等离子体源离子注入材料表面改性及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研制了一套可同时用于材料内外表面注入的新型等离子体源离子注入装置。利用Langmuir探针测量方法对该系统进行了等离子体诊断和鞘层扩展动力学的实验研究。采用AES、XPS、XRD、TEM、SEM等分析测试手段对等离子体源离子注入过程中注入离子与金属材料的相互作用、反应生成相以及注入层的显微组织和结构进行了较为系统的研究。通过等离子体源氮离子注入,对Ti6Al4V、LY12、40Cr、CrWMn四种金属材料的表面硬度及摩擦磨损性能进行了试验研究并探讨了离子注入材料表面强化的机理。
     等离子体源离子注入装置由脉冲负高压源系统、热阴极弧放电系统、真空室及样品台、真空系统和监测系统等五部分组成。其注入能量10~100keV,重复频率10~500Hz,脉宽2~50μs,最大等离子体密度1×10~(11)cm~(-3)。增加灯丝电流和工作气体压强可显著提高等离子体密度,电子温度随灯丝加热电流增加而提高,随气体压强升高而明显降低。
     首次提出了等离子体源材料内表面离子注入新方法,给出了相应的鞘层模型,并据此推导出鞘层扩展动力学方程。鞘层扩展动力学实验测量证明该模型与实验数据符合的很好,可以用来描述内表面注入过程中鞘层扩展的动力学特征。该方法在40Cr钢圆筒样品的内表面氮离子注入表面改性实验中取得成功。
     在室温下经一定剂量的氮离子注入后,四种金属材料注入层中发现有不同的氮化物反应相生成。Ti6Al4V合金注入层中的反应相为面心立方的TiN,LY12合金注入层中的反应相为六方结构的AIN,在40Cr和CrWMn合金注入层中则生成Fe_2N和CrN。随注入剂量的增加,反应相数量增多,注入后的退火处理促进了注入离子与基底原子间的相互作用,加速了反应相的形成和长大。值得注意的是,在LY12合金注入层中发现了室温离子注入诱发铝合金时效析出现象,在40Cr、CrWMn合金注入层中还观察到注入促进淬火组织的回火转变现象。此外,在注入层中发现有辐射损伤造成的非晶态组织、位错网络和亚晶细化。
     当注入剂量达到2.2×10~(17)cm~(-2)时,四种金属材料表面硬度都有明显提高。注入后退火处理进一步增强了离子注入表面硬化效果,但过高的退火温度会导致基体组织的软化。40Cr、CrWMn合金经4.8×10~(17)cm~(-2)氮离子注入后,其磨擦磨损性能得到明显改善。分析表明,氮离子注入引起的固溶强化、位错强化和弥散分布的氮化物相析出是造成材料表面硬化的主要原因,而表面硬化又导致材料摩擦磨损性能的改善。
A new plasma source ion implantation device for inner and outer surface implantation of materials has been developed . Based on this device the experimental study of plasma diagnostics and sheath propagation dynamics were made by using Langmuir probe. By means of AES, XPS, XRD, SEM and TEM the inter-reaction between implanted ion and metal substrate during plasma source ion implantation, corresponding reactive phase and microstructure of implanted layer were investigated systematically The surface hardness and tribological properties of Ti6A14V, LY12, 40Cr and CrWMn alloys implanted with nitrogen ion were tested and the surface modification mechanism was analyzed.The plasma source ion implantation device consists of pulsed negative high voltage power, hot cathode arc discharge system, vacuum chamber and target stage, vacuum system and monitor system. The implanting energy is in the range of 10 ~ 100 keV,repetitive frequency 10 ~ 500 Hz, pulse width 2 ~ 50μs , plasma density up to 1× 10 cm~(-3). The increase of filament current and gas pressure can obviously raise the plasma density . Plasma electron temperature rises with the increase of filament current and remarkably decreases with the increase of gas pressure.A new plasma source ion implantation method and a corresponding plasma sheath model for inner surface implantation are presented first in this paper. Following this model a differential equation of sheath propagation is derived. The experimental measure of sheath propagation dynamics shows that this model is in good agreement with the experiment data and it can be used to describe the dynamic characteristics of sheath propagation during implantation for inner surface modification This new method has been successfully applied for inner surface modification of 40 Cr steel cylinder.Different nitride reactive phases were formed in the implanted layer of four metal
    materials which were implanted with nitrogen at room temperature. Reactive phase is fee TiN for Ti6A14V , hexagonal A1N for LY12 , Fe2N and CrN for 40Cr and CrWMn alloys. With the increase of the implantation dose the amount of the reactive phase increases. Heat treatment after implantation promotes the inter-reaction between implanted ions and substrate atoms so as to accelerate the formation and growth of reactive phases. It is noticeable that nitrogen ion implantation at room temperature induced the age precipitating process of LY12 alloy, and temper transformation of quenching structure caused by ion implantation was observed in the implanted layer of 40Cr and CrWMn alloys. Besides, the amorphous structure, dislocation network and sub-grain refinement caused by the irradiation damage during implantation were also discovered in the implanted layer.When implanted with 2.2 * 1017N+ cm'2, the surface hardness of all the four metalmaterials is significantly increased and further improved by the annealing treatment after implantation. But overannealing will lead to the substrate softening After implanted with 4.8 x 1017N+cm"2 the tribological properties of 40Cr and CrWMn alloys are obviously improved. Analysis results show that it is the implantation induced NT solid-solution, dislocation tangle and precipitation of nitride phases that cause the surface hardening of the implanted materials, which, in turn, lead to the improvement of tribological properties of the implanted materials.
