盾构掘进系统电液控制技术及其模拟试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盾构是一种在大直径钢圆筒内实现挖掘、排渣、衬砌等隧道建设过程自动化和工厂化的大型复杂掘进装备,当前我国基础设施和国防建设领域需求十分紧迫。盾构掘进主要有控制与测量、刀盘刀具、电液控制等三大关键技术。电液控制系统承担着盾构向前推进和刀盘切削土体的任务,其控制性能直接影响掘进安全、工效及装备能耗。此外,盾构穿越地质条件复杂多变,系统负载和掘进过程难以用理论模型直接描述,而现场试验需付出较大经济代价和承担较高安全风险,设计方法的完善和关键技术的突破须借助掘进模拟试验来实现。因此,研制盾构掘进模拟试验平台并通过模拟试验开展推进、刀盘驱动等电液控制技术研究是提升我国掘进装备制造能力的重要途径,具有很强的工程应用背景和学术研究价值。
     论文建立了采用分项阻力合成的盾构推进力和刀盘扭矩计算模型,与传统经验公式相比,该模型包含土质参数、切深、刀盘开口率和密封舱压力等关键影响因素,描述了推进系统与刀盘驱动系统之间的负载匹配关系,揭示了推进力、推进速度、刀盘扭矩及刀盘转速等参数之间的相互影响规律。典型土层掘进模拟试验验证结果表明,均一地质中模型计算值与实测值吻合较好,相对误差小于3%,为推进和刀盘驱动电液控制系统负载精确计算和预测提供了理论依据。论文提出了一种节能型盾构刀盘驱动方式,该方式采用变转速定量泵控制液压马达驱动刀盘转动,显著提高了驱动系统的能量传递效率,有效解决了现有驱动系统因正常工况转速低导致系统能量浪费严重的问题。节能型变转速刀盘驱动系统模拟试验结果表明,该系统在粘土、砂土和砂砾三种典型土层中切削时较现有变排量系统能量传递效率提升幅度均非常明显,刀盘在0.5r/min至1.25r/min区间内工作时该驱动系统最高可节能50%。论文提出了盾构推进液压系统突变载荷顺应性定义以及评价指标,该指标可定量评价现有典型系统突变载荷顺应性的优劣,基于此类指标形成的评价体系可应用于盾构推进液压系统设计方法中,构建相应设计平台用以引导系统设计。由此自主创新设计的Φ6.3m盾构推进液压系统,其载荷顺应性能明显优于现役国外盾构,可将单位突变外界载荷衰减至原有69%,从而有效缓减系统承受的冲击。研究成果可成为提高掘进装备可靠性和降低故障率的理论依据和设计准则。论文还完成了盾构掘进综合模拟试验台总体设计和研制了掘进系统电液控制技术专项实验台,综合试验台具有功能多样且集成度高、模拟地质环境覆盖范围宽、掘进土体边界影响小等突出优点,且全物理和半物理模拟相结合,弥补了现有试验台规模小、功能单一的缺陷,为盾构电液控制技术研究提供了理想的实验条件。
     本论文主要研究内容如下:
     第一章,介绍了盾构原理、国内外发展历程及其关键技术,综述了模拟试验台盾构及推进、刀盘、管片等驱动控制系统的研究进展和存在的不足,进而指出本课题的研究背景及所要开展的研究内容。
     第二章,分析了盾构掘进动力系统模拟试验方法,并针对掘进动力系统电液控制技术研究的实际要求,研制了Φ3m盾构掘进综合模拟试验台、缩尺盾构模拟试验台和掘进电液控制系统半物理仿真实验台,通过试验台之间的优势互补,为掘进动力系统电液控制研究提供了实验条件。
     第三章,提出基于分项阻力的盾构推进力计算模型,并借助相关实验验证修正了传统基于施工经验的推进力估算公式。通过仿真分析和掘进模拟试验从压力和速度控制特性以及多缸同步控制等方面对比例溢流阀和比例调速阀组合与比例减压阀两种典型结构型式的推进液压系统作了对比研究。
     第四章,建立了盾构刀盘扭矩负载计算模型并分析了推进与刀盘工作参数匹配关系,基于负载模型通过仿真和模拟实验开展了变转速和变排量刀盘液压驱动系统工作效率对比研究,以粘土、砂土和砂砾土三种土层中掘进时采集的刀盘工作参数为基础,分析了三种土层中变转速盾构刀盘液压驱动系统比现有变排量系统的效率提升效果。
     第五章,建立了管片拼装机构运动学和动力学模型,并采用摄动法分析了拼装过程中管片的位姿误差,针对管片拼装定位过程中执行器的运动速度和精度控制提出了速度和位置复合控制策略,提高了管片定位运动的平稳性。
     第六章,提出液压系统顺应性定义和评价方法对国外典型盾构推进液压系统突变载荷顺应性进行了评估,分析了油液体积弹性模量、压力阀结构参数等顺应性影响因素,提出了基于顺应性的盾构推进液压系统设计方法并完成了新型液压系统设计。
     第七章,概括和总结了全文的主要研究工作和成果,为本课题未来开展进一步深入研究提供了参考思路和方向。
Shield tunneling machine (STM) performs excavation, discharge, erection and other procedures inside a steel cylindrical shield to achieve automation and factorization of tunnel construction. Nowadays, there is a great demand for STM in China for modernization of infrastructure construction. The key technologies of STM include cutters and cutterhead. electrohydraulic power transmission, measurement, control and others. Electrohydraulic systems undertake the tasks of thrusting and excavation, and their performance directly affects safety and energy efficiency. STM goes through unexpected geological strata, so it is difficult to describe its external load and operating process using theoretical model, thus system design and technology development must be carried out by simulated experiment. Therefore, development of test rigs and study of electrohydraulic control systems for thrust and cutterhead through experiments are very significant to support technically to equipment manufacturing industry in China.
     In the thesis, the force and torque calculation models for the thrust and cutterhead drive systems were proposed. Compared with the empirical formula, many influential factors such as soil properties, penetration, opening ratio and earth pressure have been taken into account in the models. The relationship between thrust force and cutterhead torque was presented and the interactions of the parameters such as thrust force and speed, cutterhead torque and speed were revealed. It was shown in the experimental results for typical types of soils that the calculated and measured loads match closely