索杆张力结构的预张力偏差和刚度解析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以索杆张力结构为研究对象,重点对其预张力偏差的定量估计和控制、刚度解析问题进行了讨论,主要工作包括以下五个方面:
     (1)对结构的最不利预张力偏差问题进行了研究。以构件绝对和相对预张力偏差平方和作为衡量结构预张力偏差的指标,利用二次型矩阵Rayleigh商的极性对结构预张力偏差的有界性进行了证明。通过对该二次型矩阵进行谱分解并利用其特征值快速衰减的性质,建立了仅采用该矩阵的低阶特征值和特征向量来近似求解结构最不利预张力偏差及对应的索长误差分布的方法。
     (2)以控制结构预张力偏差为目标讨论了主动张拉索的优选问题。将单元的绝对预张力偏差平方和作为表征结构预张力偏差的定量指标,从特征值的角度解释了不同张拉方案对结构预张力偏差控制效果不同的原因。以灵敏度矩阵的第一阶特征值为评价指标,从控制结构整体最不利预张力偏差的角度基于遗传算法提出了一种主动张拉索的优选方法。
     (3)结合乐清市体育场月牙形索桁张力罩棚结构工程,从预张力偏差的角度开展了施工张拉方案的比选和结构预张力的实测工作。对该结构在不同张拉控制方案下的结构预张力偏差进行了分析,并建议了可行的预张力施工方案。介绍了该结构的预张力监测方案,并将FBG和EM两种索力测量方法应用于该结构的预张力监测并建立了适应长期运行的实时索力监测系统。分析了该结构张拉过程及初始态的实测预张力特点。
     (4)重点对单元刚度与结构需求刚度间的关系进行了研究。给出了一个新的结构切线刚度矩阵按单元组集的表达式,其中结构的弹性刚度矩阵和几何刚度矩阵均可表示成为刚度值和方向向量构成的解析形式。在理论上找到了两个重要的结构自由度子空间,零弹性刚度子空间和需求刚度子空间,零弹性刚度子空间的刚度主要由结构的几何刚度提供,需求刚度子空间的刚度为外荷载作用方向的结构刚度。建立了结构和单元刚度对需求刚度和零弹性刚度子空间刚度贡献度的量化方法,通过该方法可找到结构的关键刚度路径。
     (5)对结构的动力刚度特性进行了初步探讨。建立了结构基本模态参数(频率和振型)与单元弹性刚度和几何刚度之间的关系。发现索杆张力结构的频谱视几何刚度和弹性刚度对各阶频率贡献度大小的不同存在明显的“分区现象”,并给出了定量判别结构各阶频率中几何刚度、弹性刚度贡献度的方法。利用零弹性模态子空间的刚度主要由几何刚度提供的特点,根据单元几何刚度对其刚度贡献度的大小建立了一个寻找结构关键预张力单元的方法。最后建立了频率、振型与结构预张力间的解析关系,借助该关系式可根据实测的模态参数来求解结构预张力。
The paper takes cable-strut tensile structures as the research object, focusing on the quantitative estimation and control of its pretension deviation, stiffness analysis problem. The main works include the following five aspects:
     (1) The most unfavorable structural pretension deviation (MUSPD) is studied. Adopting the quadratic sum of member's absolute and relative pretension deviations as the quantitative indices of structural pretension deviation, the MUSPD is proved to be bounded by means of the polarity of Rayleigh quotient of the quadratic matrix. By the spectral decomposition of the quadratic matrix and taking advantage of the steep attenuation of its eigenvalues, the method utilizing only its first-order eigenvalue and eigenvector to approximately solve the MUSPD as well as the corresponding distribution of cable length errors is established.
     (2) Aimed at controlling structural pretension deviation, the problem of choosing the optimal actively-stretched cables is discussed. The quadratic sum of elemental pretension deviations is adopted as an index to evaluate the pretension deviation of the whole structure, the reason is expounded that different stretch schemes lead to different control effect of structural pretension deviation from the perspective of eigenvalues. Adopting the first-order eigenvalue of the sensitivity matrix as the evaluating indicator, from the perspective of controlling the MUSPD, an optimization algorithm for choosing actively-stretched cables is put forward based on the Genetic Algorithm.
