应力对预应力钢丝断裂性能和腐蚀的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
预应力钢丝(钢绞线)广泛地应用于预应力混凝土结构中。本论文主要通过数值计算和试验方法研究了应力(包括外部施加应力和残余应力)对预应力钢丝的断裂性能和腐蚀的影响,其内容主要包括下面三个方面:
     1.残余应力对开裂预应力钢丝断裂性能的影响
     预应力钢丝在冷拔时产生的拉残余应力对其断裂性能会产生有害影响。在本论文中利用有限元分析,断裂发生的微观力学模型和J-Q理论,定性地研究了纵向残余应力对开裂预应力钢丝断裂性能的影响,并与不考虑残余应力时的情况进行了比较,结果表明:拉残余应力可以通过改变裂尖约束来减少了预应力钢丝的断裂韧度。
     2.外部施加应力对预应力钢丝临界氯离子浓度的影响
     一方面当混凝土中的氯离子浓度达到其临界值时,钢筋表面的钝化膜便会破坏,从而导致钢筋发生腐蚀;另一方面当作用于预应力钢丝的外部施加应力超过弹性极限时,预应力钢丝便会发生塑性变形。为了评价预应力钢丝的塑性变形对其临界氯离子浓度的影响,采用恒电流阳极极化技术作为加速试验方法,调查了具有不同氯离子浓度的饱和氢氧化钙溶液中受轴向拉力作用的预应力钢丝的坑成核电位。试验结果表明:当预应力钢丝中的应力超过弹性极限时,其临界氯离子浓度值比其应力低于弹性极限时的小,而造成这种现象的主要原因是由于塑性变形不但降低了碱性环境下影响钝化膜形成的预应力钢丝的电极电位,而且增强了预应力钢丝坑蚀的敏感性。
     3.外部施加应力对预应力钢丝氢脆敏感性的影响
     氢脆是预应力钢丝的主要腐蚀形式之一,而预应力钢丝中的应力水平对其氢脆的敏感性有直接的影响。通过实施耦合扩散的弹塑性有限元分析,来获得平面应变条件下带有凹口的预应力钢丝中氢浓度的分布。结果表明外部施加应力对预应力钢丝中氢浓度的分布会产生影响,而且外部施加应力存在一个“临界值”,当超过此值时,预应力钢丝中的氢浓度随应力的增加而急剧增加。
Prestressing steel wires(steel strands) are widely used in prestressed concrete structures. In this paper, the effects of stresses (including applied stresses and residual stresses) on the fracture behavior and corrosion of prestressing steel wires are investigated by numerical calculation and experimental method. The main contents are listed as follows:
     1.The effect of residual stresses on the fracture behavior of cracked prestressing steel wires
     Residual stresses,generated by cold-drawn operations in prestressing steel wires,may have detrimental effects on the fracture behavior of the prestressing steel wires. Using finite element analysis,micromechanical models of fracture initiation and J-Q theory,this paper focuses on the qualitative effect of the longitudinal residual stresses on the fracture behavior of cracked prestressing steel wires,and the results have been compared with those obtained from the steel wires without residual stresses. It has been concluded that the tensile residual stresses can reduce the fracture toughness of prestressing steel wires by altering crack-tip constraint.
     2.The effect of applied stresses on the critical chloride concentrations of prestressing steel wires
     On the one hand,the presence of sufficient chloride ions in concrete causes breakdown of the passive films on the steel surface and leads to corrosion of the steel,on the other hand,when the applied stress exceeds the elastic limit,the plastic deformation of the prestressing steel wire is produced. To evaluate the effect of the plastic deformation on the critical chloride concentration of prestressing steel wires,the pit nucleation potential of the prestressing steel wire has been investigated by galvanostatic polarization technique as accelerated experiment method in saturated Ca(OH)_2 solutions. The experimental results indicated that,when the stress exceeds the elastic limit,the critical chloride concentration of prestressing steel wires is lower than that when the stress is within the elastic limit. This could be attributed to the plastic deformation decreased the electrode potential of prestressing steel wires, which can affect the formation of passive films in the alkaline environment, and enhanced the pitting corrosion susceptibility.