under uniform geological conditions with a tolerance less than 3%. The models can be used for calculation and prediction of the loads of the thrust and cutterhead drive systems. An energy-saving cutterhead drive system with variable speed hydrostatic control was proposed. Power transmission efficiency of the cutterhead drive system was greatly improved and energy loss resulting from the system normal operating conditions under low speed was reduced. It has been shown in the experimental results that the energy efficiency of the proposed system is increased, irrespective of the geological conditions of clay, sandy and gravel soils. Within the operating speed range from 0.5r/min to 1.25r/min. the energy consumption of the new cutterhead drive system was reduced by nearly 50%. The compliance of a thrust hydraulic system and related values were proposed, by which the compliance of existing systems can be evaluated quantitively. A system design platform based upon compliance was established and a new system for 06.3m STM was designed. It was verified that its compliance is much better than that of existing machines, decreasing a peak load to original 69%. The design method will be helpful to improve reliability and to reduce failure rate of STM. The test rigs for tunneling and electrohydraulic control systems were developed, featuring multifunction, integration, various simulated geological conditions and small boundary effect. Combining physical simulation with semi-physical simulation, the test rigs make up the shortcomings of the previous ones noted for small scale and single function, and provide a good platform for experimental study on electrohydraulic control systems of STM.
     The major contents are summarized as follows:
     In chapter 1. the working principle, domestic and overseas development process of shield tunneling machine and its key technologies were introduced. The current research progresses on thrust, cutter head, segment erection control systems and shield simulation test rig were reviewed. The background and content of research subject were presented.
     In chapter 2, a comprehensive simulation test rig was developed, including a soil box of steel structure with a distributed loading system to simulate the vast majority of geological conditions. aΦ3m shield, an electric control system with 1500 interfaces and points, and a data acquisition system based on real-time database platform. The drive systems were designed in detail.
     In chapter 3, the thrust force calculation model was proposed. A comparative study of the thrust hydraulic systems with the combination of proportional relief and flow control valves, and proportional reducing valve were compared in terms of the characteristics of pressure and speed control, multi-cylinder synchronous control.
     In chapter 4. the cutterhead torque calculation model was established and the relationship between operating parameters were analyzed. Comparisons of drive efficiency between the hydraulic systems with variable speed and variable displacement were carried out. The efficiency improvement of the variable speed hydraulic system applied in cutterhead drive was analyzed, studying the cases in clay, sand and gravel soil.
     In chapter 5, the segment assembly kinematics and dynamics were modelsed. The segment pose error was derived by the perturbation method. The segment speed and position control strategies for assembling actuators were put forward, and a way to optimize the segment assembling route and hereby save energy was proposed.