     (3) Combined with the crescent-shaped cable-truss tensile canopy structure of Yueqing Stadium, comparison of construction stretch schemes as well as measurement of structural pretension are carried out from the perspective of structural pretension deviation. The structural pretension deviations of different stretch-control schemes are analyzed and the feasible pretension construction scheme is proposed. The cable force monitoring scheme is introduced, the FBG and EM methods are applied to monitor cable forces and a long-term real-time monitoring system is established. In addition, the characteristics of structural pretension during the stretch process and the initial state are analyzed as well.
     (4) The research is focused on the relationship between element stiffness and structure demand stiffness. A new expression of structure tangent stiffness matrix is given, in which both element stiffness matrix and element geometric stiffness matrix can be expressed as the analytical form of its stiffness value and the corresponding direction vector. Two important structural freedom subspaces, demand stiffness subspace(DSS) and zero elastic stiffness subspace(ZESS) are discovered theoretically. The stiffness of ZESS is mainly offered by geometric stiffness while the stiffness of DSS is the structure stiffness in the direction of external load. The methods of quantifying the stiffness contribution of structural and elemental stiffness to DSS and ZESS are established, by which the key stiffness path of the structure can be found.
     (5) The dynamic stiffness characteristics of the structure are discussed preliminarily. The relationship between two basic structural modal parameters (frequency and mode) and element elastic stiffness and element geometric stiffness is established. The frequency spectrum of cable-strut tensile structure is found to have an obvious'partition phenomenon'depending on the contribution of geometric stiffness and elastic stiffness to frequencies, and a method is established to distinguish quantificationally the contribution of geometric stiffness and elastic stiffness to some frequency. Using the characteristics that the stiffness of zero elastic modal subspace mainly comes from the contribution of geometric stiffness, a method to find the key pretension elements is set up according to the contribution of element geometric stiffness. Finally, the analytical relationship of frequency, mode and pretension is established, with the help of which the structural pretension can be solved by the measured modal parameters.
引文
[1]董石麟,罗尧治,赵阳.新型空间结构分析、设计与施工[M].北京:人民交通出版社,2006.
    [2]邓华.拉索预应力空间网格结构设计的几个概念[J].工业建筑.2000,30(10):64.
    [3]邓华,李本悦,姜群峰.关于索杆张力结构形态问题的认识和讨论[J].空间结构.2003,9(04):39--46.
    [4]勒内·莫特罗.张拉整体——未来的结构体系[M].北京:中国建筑工业出版社,2007.
    [5]Rhode-Barbarigos L, Hadj Ali N B, Motro R, et al. Designing tensegrity modules for pedestrian bridges[J]. Engineering Structures.2010,32(04):1158-1167.
    [6]Rhode-Barbarigos L, Jain H, Kripakaran P, et al. Design of tensegrity structures using parametric analysis and stochastic search[J]. Engineering with Computers.2010,26(02):193-203.
    [7]Geiger D H, Stefaniuk A, Chen D. The design and construction of two cable domes for the Korean Olympics[A]. Proc. Of the IASS Symposium on Shells, Membranes and Space Frames[C].1986.
    [8]陈志华.索结构在建筑领域的应用与发展[N].中国建设报.2012-08-27(8).
    [9]史秋侠,朱智锋,裴敬.无锡太湖国际高科技园区科技交流中心钢屋盖索穹顶结构设计[A].第二届全国建筑结构技术交流会论文集[C].2009.
    [10]胡正平,李婷,赵楠,等.中国(太原)煤炭交易中心:展览中心结构设计[J].建筑结构.2011,41(09):16-21.
    [11]何孜孜,陈忠辉,胡正平.中国(太原)煤炭交易中心索穹顶张拉成型与监测[J].施工技术.2011,40(19):27-29,38.
    [12]张国军,葛家琪,王树,等.内蒙古伊旗全民健身体育中心索穹顶结构体系设计研究[J].建筑结构学报.2012,33(04):12-22.
    [13]王泽强,程书华,尤德清,等.索穹顶结构施工技术研究[J].建筑结构学报.2012,33(04):67-76.
    [14]葛家琪,张爱林,刘鑫刚,等.索穹顶结构张拉找形与承载全过程仿真分析[J].建筑结构学报.2012,33(04):1-11.
    [15]法国ASP建筑工作室.德国斯图加特梅赛德斯-奔驰体育场[J].城市建筑.2010(11):87-90.
    [16]杜凤林.科隆坡国家体育综合体室外体育场——马来西亚[J].世界建筑.2000(09):34-35.