引文
[1] N. M. Mott-Smith and I.Langmuir, Phys. Rev., 28(1926) 727
    [2] 汪克林,戚伯云,张泰永编,近代物理学展望,中国科学技术大学出版社,(1988)P.109
    [3] Bruce Schechter, Physics Today, 39(4) (1986) 41
    [4] S. Dresser, Surface Modification Technoloyies, edited by T.S.Sudarshan, Pergamon, (1989) P. 299
    [5] H.V. Boening, Plasma Science and Technology, Cornel University Press, London (1982) P.58
    [6] D.P. Lymberopoulos and D. J. Economou, J. Vac. Sci. Technol., A12 (1994) 1229
    [7] T. Ono, H. Nishimura, M. Shimada, and S. Matsuo, J. Vac.Sci. Technol., A12 (1994)1281
    [8] S. Matuo and M. Kiuchi, Jpn. J. Appl. Phys. 22(1983) L210
    [9] Y. Muranaka, H.Yamashita, H. Miyadera, J.Vac.Sci.Technol., A9(1991) 76
    [10] H. Masumoto, T. Goto, and T. Hirai, Appl. Phys. Lett., 55(1989)498
    [11] H. Q. Zhao, Plasma Chemistry and Processing, China Science and Technology University Press, (1993) P. 181
    [12] R. Parosa and E. Reszke, Proc. of 4th Inter. Conf. On Plasma Chem. & Technol., San Diego, USA, (1987) P.57
    [13] F.C.Fehsenfeld, Rev. of Scientific Instr., 36(3) (1965) 294
    [14] R. C. Bosisio, J. Microwave Power, 7(4)(1972)325
    [15] M. Moisan, J. Phys. D, 112(1979) 219
    [16] N. Sakuclo, Rev. Sciertific Instr., 48(7)(1977) 762
    [17] H. M. Smith, A. F. Turner, Appl. Opt., 4(1965) 147
    [18] S. Z. Yang, P. X. Yan, W. Lu, B. Li, C. Z. Liu, Y. F. Ren, M. Sun, Proc. of 9th Swiss Bonding International Conf., 17-19 May, Zurich Switzerland, (1995) P. 51
    [19] 张光华,钟士谦,离子注入技术,机械工业出版社,北京,(1982)P.114
    [20] 王广厚,粒子同固体相互作用物理学(下册),科学出版社,北京,(1991)P.623
    [21] D. M. Follstaedt, F. G.Yost, L. E. Pope, S. T. Picraux, J. A. Knapp, Appl. Phys. Lett., 43(1983)358
    [22] J. K. Hirvonen, J. Vac. Sci. Technol. 15(1978) 1662
    [23] F. Bodart, G. Terwagne and M. Piette, Mat. Sci. Eng., 90(1987) 111
    [24] J. K. Dennis, Heat Treatment of Metals, 3(1987) 77
    [25] N. Moncoffre, Mat. Sci. Eng., 90(1987) 99
    [26] Amarjit Singh, Advances in Surface Treatnent Technology-Application and Effects, edited by A. Nikulari, Pergamon Press, (1987) P. 155
    [27] G. K. Hubler, Metastable Materials Formation by Ion Implantation, edited by S. T. Picraux and W. J. Choyke, Elsevier, (1982) P. 341
    [28] Masaya Iwak, Mat. Sci. Eng., 90(1987) 263
    [29] C.A. Dossandos, M. Behar and I. J. R. Baumvol, J. Phys. D, 17(1984) 551
    [30] Peter Madakson, Mat. Sci. Eng. 15(1985) 179
    [31] J. G. Han, R. F. Hochmon, Mt. Sci. Eng., 90(1987) 43
    [32] J. D. Meyer and B. Stritzker, Z. Phys., B38(1980) 77
    [33] T. Scosciewiez, Phy. Stat. Sol.(a), 11(1972) K123
    [34] B. Stritzker and W. Buckel, Z. Physik, 257(1973) 1
    [35] J.R. Canrad, R.A.Dedd, F.J.Worzala and N.C. Tran, J. Appl. Phys. 62(1987)4591