     In chapter 6, the compliance of a hydraulic system was defined. The thrust hydraulic systems of four foreign shield machines were evaluated from the perspective of compliance. The design procedures of a compliance based thrust hydraulic system were put forward, considering fluid bulk modulus, structural parameters of pressure valves and other influential factors.
     In chapter 7. the research work and achievements were concluded, moreover, suggestions and directions for further in-depth study on the subject were provided.
引文
[1]周文波.盾构法隧道施工技术及应用[M].北京:中国建筑工业出版社,2004
    [2]宋克志,王梦恕.盾构的选型及国产化问题初论[J].西部探矿工程,2004(5):99-101
    [3]何焕雄,曹国金.盾构法施工技术及其在我国的发展和应用[J].建筑技术开发,2004,31(4):106-108
    [4]胡胜利,乔世珊.泥水式盾构—讲座三[J].建筑机械,2000(4):21-25
    [5]刘仁鹏,刘方京.泥水加压盾构技术浅谈[J].工程机械,2001(3):24-26
    [6]尹旅超,朱振宏,李玉珍,等编译.日本隧道盾构新技术[M].武汉:华中理工大学出版,1999
    [7]陈丹,袁大军,张弥.盾构技术的发展与应用[J].现代城市轨道交通,2005(5):25-29
    [8]乐贵平.盾构技术在北京的应用和发展[J].市政技术,2002,113(4):5-11
    [9]Challenges and changes:Japan's tunnelling activities in 1988—Part 1 [J]. Tunnelling and Underground Space Technology,1989(2):215-224.
    [10]Challenges and changes:Japan's tunnelling activities in 1988—Part 2[J]. Tunnelling and Underground Space Technology,1989(3):337-342.
    [11]Martin HerrenkNecht. EPB or slurry machine:the choice [J]. Tunnels & Tunnelling,1994(6):35-36.
    [12]Tadao Yoshikawa. Soft ground tunnel shields in Japan [J]. Tunnels & Tunnelling,1985(7):45-47.
    [13]李国英.盾构技术及其在日本的应用与发展[J].水利水电施工,1996(3):38-41.
    [14]Hideki Sakaeda. Marmaray project:Tunnels and stations in BC contract[J]. Tunnelling and Underground Space Technology,2005,20 (6):612-616
    [15]S.L. Shen, Y.Z. Dai, J.H. Liu, et al. Construction of slurry shield tunnel under Huangpu River in Shanghai[J]. Tunnelling and Underground Space Technology,2004,19(2):397-398
    [16]唐元宁,于兰英.日本微型盾构的研制现状[J].工程机械,2000(6):3-8.
    [17]吴生富,孙敏,金萍.三菱重工的盾构隧道掘进机[J].一重技术,1999(2):9-11.
    [18]钱七虎,李朝甫,傅德明.隧道掘进机在中国地下工程中应用现状及前景展望[J].地下空间与工程学报,2002,22(1):1-11
    [19]王丽红,母淑洁.日本盾构式掘进机的发展现状[J].一重技术,2000(3):23-25.
    [20]洪代玲译.隧道掘进机的发展[J].世界隧道,1996(1):32-35.
    [21]Z. Eisenstein. The future of mechanized tunneling [J]. Tunnelling and Underground Space Technology, 1991,6(2):167-189.
    [22]Siegmund Babendererde. Tunnelling machines in soft ground:a comparison of slurry and EPB shield systems [J]. Tunnelling and Underground Space Technology,1991,6(2):169-174.
    [23]Hisakazu Matsushita. Earth pressure balanced shield method[J]. Tunnels & Tunnelling,1980(1):47-49.
    [24]Yukinori Koyama. Present status and technology of shield tunneling method in Japan[J]. Tunnelling and Underground Space Technology,2003,18 (2):145-159
    [25]Yukinori Koyama. Status of tunnels and tunnelling in Japan[J].Tunnelling and Underground Space Technology,2003,18 (2):113-114
    [26]魏康林,朱伟,黄红女.盾构隧道施工技术发展新动向[J].河海大学学报.2001,29(12):157-161
    [27]Bernhard M., Martin H., Lothar A. Mechanized Shield Tunnelling. Berlin:Erbst & Sohn,1996
    [28]霁澜(译).盾构施工法概要.日刊《月刊下水道》,1999(14):1-3
    [29]霁澜(译).新的盾构施工方法.日刊《建筑机械》,1995(8):16-17
    [30]Kenichi Nakakuro, Toyama-ken. Shield tunneling machine [P]. United States Patent, US7073869B2, 2006.