    [17]田凤秀,李宰赫,孔道焕,等.韩国新建的两座体育场结构设计[J].建筑创作.2001(04):88-94.
    [18]王文胜,薄燕培,刘晨升,等.佛山世纪莲体育场膜结构工程[J].建筑技术及设计.2006(10): 112-116.
    [19]沈大伟.深圳宝安体育场设计[J].建筑学报.2011(09):69.
    [20]段有恒,刘占省,王泽强,等.盘锦市体育场大跨度索网结构预应力施工技术[A].第十三届全国现代结构工程学术研讨会论文集[C].2013.
    [21]Timoshenko S P, Young D H. Theory of Structures,2nd Edn[M]. New York:McGraw-Hill,1965.
    [22]Pellegrino S, Calladine C R. Matrix analysis of statically and kinematically indeterminate frameworks[J]. International Journal of Solids and Structures.1986,22(04):409-428.
    [23]Calladine C R, Pellegrino S. First-order infinitesimal mechanisms[J]. International Journal of Solids and Structures.1991,27(04):505-515.
    [24]包红泽,邓华.铰接杆系机构稳定性条件分析[J].浙江大学学报(工学版).2006,40(01):78-84.
    [25]Deng H, Kwan A S K. Unified classification of stability of pin-jointed bar assemblies[J]. International Journal of Solids and Structures.2005,42(15):4393-4413.
    [26]蒋本卫,邓华,伍晓顺.平面连杆机构的提升形态及稳定性分析[J].土木工程学报.2010,43(01):13-21.
    [27]Connelly R. Rigidity and energy[J]. Inventiones Mathematicae.1982,66(01):11-33.
    [28]Ohsaki M, Zhang J Y. Stability conditions of prestressed pin-jointed structures[J]. International Journal of Non-Linear Mechanics.2006,41(10):1109-1117.
    [29]Zhang J Y, Guest S D, Ohsaki M. Symmetric prismatic tensegrity structures:Part II. Symmetry adapted formulations[J]. International Journal of Solids and Structures.2009,46(01):15-30.
    [30]Zhang J Y, Guest S D, Ohsaki M. Symmetric prismatic tensegrity structures:Part I. Configuration and stability[J]. International Journal of Solids and Structures.2009,46(01):1-14.
    [31]Schek H J. The force density method for form finding and computation of general networks[J]. Computer Methods in Applied Mechanics and Engineering.1974,3(01):115-134.
    [32]Day A S, Bunce J H. Analysis of cable networks by dynamic relaxation[J]. Civil Engineering Public Works Review.1970,65(04):383-386.
    [33]凌道盛,徐兴.非线性有限元及程序[M].杭州:浙江大学出版社,2004.
    [34]袁行飞,董石麟.索穹顶结构施工控制反分析[J].建筑结构学报.2001,22(02):75-79.
    [35]沈祖炎,张立新.基于非线性有限元的索穹顶施工模拟分析[J].计算力学学报.2002,19(04):466-471.
    [36]邓华,姜群峰.松弛悬索体系几何非稳定平衡状态的找形分析[J].浙江大学学报(工学版).2004, 38(11):1455-1459.
    [37]陈联盟,董石麟,袁行飞.索穹顶结构施工成形理论分析[J].工程力学.2008,25(04):134-139.
    [38]祖义祯.受荷索杆机构的运动分析[D].杭州:浙江大学,2012.
    [39]Quirant J, Kazi-Aoual M N, Motro R. Designing tensegrity systems:the case of a double layer grid[J]. Engineering Structures.2003,25(09):1121-1130.
    [40]尤德清,张建华,张毅刚,等.支座施工误差对索穹顶结构初始预应力的影响[A].第七届全国现代结构工程学术研讨会论文集[C].2007.
    [41]郭彦林,王小安,田广宇,等.车辐式张拉结构施工随机误差敏感性研究[J].施工技术.2009,38(03):35-39.
    [42]Gao B Q, Weng E H. Sensitivity analyses of cables to suspen-dome structural system[J]. Journal of Zhejiang University Science.2004(09):39-46.
    [43]高博青,谢忠良,梁佶,等.拉索对肋环型索穹顶结构的敏感性分析[J].浙江大学学报(工学版).2005,39(11):1685-1689.
