三支座回转窑基础内力有限元分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
回转窑是个绕自身轴旋转的钢圆筒,里面砌有耐火砖,物料在其中煅烧,窑浮放在基础的托轮上,托轮可随窑转动,托轮座固定在钢筋混凝土基础上,窑的荷载经托轮传给基础。本文针对水泥厂生产过程中,回转窑设备基础振动的问题,提出了大型动力基础有限元模拟的课题。文中以实际工程项目为背景,研究回转窑—基础—地基的动力特性,由于系统的复杂性,必须要考虑回转窑和基础变形协调一致。
     文中论述了当前动力分析的理论,以及动力基础的研究方法,对现有的理论做了细致的分析和对比。并对回转窑基础进行了现场动力测试,在各控制点放置加速度拾振器,获取加速度时程曲线,并对其进行筛选和分析,构建有限元模型加载人工波,作为有限元模拟的动力荷载。
     对回转窑基础内力分析,本文做了大量工作,查阅了大量国内外关于回转窑基础设计计算相关的研究文献,详细地分析了目前国内外的研究现状和存在的不足,并针对论文所要解决的问题学习了相关的理论知识。主要是对回转窑上部结构及基础理论分析有了全面了解,详细分析了回转窑运转过程中受力及其产生原因;并且对回转窑基础的计算方法进行了探讨。将现场采集到的加速度时程曲线加载到回转窑模型上,进行时程分析。在分析中考虑回转窑正常工作、回转窑基础沉降、回转窑运转过程中托轮脱空三种情况下基础的内力分布情况。在有限元分析的基础上,开发了大型有限元软件,将有限元程序进行参数化处理,利用Visual Basic语言编写了对话框式界面,将基础类型、体系各部分几何尺寸,基础与上部设备材料组成及属性,下部地质资料等影响结构动力反应的因素设置成外部输入量,进行基础内力分析计算。通过进一步研究达到指导工程设计,优化基础各项指标,达到经济合理的目的。
     通过理论计算,实地工程检测和有限元模拟的分析对比,合理模拟了回转窑基础的动力反应,解决了工程设计中的一些问题,使得有限元计算结果能够在工程上辅助结构设计,应用前景广阔。
The rotary kiln is rotating around its own axis of the steel cylinder ,containing a firebrick sorts, in which the burning material, Kiln floating on the basis of the supporting wheel, the wheel can rotate with the rotating kiln. The wheel is fixed with the reinforced concrete foundation, Kiln load can be passed to the foundation by the wheel. According to the vibration of the rotary kiln equipment for concrete production, the subject of finite element simulation to large-scale dynamical foundation is put forward in this article. The background is the actual project in the article. The work is on the dynamical characters of the kiln-base-foundation systems. Because of the complexity of the system, we must consider the deformation coordination of the rotary kiln and the foundation.
     This paper discussed the dynamic analysis principles that exist now, and the research method of the dynamic foundation. I have made a detailed analysis and comparison to the existing theory and carried on the dynamic test to the rotary kiln foundation, put the sensors at the points and then obtain the acceleration time history curve. Screen sizing and analyzing the curve, forming the artificial fluctuation, applying them as the force of the structure.
     In this paper, I have made a lot of work on the endogen force of the kiln's foundation. I also have read many materials in and abroad about the civil design specification for rotary kiln foundations. Making detailed analysis of the current domestic and international situation and shortcomings. I have studied the theory of knowledge about the problems to be resolved in this paper. Having a comprehensive understanding of the kiln's foundation and superstructure, making a detailed analysis of how the endogen force happens of kiln's foundations, discussing the calculation method of the kiln's foundation, loading time history analysis on the kiln model with the acceleration curve which obtained at the scene. In the analysis we considered the conditions of the normal work, the sedimentation of the foundation, the eccentric of the kiln and got the distribution of the foundation's endogen force. On the base of the method of the finite element, we developed large-scale soft and made parameterizations of the finite element programming. With the visual basic language, we compiled window-interface, set the parameters about the physical dimensions and material properties of the equipment, the kiln's foundation and the geology data of the understructure as the input variables. Through further research, we can achieve the following purpose: guiding the project design, optimization indicators of the kiln's foundations, achieve reasonable economic purpose.
     We compared with the theoretical calculation, ground testing and finite element simulation analysis; the program can imitate the dynamic response of the kiln's foundation. It also solved some problems of the engineering designing. The results of the finite element calculation can help the structural design of the project, so it has a bright future.