    [31]Richard J. Robbins, David T. Cass. Double shield tunnel boring machine [P]. United States Patent, 4420188,1981.
    [32]Hironobu Yamazaki, Eiji Sugino, Yoshiaki Yuchida. Shield type hydraulic tunnel boring machine [P]. Uinted Stated Patent,4167290,1979.
    [33]Takeshi Sakae, Shunichi Sonomura, Wataru Naitou, et al. Shield tunneling method and shield tunneling machine[P].United States Patent, US2004/0093768A1,2004.
    [34]Akesaka Toshio, lyama Makoto. Shield type tunnel boring machine [P]. Japan Patent, JP3176597 (A). 1991.
    [35]Furumoto Yosihtomo, Ibe Kazuhiko. Shield excavating machine[P]. Japan Patent, JP9132993 (A),1997.
    [36]ANTIPOV V V [RU], ANTIPOV JU V [RU], BRAKKERII [RU], BESSOLOV P P [RU]. Method of shield driving of a tunnel[P]. RU2231644 (C2),2004
    [37]Sakanishi Shoichi. Working-face disintegration detector for shield excavator [P]. Japan Patent, JP1121496 (A),1989.
    [38]Okamura Keiji, Shimoide Yosiharu,Hirohata Masatoshi, et al. Expanded mortar injection work in shield tunnel [P]. Japan Patent, JP62185922 (A),1987
    [39]Ishimura Katshuhiro, HIsawa Yukihiko, Tamura Yoshiaki, et al. Stabilizer grout for shield construction work [P].Japan Patent, JP1203591 (A), 1989.
    [40]明坂登始夫,滨田和人.盾构式掘进机[P].中国专利,93114218.0,1995
    [41]加岛丰,近藤纪夫,武内秀行,等.盾构挖掘装置[P].中国专利,200310118643.8,2004
    [42]李兆南译.盾构的现状与展望.日刊《土木技术》,2001(10):1-3
    [43]傅德明.隧道盾构掘进机技术和沉管法施工回顾及其展望.工业技术进步,2001(5):23-26
    [44]吴惠明.盾构法隧道施工应用技术文集[M].上海:同济大学出版社,2007
    [45]上海隧道工程股份有限公司.地下工程施工与风险防范技术[M].上海:同济大学出版社,2007
    [46]中国首台双圆盾构蓄势待发. [EB/OL]. http://law.eastday.com/epublish/gb/paper75/20030529/class007500002/hwz619296.htm
    [47]中国中铁研制的首台复合式盾构将用于天津地铁施工[EB/OL]. http://www.crecg.com/cn/nnews/2008613276020106.html
    [48]中铁轨道首台盾构长沙下线[EB/OL]. http://www.changsha.cn/roll/200909/t20090925_1012158.htm
    [49]首台国产大型盾构成功用于世博重大配套工程[EB/OL]. http://www.wolai.com/news/2009-09-10/12874/
    [50]沈重维尔特首台盾构下线联手分羹盾构市场[J].中国机电工业,2006(5):22-24.
    [51]国产地铁隧道掘进机产业化发展迅速. [EB/OL]. http://www.most.gov.cn/kjbgz/200612/t20061214_38852.htm
    [52]隧道股份国家863"先行号”国内首台地铁盾构的技术特点[EB/OL]. http://tranbbs.cn/Html/TechArticleTransit/223302780.htm
    [53]付毅飞.国产盾构加速地铁建设. [EB/OL]. http://www.stdaily.com/gb/zoujin863/2005-10/18/content_444332.htm,
    [54]薛学伟.华隧通首台盾构下线开创国产化新模式[J].建设机械技术与管理,2009(8):52-53
    [55]北方重工制造世界先进的泥水平衡式盾构[J].机械研究与应用,2008,21(2):85
    [56]机经.国内盾构市场扩张外资企业大量涌入[J].中国机电工业,2010,41(9):70
    [57]地铁牵线海瑞克落户成都[EB/OL]. http://www.xametro.gov.cn/docc/docc/product_tabbrow.asp?id= 1964
    [58]白杉,周洁.我国隧道盾构掘进机的发展和应用[J].工程机械,2004(5):26-28
    [59]王晓州.大断面黄土隧道建设技术[M].北京:中国铁道出版社,2009
    [60]张公社.超大直径泥水平衡式盾构始发技术[J].铁道建筑技术,2009(8):57-61
    [61]刘金祥,赵运臣.武汉长江隧道工程盾构选型[J].隧道建设,2007,27(4):91-94
    [62]盛芳.隧道股份:国产盾构掘进机系列化[J].装备制造,2009(4):72
    [63]邢彤.盾构刀盘液压驱动与控制系统研究[D]:[博士学位论文].杭州:浙江大学,2008
    [64]苏健行.盾构掘进机综合试验台液压系统及调速特性研究[D]:[硕士学位论文].杭州:浙江大学,2008
    [65]刘峰.盾构掘进模拟试验系统及土压平衡技术研究[D]:[硕士学位论文].杭州:浙江大学,2010
    [66]胡国良.盾构模拟试验平台电液控制系统关键技术研究[D]:[博士学位论文].杭州:浙江大学,2006
    [67]Nomoto T., Imamura S., Hagiwara T., Kusakabe O., Fujii N. Shield tunnel construction in centrifuge [J]. Journal of Geotechnical and Geoenvironmental Engineering.1999,125 (4):289-300
    [68]Raffaele Vinai, Claudio Oggeri, Daniele Peila. Soil conditioning of sand for EPB applications:A laboratory research [J]. Tunnelling and Underground Space Technology,2008,23(3):308-317.