    [44]张丽梅,陈务军,董石麟.正态分布钢索误差对索穹顶体系初始预应力的影响[J].空间结构.2008,14(01):40-42.
    [45]Zhang L M, Chen W J, Dong S L. Manufacture Error and its Effects on the Initial Pre-Stress of the Geiger Cable Domes[J]. International Journal of Space Structures.2006,21(03):141-147.
    [46]邓华,程军,蒋本卫,等.索杆张力结构的构件长度误差效应[J].浙江大学学报(工学版).2011,45(01):68-74,86.
    [47]宋荣敏.索杆张力结构的几何误差效应分析和控制[D].杭州:浙江大学,2011.
    [48]程军.柔性预张力结构的构件长度误差敏感性分析[D].杭州:浙江大学,2010.
    [49]邓华,宋荣敏.面向控制随机索长误差效应的索杆张力结构张拉分析[J].建筑结构学报.2012,33(05):71-78.
    [50]张民锐.月牙形索桁结构的预张力偏差控制技术和静力性能研究[D].杭州:浙江大学,2012.
    [51]南秋明.光纤光栅测力环在悬索桥索力监测中的应用[J].公路交通科技.2010,27(03):64-68.
    [52]王清标.大量程高准确度直读式振弦式锚索测力仪研究[D].青岛:山东科技大学,2004.
    [53]姚文斌,程赫明.用“三点弯曲法”原理测定钢丝绳张力[J].实验力学.1998,13(01,):80-85.
    [54]郑周练,刘长江,龚文川,等.“三点弯曲法”在线检测缆索张力力学模型[J].土木建筑与环境工程.2009,31(02):29-32.
    [55]陈鲁.空间结构中拉力测试的弹性工程磁学法理论与实践研究[D].上海:同济大学,2007.
    [56]唐德东.基于磁弹效应的钢缆索索力在线监测关键技术探索[D].重庆:重庆大学,2007.
    [57]刘启柏.用振动波法测定架空缆索张力的方法[J].中国电力.1998,31(07):55-56.
    [58]王俊,汪凤泉,周星德.基于波动法的斜拉桥索力测试研究[J].应用科学学报.2005,23(01):90-93.
    [59]秦杰,高政国,钱英欣,等.基于多频率拟合法与半波法的拉索索力测试方法[A].第十三届空间结构学术会议论文集[C].2010.
    [60]李盛.基于光纤光栅传感原理的桥梁索力测试方法研究与应用[D].武汉:武汉理工大学,2009.
    [61]南秋明.光纤光栅应变传感器的研制及应用[D].武汉:武汉理工大学,2003.
    [62]杨礼东.大连体育场结构健康监测系统的设计和研发[D].大连:大连理工大学,2013.
    [63]任亮.光纤光栅传感技术在结构健康监测中的应用[D].大连:大连理工大学,2008.
    [64]周辉.复合FRP-OFBG的索式智能结构研究和工程应用[D].哈尔滨:哈尔滨工业大学,2008.
    [65]曾桢.基于有限测点的复杂构件受力性态研究[D].哈尔滨:哈尔滨工业大学,2009.
    [66]刘占省,徐瑞龙,武晓凤.中国煤炭交易中心索穹顶施工过程监测研究[J].建筑结构.2013,43(12):29-32.
    [67]曹宇.深圳宝安体育场屋盖索膜结构施工监测与分析[D].广州:华南理工大学,2011.
    [68]王帆,杨叔庸,肖德宝,等.索结构施工监控中的索力测试方法研究[J].空间结构.2010,16(03):64-73.
    [69]李宏男,杨礼东,任亮,等.大连市体育馆结构健康监测系统的设计与研发[J].建筑结构学报.2013,34(11):40-49.
    [70]周学军.济南奥体中心场馆钢结构设计特色与健康监测[J].工程力学.2010,27(S2):105-113.
    [71]邓华,宋荣敏,卓新,等.预应力杆系结构的张力偏差监测及补偿[J].浙江大学学报(工学版).201 1,45(07):1269-1275.
    [72]Nafday A M. System Safety Performance Metrics for Skeletal Structures[J]. Journal of Structural Engineering.2008,134(03):499.
    [73]何江飞,高博青.桁架结构的易损性评价及破坏场景识别研究[J].浙江大学学报(工学版).2012,46(09):1633-1637.