     3 . The effect of applied stresses on the hydrogen embrittlement susceptibility of prestressing steel wires
     Hydrogen embrittlement is one of the main corrosion forms of prestressing steel wires,and the stress level in prestressing steel wires has a direct effect on hydrogen embrittlement susceptibility. Coupled diffusion elastic-plastic finite element analysis was implemented in order to obtain the hydrogen concentration distribution in the notched prestressing steel wire under plane strain conditions. The results showed that applied stress has an effect on the hydrogen concentration distribution,and the applied stress has a“critical value”. When the applied stress exceeds this value,the hydrogen concentration in the prestressing steel wire will sharply increase following the stress.
引文
[1] Lin T. Y. and Burns N. H.,Design of Prestressed Concrete Bridges,3rd Edition,New York,John Wiley and Sons,1981,p12-20
    [2] Schupack M.,Prestressed Concrete Tank Performance,Symposium on Concrete Construction in Aqueous Environments,SP-8,American Concrete Institute, Farmington Hills, Mich.,1964, p55-66
    [3] Manning D. G.,Durability of Prestressed Concrete Highway Structures,NCHRP Synthesis of Highway Practice 140,Transportation Research Board,Nov.,1988
    [4] Elices M.,Influence of residual stresses in the performance of cold-drawn pearlitic wires,Journal of Materials Science,2004,V.39,n12,p3889-3899
    [5] 朱龙,江 南,预应力钢材回顾与展望,中国预应力技术五十年周年—第九届后张预应力学术交流会论文集,2006,p35-39
    [6] Elices M.,Fracture of steels for reinforcing and prestressing concrete,In:Sih G.C. & DiTommaso A. , Fracture mechanics of concrete : structure application and numerical calculation,Martinus Nijhoff,Dordrecht,1985,p226-271
    [7] Toribio J. and Toledano M.,A fracture criterion for prestressing steel cracked wires,In: Chan S.L. & Teng J.G. editors,Advances in Steel Structures,ICASS'99, Elsevier, Amsterdam,1999,p947–954
    [8] Maupetit P.,Olivie F. and Raharinaivo A. et al.,Shear fracture of prestressing plain carbon steel wires under complex loading,International Journal of Fracture,1977,V.13,n5,p152-157
    [9] Valiente A.,Elices M. and Toribio J.,1988,Tensile strength of prestressing steels under transversal loads,In:Czoboly E.,Failure analysis theory and practice/ECF7,Warley,West Midlands,1988,p555-557
    [10] Toribio J. and Valiente A.,Failure analysis of prestressing steel wires,In: Chan S.L. & Teng J.G. editors,Advances in Steel Structures,ICASS'99, Elsevier, Amsterdam,1999,p955–962.
    [11] Uhlig H.H. and Revie R.W.,Corrosion and Corrosion Control,3rd Edition,John Wiley and Sons 1985
    [12] Fontana M.G.,Corrosion Engineering,3rd Edition,McGraw-Hill Book Company,New York,1986
    [13] Perenchio W.F.,Fraczek J. and Pfeifer D.W.,Corrosion Protection of Prestressing Systems in Concrete Bridges,NCHRP Report 313,Feb.,Transportation Research Board,Washington,D. C. 1989
    [14] Montemor M.F.,Simoes A.M.P. and Ferreira M.G.S.,Chloride-induced corrosion on reinforcing steel:from the fundamentals to the monitoring techniques,Cement & Concrete Composites,2003,V.25,n4-5,p491-502
    [15] 樊云昌, 曹兴国, 陈怀荣,混凝土中钢筋腐蚀的防护与修复,中国铁道出版社,2001
    [16] Jones D.A.,Principles and Prevention of Corrosion,Mac Millan Publishing Company,New York,1992
    [17] American Concrete Institute,ACI 222.2R-01,Corrosion of Prestressing Steels,Detroit MI,2001
    [18] Valiente A. and Elices M.,Premature failure of prestressed steel bars,Engineering Failure Analysis,1998,V.5,n3,p219-227
    [19] Isecke B.,Collapse of the berlin congress hall prestressed concrete roof,Materials Performance,1982,V.21,n12,p36-39
    [20] Schupack M. and Suarez M.G.,Some recent corrosion embrittlement failures of prestressing systems in the United States,Journal of the Prestressed Concrete Institute,1982,V.27,n2,p38-55
    [21] L. Bing,L. Guanglu and Z. Long,Failure analysis of a thin-webbed girder of post-tensioned concrete,Structural Concrete,22006,v 7,n1,p 1-5
    [22] Toribio J. and Toledano M.,Fatigue and fracture performance of cold drawn wires for prestressed concrete,Construction and Building Materials,2000,V.14,n1,p47-53
    [23] Zivanovic I.,Lecinq B. and Fuzier JP.,Durability Specifics for Prestressing,Proceedings of the first fib Congress:Concrete Structures in the 21st Century,Session 8,Osaka,Japan,2002,p447-454.