    [69]陈馈,韩亚丽.泥水盾构控制系统模拟试验台[J].建筑机械化.2007,28(4):59-62
    [70]陈振环.基于液压恒压网络的盾构土压平衡控制研究[D]:[硕士学位论文].广州:广东工业大学,2006
    [71]赵强政.Φ520mm土压平衡式模型盾构机研制及试验性掘进控制模拟[D]:[硕士学位论文].成都:西南交通大学,2007
    [72]胡国良,龚国芳,杨华勇,等.盾构掘进机推进液压系统压力流量复合控制分析[J].煤炭学报,2006,31(1):125-128.
    [73]Herbert Heitkamp, Rolf Stoltz. Method of, and apparatus for, controlling the advance of a tunnel drive shield [P]. United States Patent,4095436,1978.
    [74]Walter Weirich, Herbert Heitkamp. Hydraulic control system for and methods of controlling the operation of tunnelling apparatus[P]. United States Patent,4391553,1983.
    [75]Tamura Karsumi. Speed controller of shield jack[P]. Japan Patent, JP4140397 (A),1992.
    [76]Ikeda Jun, Mizutani Tsuton,Yoshida Takeshi. Shield tunneling method and shield excavator [P]. Japan Patent, JP10246091 (A),1998.
    [77]Ishii Toshihisa. Driving controller for shield jack of shield excavating machine [P], Japan Patent, JP11030093 (A),1999.
    [78]Vincent Lebreton. Method and device for controlling the trajectory of a shield-type tunneling machine [P]. United States patent,4904115,1990.
    [79]刘东亮.电液比例技术在盾构推进系统中的应用[J].建筑机械,2005(8):93-95
    [80]房猛.盾构推进机构电液控制系统的研究[D]:[硕士学位论文].杭州:浙江大学,2003.
    [81]魏建华,丁书福.土压平衡式盾构开挖面稳定机理与压力舱土压的控制[J].工程机械,2005(1):18-19
    [82]庄欠伟,龚国芳,杨华勇.盾构推进系统分析[J].液压与气动,2004(4):11-13
    [83]鲁志军.土压平衡式盾构推进系统及其故障排除[J].建筑机械,2004(5):90-91
    [84]刘东亮.EPB盾构掘进的土压控制[J].铁道工程学报,2005(2):45-50.
    [85]杨华勇,龚国芳.盾构掘进机及其液压技术的应用[J].液压气动与密封,2004(1):27-29.
    [86]Zhibin Liu, Haibo Xie, Huayong Yang. Simulation Analysis of Pressure Regulation of Hydraulic Thrust System on a Shield Tunnling Machine. Preceeding of 2nd International Conference on Intelligent Robotics and Applications. Singapore, December 2009
    [87]谢群,杨佳庆,高伟贤.土压平衡盾构推进液压系统的设计[J].机床与液压,2009,37(6):98-101
    [88]于睿坤,李万莉,周奇才,等.盾构推进系统分析与建模[J].建筑机械化,2007(2):43-45
    [89]周杜鑫;黄毅;李新利;等.进口小松TM614隧道掘进机的改造与改进技术研究[J].建筑施工,2005(8):44-48
    [90]王胜勇,庄欠伟.Φ9.04m泥水气平衡盾构推进液压系统设计[J].中国市政工程,2008(2):71-72
    [91]吕建中,庄欠伟.Φ14.87m盾构液压推进系统分析[J].筑路机械与施工机械化,2008,25(7):75-77
    [92]杨华勇,龚国芳,胡国良.采用比例流量压力复合控制的盾构掘进机液压推进系统[P].中国专利,ZL200410016939.3,2006
    [93]胡国良,龚国芳,杨华勇.基于压力流量复合控制的盾构推进液压系统.机械工程学报,2006,42(6):124-127.