    [36] J.R.Conrad, J.Appl. Phys. 62(1987)777
    [37] J. R. Conrad, R.A. Dodd, F.J. Worzala and X. Qin, Surf. Coatings Technol. 36(1988)927
    [38] J.R. Conrad and T. Castagna, Proc. of the 39th Annual Gaseous Electronics Conference, Madison, WI, (1986) P.75
    [39] J.R. Conrad and T. Castagna, Bull. Am. Phys. Soc., 31(1986)1479
    [40] R.H. Varey and K.F. Sander, Br. J. Appl. Phys., 2(1969)541
    [41] J.G. Andrews and R.H. Varey, Phys. Fluids, 14(1970)339
    [42] A.G. Jack, K.F. Sander, and R.H. Varey, J. Plasma Phys., 5(1971)211
    [43] J.G. Andrews, J. Plasma Phys., 4(1970)603
    [44] J.R. Conrad, J.Appl. Phys., 62(1987)777
    [45] M. Widner, I. Alexeff, W.D. Jones, and K.E. Longren, Phys. Fluids, 13(1969)2532
    [46] J.K. Chester, J. Sci. Ttechnol., 37(1970)2
    [47] M.A. Lieberman, J. Appl. Phys., 66(1989)2926
    [48] I. Langmuir, Phys. Rev., 21(1923)4
    [49] J. T. Scheuer, M. Shamim and J.R. Conrad, J.Appl. Phys., 67(1990)1241
    [50] I. Langmuir and K. Blodgett, Phys. Rev., 22(1923)347
    [51] I. Langmuir and K. Blodgett, Phys. Rev., 24(1924)49
    [52] J.A. Davies, Can. J. Phys., 42(1964)1070
    [53] G. Dearnaley, Can. J. Phys., 46(1968)587
    [54] F.H. Eisen, Can. J. Phys., 46(1968)561
    [55] J. Lindhard, M. Scharff and H. E. Schiltt, Kgl. Danske Videnskab. Mat. Fys. Medd., 33(1963)14
    [56] S. Namba, Ion Implantation, Gordon and Breach Press, New York (1971)P.65
    [57] D.G. Nelson, J.F.Gibbons and W.S. Johnson, Appl. Phys. Lett., 15(1969)246
    [58] J.A. Davies and P. Jesparsgaard, Can. J. Phys., 44(1966) 1631
    [59] N.E.W. Hartley, Wear, 34(1975)427
    [60] N.E.W. Hartley, Inst. of Phys. Conf. Series, 28(1976)210
    [61] G. Dearnaley and N.E.W. Hartley, Proc. of 4th Conf. on Scientific and Industrial Application of Small Accelerators, IEEE, N.Y., USA, (1976)920
    [62] S.T. Picraux, Ann. Rev. Mat. Sci. 14(1984)335
    [63] G. Dearnaley, Science of Hard Materials, Plenum Press, N.Y., (1983)P.467
    [64] N.E.W. Hartley, Thin Solid Films, 64(1979)179
    [65] G.H. Huble, Nuel. Instr. Meth., B 7/8(1985)151
    [66] J.M. Poate, Ion Implantation and Beam Processing, Academic Press, Australia, (1984) P.13
    [67] 张通和等,北京师范大学学报(自然科学版),26(1990)53
    [68] S. Soritas, R.P.M. Procter, V. Ashworth, W.A. Grant, Wear, 82(1982)233
    [69] R.A. Kant, A.R. Knudson, K. Kumar, Metastable Materials Formation by Ion Implantation, North Holland, N.Y., (1982)P. 253
    [70] S.Fayeulle, D. Treheux, P. Guiraldeno and G. Fantozzi, Mater. Sci., 21 (1986) 1814
    [71] E.P. Bouden, The Friction and Lubrication of Solids, Part Ⅱ, Oxford University Press, London, (1964)P. 145
    [72] N.E.W Hertley, Ion Implantation in Semiconductors and Other Materials, Plenum Perss, (1976)P. 423