引文
[1] 王杰贤.动力地基与基础[M].科学出版社 2001
    [2] 刘晶波,王振宇等.考虑土-结构相互作用大型动力机器基础三维有限元分析[J].工程力学,2002,19(3):34—38.
    [3] 尹庆红,胡星,毛长林,白振鑫.振动设备基础地基设计及基础加固[J].建筑技术开发,2002,29(9)
    [4] 杨振文.三支座窑基础的计算,水泥技术,2003(6)
    [5] 姚谦峰.基础隔震结构动力特性分析[J].世界地震工程,2001,(1):13-15.
    [6] G.Gardonio.S.J.Elliott. A Study of control strategies for the reduction of structural vibration transmission. ASCE Journal of Structural Engineering, 1999(121):482-487.
    [7] Y. G. Sun, KJ.Song, Y.H.Mao. Dynamic analysis of an active flexible suspension system[J].Journal of Sound and Vibration, 2002, 249(3):606-610.
    [8] D. Sciulli.D.J.nman. Isolation design for a flexible system[J]. Journal of Sound and Vibration,1998, 216(2):251-267.
    [9] Galano L.Gusella V. Reinforcement of masonry walls subjected to seismic loading using steel X-bracing. ASCE Journal of Structural Engineering,1998,124(8)
    [10] Ca r1.Q.Howard, Colin H.Hansen. Power transmission from a vibrating body to cylindrical shell through passive and active isolators [J]. Journal of Acoustic Society of America,1997,101(3):1479-1490.
    [11] Mir M. Ali. Design of Foundations in Seismic Zones. Concrete International Design and Construction, 1997, 19(1): 44-48.
    [12] Ishida K et al. Dynamic characteristics of soil—foundation interaction detected from vibration test. Proc. 8WCEE. Vol. Ⅲ 19Rd
    [13] CHEN Gender, SONG T.T. Exact Solutions to a Class of Structure-Equipment Systems [J]. Journal of Engineering Mechanics, 1995, 122:1093-1100.
    [14] D Dark and D.A. Pecknold. Nonlinear Stress-Strain Law for Concrete, ASCE, Engineering Mechanics Dynamics,ASCE 103(2)
    [15] Makris N, Construction M C. Spring viscous damper systems for combined seismic and vibration isolation. Earthquake Engineering and Structural dynamics, 1992(21):639-644
    [16] FA-GUNG FAN and GOODARZ AHMADI: Floor Response Spectra for Base-isolated Multi-story Structures, Earthquake Engineer and Structural Dynamics, Vol. 19, pp. 377-388,1990.
    [17] Paul fl P, John S J. The development of helical-spring foundations for large steam turbine-generations Proc. Amer. Power Conference, 1972,(19)
    [18] Whitman R V. Analysis of Soil-Structure Interaction, A State of the Art Re view, Applications of Experimental and Theoretical Structural dynamics.1972
    [19] Lysmer J, Kulemeyer R L. Finite dynamic model for infinite media [J]. Journal of Engineering Mechanics, ASCE,1969, 95: 759-877.
    [20] F. G. Fan, G. Ahmadi, N. Mostaghel, I. G. Tadjbakhsh: Performance Analysis of a Seismic Base Isolation System for a. Multi-story Building, Dyn. Soil and Earthquake Engineer. Vol, 10, No. 3,1991
    [21] [美]R.W.Clough,J.Penzien,王光远译.DYNAMICS OF STRUCTURES[M].科学出版社,1981,11.
    [22] 张荫,姚谦峰.自阻尼叠层橡胶支座基础隔震结构的计算模型及振动特性分析[J].西安建筑科技大学学报,2003,35(1)28—30
    [23] 梅德庆,何闻,沈润杰,陈子辰.大型汽轮发电机组框架式基础的动力特性研究[J].动力工程,2001,21(1)1014—1018
    [24] 张爱中,张兰春.动力机器基础采用弹簧隔振技术[J].山东电力高等专科学校学报,2001,4(3)48—50
    [25] 康进锁.隔振技术在发电厂动力基础中的应用[J].陕西水力发电,2000,16(1)36—38
    [26] 刘广萍.受高频率机组振动基础的结构设计[J].建筑技术开发,2000,27(2)2—6
    [27] 蒋东旗.动力机器基础设计的数值试验研究[D].西安:西安理工大学,1999
    [28] 赵斌,姚谦峰.隔震建筑用叠层橡胶支座的大变形模型[J].建筑结构,1999,(3):26-28.
