliner J, Oliver J, Oller S, et al. A plastic-damage model for concrete. International Journal of Solids and Structures, 1989, 25 (3): 229-326.
    [108]乐运国,李遇春,晏思聪等.高强混凝土I型裂纹损伤断裂判据研究.水电站设计, 1999, 15(1): 34-38.
    [109] Allwood R J, Bajarwan A A. Modeling nonlinear bond-slip behavior for finite element analyses of reinforced concrete structures. ACI Structure Journal, 1996, 93 (5): 538-544.
    [110] Lundgren K, Gylltoft K. A model for the bond between concrete and reinforcement. Magazine of Concrete Research, 2000, 52(1): 53-63.
    [111] Amleh L, Ghosh A. Modeling the effect of corrosion on bond strength at the steel-concrete interface with finite-element analysis. Canada Journal of Civil Engineering, 2006, 33: 673-682.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700