    [73] N. E. W. Hartley, W. E Swindlehurst, G. Dearnaley and J. F.Turner, J. Mater. Sci., 8(1973)900
    [74] R. Hutchings, W. C. Oliver, J. B. Pethica, Nucl. Instr. Meth., 209/210(1983)995
    [75] R. Hutchings and W. C Oliver, Wear, 92(1983)143
    [76] M. W. Thompson, Proc. European Conf. on Ion Implantation, edited by G. Dearnaley, Peregrinus Ltd. Stevenage, U. K., (1970)P. 109
    [77] N. E. W. Hartley, Ion Implantation, edited by I. K. Hirvonen, Academic Press, N. Y., (1980)P.85
    [78] W. W. Hu, C. R. Clayton, H. Herman and J. K. Hirvonen, Scripta Met., 12(1978)697
    [79] H. Herman, Nucl. Instr. and Meth., 182/183(1981)887
    [80] R. G. Vardiman, R. Kant, T. W. Crooker and B. B. Rath, Thin Solid Films, 63(1979)5
    [81] 赵连成,金属热处理原理,哈尔滨工业大学出版社,(1987)
    [82] 吴培英,金属材料学,国防工业出版社,(1987)P.123
    [83] 胡庚祥,钱苗根,金属学,上海,科学与技术出版社,(1980)P.46
    [84] F. A. Smidt, Nucl. Instr. Meth., B 6(1981)70
    [85] I. G Brown, J. Appl. Phys., 63(1988)4889
    [86] J. S. Colligon, Vacuum, 37(1987)35
    [87] F. A. Smidt, Nacl. Instr. Meth., B 6 (1986)70
    [88] A. Wittkewer, J.K. Hirvohen, Nucl. Instr. Meth., B 6(1985)78
    [89] J. R. Conrad, Mater. Sci. Eng., A 116(1989)197
    [90] J. R. Conrad,, IEEE International Conf. of Plasma Sci., Saskatoon, Canada, May 19-21, (1986)28
    [91] W. A. Grant, Proc. of International Ion Engineering Congress ISIAT'83, Kyok, (1983)1727
    [92] 张通和等,北京师范大学学报(自然科学版),(1990)53
    [93] F. F. Chen, Plasma Diagnostic Techniques, Academic Press, N. Y., (1965)P. 113
    [94] B. E. Cherrington, Plasma Chemistry and Plasma Processing, 2(1982)113
    [95] J. D. Swift and M. J. Schwar, Electrical Probes for Plasma diagnostics, American Elsevier, New York, (1969) P. 52
    [96] 杨津基,气体放电,科学出版社,(1983)P.50
    [97] J. M. Poate, G. Foti, and D. C. Jacobson, Surface Modification and Alloying by Laser, Ion and Electron Beams, Plenum Press, N. Y.(1983)
    [98] J. S. Williams, Rep. Prog. Phys., 49(1986)491
    [99] G. M. Mccracken, Rep. Prog. Phys., 38(1975)241
    [100] R. C. Mccune, W. T. Donlong, H. K. Plummer, and F. W. Kunz, Thin Solid Films, 168(1989)263
    [101] S. Ohira and M. Iwaki, Mater. Sci. Eng., 90(1987)143
    [102] M. T: Robinson, D. K. Holmes and O. S. Den, Monte Carlo Calculation of the Ranges of Energetic Atoms in Solids, DRNL-3212(1961)
    [103] W. B. Carter, M. V. Papageory, J. Vac. Sci. Technol., A10(1992)3460
    [104] R. Nordberg, R. G. Albridge, et. al., Arkiv. Kemi., 28(1968)257
    [105] N. Lieske and R. Hezel, J. Appl. Phys., 52(1981)5806
    [106] I. J. Banmvol, Phys. Stat. Sol.(a), 67(1981)67
    [107] J. F. Archard, Prog. Roy. Sol., A243(1957)190

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700