    [29] 赵雷等.考虑参数随机性的钢筋混凝土结构非线性地震可靠度分析[J].建筑结构学报,1999,(3).
    [30] 阎盛海,建筑结构抗震分析[M].中国建材工业出版社,1999,6
    [31] 姚谦峰.自阻尼叠层橡胶隔震装置[P].中国专利:32888883,1998-02-04.
    [32] 夹层橡胶垫隔震技术规程(第四稿,征求意见稿)[S]夹层橡胶垫隔震技术规程编制组,1998,9
    [33] 王明洋,赵耀堂,钱七虎.用波动有限元法分析土与结构相互作用时设置人工边界的两个问题[J].岩土工程学报,1998,20(3)
    [34] 陈国军.机器设备基础的振动控制分析[J].安装,1997,12
    [35] 徐术陇,杨兴权.动力机器基础设计分析[J].沈阳建筑工程学院学报,1997,13(3)263—267
    [36] 樊水荣,苏经宇,曾德民等.建筑基础摩擦滑移隔震技术及其应用[J].工程抗震,1997.1:39—43
    [37] 王松涛,曹资.现代抗震设计方法.中国建筑工业出版社,1997
    [38] 周福霖.工程结构减震控制[M].北京:地震出版社,1997.
    [39] 苏经宇,曾德民,樊水荣等.叠层钢板橡胶隔震体系设计与分析[J].工程抗震,1996.4:27-32
    [40] 唐家祥,李黎等.叠层橡胶基础隔展房屋结构设计与研究[J].建筑结构学报,1996,17(2):37-47
    [41] 张新培.抗震结构变形能力可靠度的时程分析方法[J].工程力学,1996,(4).
    [42] 刘再华,丁强.地基—基础隔宸结构系统的动力响应[J].武汉城市建设学院学报,1995,12(2)44—51
    [43] 丁强,刘再华.具有叠层橡胶基础隔震系统的多层建筑的动力响应[J].建筑结构学报,1995,16(4)59—65
    [44] 蔡中义,阎淑芝,冯雄华.基础振动的测量与分析[J].煤矿机械,1995
    [45] 高象波.动力机器基础弹簧隔振系统的发展及应用[J].电力建设,1995,9
    [46] 巩天真.电厂大型构架式隔振基础的动力分析程序FDA电力学报,1994
    [47] 巩天真.电厂大型构架式动力机器基础的隔振研究[D].陕西:西北工业大学硕士学位论文,1994.
    [48] 姚谦峰.建筑物基础隔震体系设计[J].两安建筑科技大学学报,1994,(1):54-59.
    [49] 唐家祥,刘再华.建筑结构基础隔震[M].武汉:华中理工大学出版社,1993
    [50] 中华人民共和国.GB 50040-96.动力机器基础设计规范[S].北京:中国计划出版社,1997. (The People's Republic of China. GB 50040-96. Dynamic machine foundation design code [S]. Beijing: China Planning Press, 1997.)
    [51] 建筑抗震设计规范GB50011-2001[S].北京:中国建筑工业出版社,2001
    [52] 高小旺,龚思礼,苏经宇,易方民.建筑抗震设计规范理解与应用[M].中国建筑工业出版社,2000,04
    [53] 牛荻涛.混凝土结构耐久性与寿命预测.科学出版社,2003,02
    [54] 严济宽.机械振动隔离技术[M].上海:上海科学技术文献出版社,1986.
    [55] 周德慧等.振动机器基础与构架的设计[M].哈尔滨:黑龙江科学技术出版社,1984
    [56] 韩英才.大型动力基础的设计研究[J].建筑结构学报,1986(5)
    [57] 严人觉,王贻荪,韩清宇.动力基础半空间理论概论[M].北京:中国建筑工业出版社,1981
    [58] W.克拉夫,J.彭津.结构动力学[M].北京:科技出版社,1981.
    [59] 严人觉,王贻荪,韩清宇.动力基础半空间理论概论[M].北京:中国建筑工业出版社,1981.
    [60] 钱鸿绪,张迪民,王杰贤.动力机器基础设计[M].北京:中国建筑工业出版社,1980
    [61] 龚曙光.ANSYS基础应用及规范解析[M],北京:2003.
    [62] 陈精一,蔡国忠.电脑辅助工程分析ANSYS使用指南[M],中国铁道出版社,2001
    [63] 王勖成等.有限单元法基本原理和数值方法[M].清华大学出版社(第二版)[M],1995
    [64] 顾祥林,孙飞飞,混凝土结构的计算机仿真.同济大学出版社,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700