    [94]杨扬.模拟盾构推进系统的设计和研究[D]:[硕士学位论文].杭州:浙江大学,2006.
    [95]余佑官.盾构推进电液控制系统研究[D]:[硕士学位论文].杭州:浙江大学,2006.
    [96]Yang Huyong, Shi Hu, Gong guofang. Electro-hydraulic proportional control of thrust system for shield tunneling machine [J]. Automation in Construction,2009,18(7):950-956
    [97]田华军,司海燕,魏凯华,等.盾构电机减速器与刀盘主轴承连接轴断裂分析[J].工程机械,2009,40(8):71-75
    [98]郑久强.盾构刀盘液压驱动系统研究[D]:[硕士学位论文].杭州:浙江大学,2006.
    [99]庄欠伟.土压平衡式盾构电液控制系统集成技术及其应用[D]:[硕士学位论文].杭州:浙江大学,2005.
    [100]Tamaki Shoji et al. Hydraulic Device of Shield Excavating Machine. U.S. patent,2737560,2001-1-16
    [101]蔡河山.土压平衡盾构液压传动控制系统浅析—刀盘驱动液压传动控制系统[J].液压与气动,2003(8):30-31
    [102]韩亚丽.土压平衡盾构刀盘驱动液压系统的组成[J].液压与气动,2003(4):92-94
    [103]吴启谊.海瑞克盾构刀盘电液控制系统分析[J].流体传动与控制,2009(4):43-47
    [104]邢彤,杨华勇,龚国芳.盾构液压系统多泵优化组合驱动技术[J].浙江大学学报(工学版),2009,43(3):511-516
    [105]邢彤,龚国芳,胡国良,等.基于系统重组的盾构刀盘驱动液压系统设计与试验[J].农业机械学报,2006,37(5):125-129
    [106]邢彤,杨华勇,龚国芳.盾构刀盘驱动液压系统效率对比研究[J].浙江大学学报(工学版),2010,44(2):358-363
    [107]郑久强,龚国芳,邢彤,等.盾构刀盘变转速液压驱动系统节能仿真分析[J].机床与液压,2007,35(4):105-107
    [108]何於琏.土压平衡盾构掘进控制系统工作原理[J].矿山机械,2006(2):22-24.
    [109]谢群,杨佳庆,高伟贤.盾构刀盘驱动液压系统设计[J].液压与气动,2009(4):74-76
    [110]吴根茂,邱敏秀,王庆丰,等编著.新编实用电液比例技术[M].杭州:浙江大学出版社,2006
    [111]Norman Duncan Pirrie, Sutton, John Bland. Tunnel boring machine having rotation control responsive to advance pressure[P]. US Patent,3301598,1967.
    [112]Morita Michiaki, Katagawa Noboru, Ogura Yukio, etc. Wear detector of shield drilling machine [P]. Japan Patent, JP60144607 (A),1985.
    [113]Fujimura Hikari. Shockless startup device of hudraulic clutch unit for shield machine[P]. Japan Patent, JP2003056284(A),2003.
    [114]Harada Mitsuo, Imagawa Tsutomu, Ishino Tomofumi, et al. Cutter rotary control method for shield drilling machine and device thereof [P]. Japan Patent, JP6033694 (A),1994.
    [115]Hironobu Yamazaki, Kashiwa. Excavation controlling method in hydraulic shield tunneling [P]. United States Patent,4384307,1980.
    [116]Atsushi Fujino, Takeo Imai, Mikio Kudoh, et al. Safety in quick construction of a long water conveyance channel by shield tunneling method [J]. Tunnelling and Underground Space Technology,2006,21(3): 257
    [117]Achim Helbig. Injection molding machine with electric-hydrostatic drives[C]. Proceedings of 3rd International fluid power conference. Aachen, Germany,2002
    [118]S. Helduser. Development trends in electrohydraulic drives and controls[C]. Proceedings of 6th international fluid power conference, Dresden, Germany,2008,29-64
    [119]R. Bonefeld, Ch. Lebert. Adaptive pressure control using variable speed pumps. Workshop proceedings of 6th international fluid power conference, Dresden, Germany, March 2008.151-163
    [120]Mao-Hsiung Chiang, Chung-Chieh Chen, Chung-Feng Jeffrey Kuo. The high response and high efficiency velocity control of a hydraulic injection molding machine using a variable rotational speed electro-hydraulic pump-controlled system[J]. The International Journal of Advanced Manufacturing Technology,2009,43 (8):841-851
    [121]丁书福.盾构管片拼装机电液控制系统研究[D]:[硕士学位论文].杭州:浙江大学,2005.