    [24] American Concrete Institute,ACI 222R-01,Protection of Metals in Concrete Against Corrosion, Detroit,MI,2001
    [25] Evans R.H.,Use of calcium chloride in prestressed concrete,Proceeding Word Conference on Prestressed Concrete,San Francisco,1957,pA31-1-A31-8
    [26] Stark D.,Determination of permissible chloride levels in prestressed concrete,PCI Journal,1984,V.29,n4,p106-119
    [27] Sanchez-Galvez V. and Elices M.,On hydrogen induced cracking in prestressing steel wires,Proceedings of the 5th European Conference on Fracture:Life Assessment of DynamicallyLoaded Materials and Structures,Lisbon,1984,p1003-1014
    [28] Toribio J.,Role of hydrostatic stress in hydrogen diffusion in pearlitic steel,Journal of Materials Science,1993,V.28,n9,p2289-2298
    [29] Toribio J. and Elices M.,Influence of residual stresses on hydrogen embrittlement susceptibility of prestressing steels,International Journal of Solids and Structures,1991,V.28,n6,p791-803.
    [30] Toribio J.,Numerial modeling of hydrogen embrittlement of cylindrical bars with residual stress fields,Journal of Strain Analysis,2000,V.35,n3,p189-203.
    [1] Elices M.,Ruiz J. and Atienza J.M.,Influence of residual stresses on hydrogen embrittlement of cold drawn wires,Materials and Structures/Materiaux et Constructions,2004,V.37,n269,p305-310
    [2] Llorca J. and Sanchez-Galvez V.,Fatigue limit and fatigue life prediction in high strength cold drawn eutectoid steel wires,Fatigue and Fracture of Engineering Materials & Structures,1989,V.12,n1,p31-45
    [3] Panontin, T. L. and Hill, M. R.,The effect of residual stresses on brittle and ductile fracture initiation predicted by Micromechanical models,International Journal of Fracture,1996,V.82,n4,p317-333
    [4] Hill M.R. and Panontin T.L.,Effect of residual stress on brittle fracture testing,ASTM Special Technical Publication,n 1332,1999,p154-175
    [5] Burdekin F.M. and Xu W.G.,Effects of biaxial loading and residual stresses on constraint,International Journal of Pressure Vessels and Piping,2003,V.80,n11,p755-773
    [6] Zhang Z.L.,Thaulow C. and Hauge M.,Effect of crack size and weld metal mismatch on the haz cleavage toughness of wide plates,Engineering Fracture Mechanics,1997,V.57,n6,p653-664
    [7] O'Dowd N.P. and Shih C.F.,Family of crack-tip fields characterized by a triaxiality parameter. I. Structure of fields,Journal of the Mechanics and Physics of Solids,1991,V.39,n8,p989-1015
    [8] O'Dowd N.P. and Shih C.F.,Family of crack-tip fields characterized by a triaxiality parameter. II. Fracture applications,Journal of the Mechanics and Physics of Solids,1992,V.40,n5,p939-963
    [9] Sattari-Far I.,Constraint effects on behaviour of surface cracks in cladded reactor pressure vessels subjected to PTS transients,International Journal of Pressure Vessels and Piping,1996,V.67,n2,p185-197
    [10] Rice J.R.,A path independent integral and the approximate analysis of strain concentration by notches and cracks,Journal of Applied Mechanics,1968,V.35,p379-386