    [74]Yan D, Chang C C. Vulnerability assessment of single-pylon cable-stayed bridges using plastic limit analysis[J]. Engineering Structures.2010,32(08):2049-2056.
    [75]赵冉.张拉索膜结构的膜褶皱与索系失效研究[D].广州:华南理工大学,2011.
    [76]张雷明,刘西拉.框架结构能量流网络及其初步应用[J].土木工程学报.2007,40(03):4549.
    [77]Baker J W, Schubert M, Faber M H. On the assessment of robustness[J]. Structural Safety.2008, 30(03):253-267.
    [78]Shekastehband B, Abedi K, Chenaghlou M R. Sensitivity analysis of tensegrity systems due to member loss[J]. Journal of Constructional Steel Research.2011,67(09):1325-1340.
    [79]刘宏创,董石麟.内外组合张弦网壳结构基于向量式有限元的断索分析(英文)[J].空间结构.2012,18(03):86-96.
    [80]高博青,谢忠良,梁佶,等.拉索对肋环型索穹顶结构的敏感性分析[J].浙江大学学报(工学版).2005,39(11):1685-1689.
    [81]尤德清.施工误差对Geiger型索穹顶结构内力影响的研究[D].北京: 北京工业大学,2008.
    [82]张丽梅,陈务军,董石麟.正态分布钢索误差对索穹顶体系初始预应力的影响[J].空间结构.2008,14(01):40-42.
    [83]中华人民共和国行业标准.索结构技术规程(JGJ257-2012)[M]北京:中国建筑工业出版社,2008.
    [84]程云鹏.矩阵论[M].西安:西北工业大学出版社,2001.
    [85]Friedlander A, Martinez J M. On the maximization of a concave quadratic function with box constraints[J]. SIAM Journal on Optimization.1994,4(01):177-192.
    [86]高岳林,徐成贤,杨传胜.带有界约束非凸二次规划问题的整体优化方法[J].工程数学学报.2002,19(01):99-103.
    [87]Geletu A. Solving Optimization Problems using the Matlab Optimization Toolbox[M].2007.
    [88]Neumaier A. MINQ-General Definite and Bound Constrained Indefinite Quadratic Programming. [CP/OL].1998. http://www.mat.univie.ac.at/-neum/software/minq/.
    [89]张贤达.矩阵分析与应用[M].北京:清华大学出版社,2004.
    [90]邓华,程军,蒋本卫,等.索杆张力结构的构件长度误差效应[J].浙江大学学报(工学版).2011,45(01):68-74.
    [91]宋荣敏.索杆张力结构的几何误差效应分析和控制[D].杭州:浙江大学,2011.
    [92]陈景良.特殊矩阵[M].北京:清华大学出版社,2001.
    [93]周明.遗传算法原理及其应用[M].北京:国防工业出版社,2002.
    [94]王小平,曹立明.遗传算法的理论应用与软件实现[M].西安:西安交通大学出版社,2001.
    [95]郑慧娆.数值计算方法[M].武汉:武汉大学出版社,2004.
    [96]Kerschen G, Worden K, Vakakis A F, et al. Past, present and future of nonlinear system identification in structural dynamics[J]. Mechanical Systems and Signal Processing.2006,20(03):505-592.
    [97]郭惠勇,李正良,彭川.结构损伤动力识别技术的研究与进展[J].重庆建筑大学学报.2008,30(01):140-145.
    [98]禹丹江.土木工程结构模态参数识别[D].福州:福州大学,2006.
    [99]Kim B H, Park T. Estimation of cable tension force using the frequency-based system identification methodfJ]. Journal of Sound and Vibration.2007,304(03-05):660-676.
    [100]张宇鑫,李国强,赵世峰.张弦梁结构振动方法索力识别(Ⅰ):振动特性的参数分析[J].振动与冲击.2009,28(03):152-157.
    [101]张宇鑫,李国强,赵世峰.张弦梁结构振动方法索力识别(Ⅱ):实用公式及误差分析[J].振动与冲击.2009,28(03):158-160,181.
    [102]Bel Hadj Ali N, Smith I F C. Dynamic behavior and vibration control of a tensegrity structure[J]. International Journal of Solids and Structures.2010,47(09):1285-1296.
    [103]Moussa B, Ben Kahla N, Pons J C. Evolution of natural frequencies in tensegrity systems:a case study[J]. International Journal of Space Structures.2001,16(01):57-73.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700