    [122]钱晓刚.盾构掘进设备中的管片拼装机机构设计方法[D]:[硕士学位论文].上海:上海交通大学,2008.
    [123]崔国华.盾构管片拼装机的设计及动态性能研究[D]:[博士学位论文].长春:吉林大学,2009.
    [124]Sakuma Yuji. Erector device for assembling segment [P]. Japan Patent, JP20060017586,2007
    [125]Sugiyama Masahiko, Kamimura Joji. Erector device and tunnel excavator [P]. Japan Patent, JP20060138523,2007.
    [126]Kazuhiro Kosuge, Koji Takeo, Daiji Taguchi, et al. Task-oriented force control of parallel link robot for the assembly of segments of a shield tunnel excavation system[J].IEEE/ASME Transactions on mechatronics,1996,1(3):250-257.
    [127]Kazuhiro Kosuge, Koji Takeo, Daiji Taguchi, et al. Assembly of segments for shield tunnel excavation system using task-oriented force control of parallel link mechanism[C]. Proceedings of the 1996 IEEE IECON 22nd International Conference on Industrial Electronics, Control, and Instrumentation, Taipei, August 1996,501-506.
    [128]Tanaka Yasuo. Automatic segment assembly robot for shield tunneling machine [J]. Microcomputers in Civil Engineering,1995,10(5):325-337.
    [129]Martin David. Japanese robot can erect tunnel segments [J]. Tunnels and Tunnelling,1990,22(7):54-55
    [130]Yasuo Tanaka:Automatic Segment Assembly Robot for Shield Tunneling Machine [J]. Computer-Aided Civil and Infrastructure Engineering,2008,10(5):325-337
    [131]Wada Masahumi. Automatic Segment Erection System for Shield Tunnels [J]. Advanced Robotics,1991, 5(4),429-443
    [132]Kato Takaaki, Murano Kenichi. Development of segment automatic building intelligent system [J]. Nkk Technical Review,1991(61):52-58
    [133]John C. Haspert, Arcadia, Calif. Methods and apparatus for installing tunnel liners [P]. United States Patent,3678694,1972.
    [134]Jelmer Braaksma, Ben Klaassens, Robert Babuska. Hybrid control design for a robot manipulator in a shield tunneling machine[J]. Informatics in Control, Automation and Robotics I,2006(5):143-150.
    [135]Douglas F. Winberg, Bellevue Wash. Segment erector for a tunneling machine[P]. US Patent,3247645, 1966.
    [136]喻萌.TBM管片拼装机的虚拟样机究[D]:[硕士学位论文].武汉:武汉大学,2005.
    [137]魏要强.TBM后配套管片自动拼装机设计及研究[D]:[硕士学位论文].武汉:武汉大学,2005.
    [138]张闵庆,葛道远,等.带有压力式全密封油箱的衬砌拼装机[P].中国专利,ZL 03116809.4,2003.
    [139]石元奇,王鹤林,等.具有六个自由度的盾构管片拼装机[P].中国专利,ZL 200610025189.5,2006.
    [140]肖羽曼,高伟贤,李志波,等.自定位快速抓取管片机械手[P].中国专利,ZL 200710159134.8,2008.
    [141]钱晓刚,高峰,郭为忠.六自由度盾构管片拼装机机构设计[J].机械设计与研究,2008,24(1):17-20.
    [142]赵志杰,金先龙,曹源.盾构隧道通用管片虚拟拼装系统[J].计算机辅助设计与图形学学报,2007,19(9):1196-1199.
    [143]马宏昌.盾构液压传动控制系统对施工进度的影响[J].建筑与预算,2009(4):122.
    [144]胡国良,龚国芳,杨华勇.盾构掘进机土压平衡的实现[J].浙江大学学报(工学版),2006,40(5):874-877.
    [145]陆怀民.切土部件与土壤相互作用的粘弹塑性有限元分析[J].土木工程学报,2002,35(6):79-81.