    [11] Hou Y.C. and Pan J.,A fracture parameter for welded structures with residual stresses,Computational Mechanics,1998,V.22,n3,p281-288
    [12] Pavier M.J.,Poussard C.G.C. and Smith D.J.,Effect of residual stress around cold worked holes on fracture under superimposed mechanical load,Engineering Fracture Mechanics,1999,V.63,n6,p751-773
    [13] Lei Y.,O'Dowd N.P. and Webster G.A.,Fracture mechanics analysis of a crack in a residual stress field,International Journal of Fracture,2000,V.106,n3,p195-216
    [14] Lee J.H.,Local Buckling Behaviour and Design of Cold-formed Steel Compression Members at Elevated Temperatures,Ph.D. Dissertation,Queensland University of Technology,2004
    [15] Mahaarachchi D.,Behaviour and Design of Profiled Steel Cladding Systems Subject to Pull-through Failures,Ph.D. Dissertation,Queensland University of Technology,2003
    [16] Lin B. and Lu Guanglu,Stress intensity factors for cracked cold-drawn steel wires under tensile loading,In: Brebbia C.A.& Wilde W.P.,High Performance Structures and Materials III,WIT press,2006,p491-499
    [17] Hibbitt B.,Karlsson B. and Sorensen P.,ABAQUS/Standard User’s Manual, version 6.1,Hibbitt, Karlsson & Sorensen Inc., Rode Island, RI,2001
    [18] Cook G.,Timbrell C. and Wiehahn M.,Using abaqus to analyse fatigue crack growth under thecombined influence of residual stress and cyclic external load,ABAQUS UK Users Group Conference,Warrington,England,2002,p1-20
    [19] Claudio R.,Fatigue Behaviour and Structural Integrity of Scratch Damaged Shot Peened Surfaces at Elevated Temperature,Ph.D. Dissertation,University of Portsmouth,2005
    [20] Toribio J. and Toledano M.,A fracture criterion for prestressing steel cracked wires,In: Chan S.L. & Teng J.G.,Advances in Steel Structures,ICASS'99, Elsevier, Amsterdam,1999,p947–954
    [21] Toribio J.,The role of crack tip strain rate in hydrogen assited cracking,Corrosion Science,1997,V.39,n9,p1687–1697.
    [22] Elices M.,Influence of residual stress in the performance of cold-drawn pearlitic wires,Journal of Materials Science,2004,V.39,n12,p3889-3899
    [23] Tada H.,Paris P.C. and Irwin G.R.,The Stress Analysis of Cracks Handbook,Del Research Corporation:Hellertown,Pennsylvania,1973
    [24] Kaya A.C. and Erdogan F.,Stress intensity factors and COD in an orthotropic strip,International Journal of Fracture,1980,V.16,n2,p171-190
    [25] Ritchie R.O.,Server W.L. and Wullaert R.A.,Critical fracture stress and fracture strain models for the prediction of lower and upper shelf toughness in nuclear pressure vessel steels,Metallurgical Transactions A (Physical Metallurgy and Materials Science),1979,V.10A,p1557-1570
    [26] Larsson S.G. and Carlsson A.J.,1973,Influence of non-singular stress terms and specimen geometry on small scale yielding at crack-tip in elastic-plastic materials,Journal of Mechanics and Physics of Solids,V.21,n4,p263-278.
    [27] Scibetta M. , Chaouadi R. and Van Walle E. , Fracture toughness analysis of circumferentially-cracked round bars,International Journal of Fracture,2000,V.104,n22,p145-168
    [1] Rosenberg A.,Hansson C.M. and Andrade C.,Mechanisms of corrosion of steel in concrete,In:Skalny J.,Materials Science of Concrete,The American Ceramic Society,Westerville,OH,1989,p285-313
    [2] Alonso C.,Castellote M. and Andrade M.,Chloride threshold dependence of pitting potential of reinforcements,Electrochimica Acta,2002,V.47,n21,p3469-3481
    [3] Evans R.H.,Use of calcium chloride in prestressed concrete,Proceeding Word Conference on Prestressed Concrete,San Francisco,1957,pA31-1-A31-8
    [4] Stark D.,Determination of permissible chloride levels in prestressed concrete,PCI Journal,1984,V.29,n4,p106-119
    [5] Chiang Y.J.,Characterizing simple-stranded wire cables under axial loading,Finite Elements in Analysis and Design,1996,V.24,n2,p49–66
    [6] Jiang W.G. and Henshall J.L.,The analysis of termination effects in wire strand using the finite element method,Journal of Strain Analysis,1999,V.34,n1,p31-38
    [7] L. Bing,L. Guanglu and Z. Long,Failure analysis of a thin-webbed girder of post-tensioned concrete,Structural Concrete,2006,v 7,n1,p 1-5
    [8] B.M.莫斯克文,Φ.M.伊万诺夫,C.H.阿列克谢耶夫等,混凝土和钢筋混凝土的腐蚀及其防护方法,化学工业出版社,1988
    [9] Mayrbaurl R.M. and Camo S.,Guidelines for Inspection and Strength Evaluation of Suspension Bridge Parallel Wire Cables,NCHRP Report 534,2004,p1-16
    [10] American Concrete Institute,ACI 222R-01,Protection of Metals in Concrete Against Corrosion, Detroit,MI,2001
    [11] Beatriz M.P.,Service Life Modelling of R.G. Highway Structures Exposed to Chlorides,Ph.D. Dissertation,University of Toronto,199
    [12] Neville A.,Chloride attack of reinforced concrete: an overview, Materials and Structures,1995,V.28,n176,p63-70.
    [13] Kahhaleh K.Z.,Corrosion Performance of Epoxy-Coated Reinforcement,Ph.D. Dissertation,University of Texas at Austin,1994
    [14] American Concrete Institute,ACI 222R-89,Corrosion of Metals in Concrete,Detroit,MI,1989
    [15] Hamilton H.R.,Investigation of Corrosion Protection Systems for Bridge Stay Cables,Ph.D. Dissertation,University of Texas at Austin,1995
    [16] Funahashi M.,Predicting corrosion-free service life of a concrete structure in a chloride environment,ACI Materials Journal,1990,V.87,n6,p581-587
    [17] Arup H.and Somensen H.E.,A proposed technique for determining chloiide thresholds,In:Nilsson L.O. & Oliver J.P.,Chloride Penetration into Concrete:proceedings of the RILEM International Workshop,Paris,1995,Chp.7
    [18] Mohammad T.U. and Hamada H.,Discussion of“Chloride threshold values to depassivate reinforcing bars embedded in a standardized OPC mortar”by C.Alonso,C.Andrade,M.Castellote and P.Castro,Cement and Concrete Research,2001,V.31,n5,p835-838
    [19] Glass G.K. and Buenfeld N.R.,Presentation of the chloride threshold level for corrosion of steel in concrete,Corrosion Science,1997,V.39,n5,p1001-1013
    [20] Alonso C.,Andrade C.,Castellote M. and Castro P.,Chloride threshold values to depassivate reinforcing bars embedded in a standardized OPC mortar,Cement and Concrete Research,2000,V.30,n7,p1047-1055
    [21] Trejo D. and Pillai R.G.,Accelerated chloride threshold testing:PartⅠ—ASTM A 615 and A706 Reinforcement,ACI materials Journal,2003,V.100,n6,p519-527
    [22] Trejo D. and Pillai R.G.,Accelerated chloride threshold testing:PartⅡ—Corrosion resistant reinforcement,ACI materials Journal,2004,V.101,n1,p57-64
    [23] Frangini S. and De Cristofaro N.,Analysis of the galvanostatic polarization method for determining reliable pitting potentials on stainless steels in crevice-free conditions,Corrosion Science,2003,V.45,n12,p2769-2786