    [146]G. Anagnostou, K. Kovari. Face stability conditions with earth-pressure-balanced shields [J]. Tunnelling and Underground Space Technology,1996,11(2):165-173.
    [147]G. Anagnostou, K. Kovari. The face stability of slurry-shield-driven tunnels [J]. Tunnelling and Underground Space Technology,1994,9(2):165-174.
    [148]Marshall M. A., Milligan G. W. E., Mair R. J. Movements and stress changes in London Clay due to the construction of a pipe jack [C]. Proceeding of International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground, Balkema, Rotterdam, The Netherlands,1996:719-724.
    [149]Mitsutaka Sugimoto, Aphichat Sramoon. Theoretical model of shield behavior during excavation I: theory [J]. Journal of Geotechnical and Geoenvironmental Engineering,2002,128(2):138-155.
    [150]Aphichat Sramoon, Mitsutaka Sugimoto, Kouji Kayukawa. Theoretical model of shield behavior during excavation II:application[J]. Journal of Geotechnical and Geoenvironmental Engineering,2002,128(2): 156-165.
    [151]Raffaele Vinai, Claudio Oggeri, Daniele Peila. Soil conditioning of sand for EPB applications:A laboratory research [J]. Tunnelling and Underground Space Technology,2008,23(3):308-317.
    [152]Y. Li, F. Emeriault, R. Kastner, Z.X. Zhang. Stability analysis of large slurry shield-driven tunnel in soft clay[J]. Tunnelling and Underground Space Technology,2009,24(4):472-481.
    [153]Matsumoto, Y., Arai, T., Hatagoshi, A. An experimental study of multi-circular face shield tunneling [J]. Journal of Japan Society of Civil Engineering,1989,406(111-11):291-300.
    [154]Kozo Ono, Tsuchiura. Control method and system for ensuring stable boring operation at working face during tunneling with tunnel boring or shield machine [P]. United States Patent,4171848,1979.
    [155]张厚美,吴秀国,曾伟华.土压平衡式盾构掘进试验及掘进数学模型研究[J].岩土力学与工程学报,2005,24(增2):5762-5766.
    [156]王洪新,傅德明.土压平衡盾构掘进的数学物理模型及各参数间关系研究[J].土木工程学报,2006,39(9):86-90.
    [157]李向红,傅德明.土压平衡模型盾构掘进试验研究[J].岩土工程学报,2006,28(9):1101-1105.
    [158]朱合华,徐前卫,寥少明,等.土压平衡盾构法施工参数的模型试验研究[J].岩土工程学报,2006,28(5):553-557.
    [159]吕强,付德明.土压平衡盾构掘进机刀盘扭矩模拟试验研究[J].岩石力学与工程学报,2006,25(增1):3137-3143.
    [160]李洪人.液压控制系统[M].北京:国防工业出版社,1990.
    [161]李壮云.液压元件与系统[M].北京:机械工业出版社,2005
    [162]许益民.电液比例控制系统分析与设计[M].北京:机械工业出版社,2005.
    [163]张孟喜.土力学原理[M].武汉:华中科技大学出版社,2007.
    [164]白冰,赵成刚.土力学原理[M].北京:清华大学出版社,2004
    [165]张士屹.盾构法施工同步注浆施工工艺[J].西部探矿工程,2009,4:164-167
    [166]傅德明,杨国祥.上海地区越江交通盾构施工技术综述[C].国际隧道研讨会暨公路建设技术交流大会论文集,2002.
    [167]王良.盾构法施工在北京地铁5号线的应用[J].都市快轨交通,2004,17(5):33-37.
    [168]何其平.南京地铁盾构选型研究[D]:[硕士学位论文].成都:西南交通大学,2004.
    [169]徐日庆.考虑位移和时间的土压力计算方法[J].浙江大学学报(工学版),2000,34(4):370-375.
    [170]彭天好.变频泵控马达调速及补偿特性的研究[D]:[博士学位论文].杭州:浙江大学,2003.
    [171]袁天祥.电动机及其系统的节能技术[M].北京:化学工业出版社,1991.
    [172]路甬祥.液压气动技术手册[M].北京:机械工业出版社,2002.
    [173]杜亮.臂关节偏置的喷涂机器人运动学关键技术的研究[D]:[硕士学位论文].广州:华南理工大学,2007.
    [174]P. Sekhavat, N. Sepehri, Q. Wu. Impact stabilizing controller for hydraulic actuators with friction:theory and experiments [J]. Control Engineering Practice,2006,14(12):1423-1433.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700