    [24] ASTM G-61,Standard Test Method for Conducting Potentiodynamic Polarization Measurements for Localized Corrosion Susceptibility of Iron-,Nickel-,or Cobalt-Based Alloys,Annual Book of ASTM Atandard,3,1986,p223-227
    [25] Hancock P. and Mayne J.E.O.,Anodic polarization as a possible rapid method of deciding whether a given solution is corrosive or inhibitive,Journal of Applied Chemistry,1957,V.7,p700-708
    [26] Szklarska-Smialowska Z. and Janik-Czachor M.,The analysis of electrochemical methods for the determination of characteristic potentials of pitting corrosion,Corrosion Science,1971,V.11,p901-914
    [27] Gouda V.K.,Corrosion and corrosion inhibition of reinforcing steel I. Immersed in alkaline solutions,British Corrosion Journal,1970,V.5,n5,p198-204
    [28] Abd El Wahab F.M.,Abd El Kader J.M. and El Shayeb H.A. et al.,On the pitting corrosion of tin in aqueous solutions,Corrosion Science,1978,V.18,n11,p997-1009
    [29] Abd El Aal E.E.,Effect of chlorate and perchlorate anions on lead passivity in NaOH solutions under galvanostatic polarization,Corrosion,1992,V.48,n6,p482-488
    [30] Moon S.-M. and Pyun S.-I.,Formation and dissolution of anodic oxide films on pure aluminum in alkaline solution,Electrochimica Acta,1999,V.44,n14,p2445-2454
    [31] Gutman E.M.,Mechanochemistry of Solid Surfaces,World Scientific Publishing Co. Pte. Ltd.,Singapore,1994
    [32] Gouda V.K.,Abdul Azim A.A. and El-Sayed H.A.,The effect of stress on the corrosionbehaviour of mild steel in alkaline solutions,Corrosion Science,1979,V.19,n4,p215–224
    [33] Gilchrist J.D. and Narayan R.,Environmental cracking of eutectoid steel,Corrosion Science,1971,V.11,n5,p281–296
    [34] Burstein G.T. and Marshall P.I.,Growth of passivating films on scratched 304L stainless steel in alkaline solution,Corrosion Science,1983,V.23,n2,p125–137
    [35] Graham F.J.,Brookes H. C. and Bayles J. W.,Nucleation and growth of anodic films on stainless steel alloys. II. Kinetics of repassivation of freshly generated metal surfaces,Journal of Applied Electrochemistry,1990,V.20,n1,P45–53
    [36] DiegleR.B. and Vermilyea D.A.,Deformation of iron oxides formed in caustic electrolyte,Corrosion,1976,V.32,n10,p411-414
    [37] Stefec R. and Franz F.,Study of the pitting corrosion of cold-worked stainless steel,Corrosion,1978,V.18,n2,p161-168
    [38] Lennon S.J.,Robinson F.P.A. and Garrett G.G.,Influence of applied stress and surface finish on the pitting susceptibility of low alloy turbine disk steels in wet steam,Corrosion,1984,V.40,n8,p409-417
    [1] Schokker A.J.,Improving Corrosion Resistance of Post-Tensioned Substructures Emphasizing High Performance Grouts,Ph.D. Dissertation,University of Texas at Austin,1999
    [2] Klodt D.T.,Studies of electrochemical corrosion and brittle fracture susceptibility of prestressing steel in relation to prestressed concrete bridges,Proceedings of 25th Conference of National Association of Corrosion Engineers,Houston,Texas,1969,p78-87
    [3] Van Leeuwen H.P.,Kinetics of hydrogen embrittlement:a quantitative diffusion model,Engineering Fracture Mechanics,1974,V.6,n1,p141-161
    [4] Sofronis P. and McMeeking R.M.,Numerical analysis of hydrogen transport near a bluntingcrack tip,Journal of the Mechanics and Physics of Solids,1989,V.37,n3,p317-350
    [5] Thomas J.P. and Chopin C.E.,Modeling of hydrogen transport in cracking metal systems,Hydrogen Effects in Materials:Proceedings of the 5th International Conference on the Effect of Hydrogen on the Behavior of Materials,Moran, WY, USA,1996,p233-242
    [6] Troiano A.R.,The role of hydrogen and other interstitials in the mechanical behaviour of metals,Transactions of American Society for Metals,1960,V.52,p54-80
    [7] Jones D. A.,Principles and Prevention of Corrosion,MacMillan Publishing Company,New York,1992
    [8] L. Bing,L. Guanglu, and Z. Long,Failure analysis of a thin-webbed girder of post-tensioned concrete,Structural Concrete,2006,v 7,n1,p 1-5
    [9] ASTM A416/A416M-99,Standard Specification for Steel Strand, Uncoated Seven-Wire for Prestressed Concrete,ASTM International
    [10] Eliaz N.,Shachar A.,Tal B. and Eliezer D.,Characteristics of hydrogen embrittlement,stress corrosion cracking and tempered martensite embrittlement in high-strength steels,Engineering Failure Analysis,2002,V.9,n2,p167-184
    [11] Novokshchenov V.,Brittle fractures of prestressed bridge steel exposed to chloride-bearing environments caused by corrosion-generated hydrogen,Corrosion,1994,V.50,n6,p477-485
    [12] Isecke B. and Miletz J.,Risk of hydrogen embrittlement in high-strength prestressing steels under cathodic protection,Steel Research,1993,V. 64,n1,p97-101
    [13] ACI 222.2R-01,Corrosion of Prestressing Steels, American Concrete Institute,Detroit,MI,2001
    [14] Yamaoka Y.,Kideyoshi T. and Kurauchi M.,Effect of galvanizing on hydrogen embrittlement of prestressing wire,Journal of the Prestressed Concrete Institute,1988,V.33,p146-158
    [15] Oriani R.A.,Diffusion and trapping of hydrogen in steel,Acta Metallurgica,1970,V.18,n1,p147-157
    [16] Hirth J.P.,Effects of hydrogen on the properties of iron and steel,Metallurgical Transactions A(Physical Metallurgy and Materials Science),1980,V.11A,n6,p861-890
    [17] Toribio V.,Hydrogen-plasticity interactions in pearlitic steel:a fractographic and numerical study,Materials Science and Engineering A,1996,V.219,n1,p180-191
    [18] Frankel G.S. and Latanision R.M.,Hydrogen transport during deformation in nickel:part Ⅰ.polycrystalline nickel,Metallurgical Transactions A. 1986,V.17A,p861-867
    [19] Ladna B. and Birnbaum H.K.,Study of hydrogen transport during plastic deformation,Acta Metallurgica,1987,V.35,n7,p1775-1778
    [20] Sofronis P. and Birnbaum H.K.,Mechanics of the hydrogen-dislocation-impurity interactions - I. Increasing shear modulus, Journal easing shear modulus,Journal of the Mechanics and Physics of Solids,1995,V.43,n1,p49-90
    [21] Kumnick A.J. and Johnson H.H.,Deep trapping states for hydrogen in deformed iron,Acta Metallurgica,1980,V.28,n1,p33-39
    [22] Lufrano J. and Sofronis P.,Enhanced hydrogen concentrations ahead of rounded notches and cracks—competition between plastic strain and hydrostatic stress,Acta Materialia,1998,V.46,n5,p1519-1526
    [23] Fontana M.G.,Corrosion Engineering,3rd Edition,McGraw-Hill Book Company,New York,1986
    [24] Yokobori A.,Takenao N. and Koji S. et al, Numerical analysis on hydrogen diffusion and concentration in solid with emission around the crack tip,Engineering Fracture Mechanics, 1996,V.55,n1,p47-60
    [25] Toribio J. and Kharin V.,Effect of residual stress-strain profiles on hydrogen-induced fracture of prestressing steel wires,Materials Science,2006,V.42,n2,p263-271
    [26] Liu H.M.,Stress-corrosion cracking and the interaction between crack-tip stress field and solute atoms,Transactions of the ASME:Journal of Basic Engineering,1970,V.92,p633-638
    [27] Toribio V.,Role of crack tip strain rate in hydrogen assisted cracking,Corrosion Science,1997,V.39,n9,p1687-1697
    [28] Elices M.,Sanchez-Galvez V. and Bernstein I.M.,Hydrogen Embrittlement of Prestressing Steel,In:Thompson A.W. and Bernstein I.M.,Hydrogen Effects in Metals,Metallurgical Society of AIME,Warrendale,PA.,1981,p971-978

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700