高致密、高强度TiC钢结硬质合金的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
TiC钢结硬质合金硬度高、比重小、耐磨性好,可机加工和热处理,广泛应用于工业模具、量具和抗震零件,也是航天、航空、船舶和兵器等领域用耐磨零件的重要制备材料。目前,我国军工和高科技领域用TiC钢结硬质合金基本依靠国产,与国外同类材料相比,国产TiC钢结硬质合金常常存在孔隙率过高,材质不均匀及强度偏低等问题,致使材料在加工和使用过程中出现各种问题,如:加工成品率低,抗磨损能力不足等。粉末冶金技术可以制造原料比重差异大、成分复杂的金属复合材料,通过液相烧结的方法可使TiC相与钢基体牢固结合,并赋予材料良好的力学性能及抗磨损能力。本论文采用粉末冶金方法制备了TiC钢结硬质合金,并就制备工艺、羰基铁粉替代还原铁粉、添加稀土元素对合金性能的影响,以及合金致密化技术和组织结构等内容进行了研究,获得主要结论如下:
     真空(真空度<4.5×10-1pa)环境下,采用粉末冶金液相烧结方法制备了Fe-3.0Cr-3.0Mo-0.5Cu-0.4Ni-0.5C-33TiC合金,研究了粉末处理技术、成形工艺和烧结工艺等因素对合金性能的影响。高能球磨过程中,元素Fe与Mo、C、 Cu、Ni等组元发生合金化反应,形成Fe的固溶体,随着球磨时间的增加,合金组织细化,成分均匀性增加;压坯密度随着成形压力的增加而提高,但成形压力相同时,冷等静压成形合金的抗弯强度、硬度和密度均高于模压成形;在一定范围内,合金的抗弯强度、硬度和密度随最终烧结温度的升高和保温时间的增加而提高,当最终烧结温度为1420℃,保温时间1h时,合金综合性能最佳。
     以羰基铁粉替代还原铁粉制备了相同成分的TiC钢结硬质合金,研究发现:在TiC钢结硬质合金中添加羰基铁粉可以改善粉末成形性能,使压坯密度更高,促进烧结进程,使烧结温度降低。提出羰基铁粉粒度小,装模过程可充填大颗粒间隙,呈圆形,成形过程在粉末颗粒之间滚动,减小粉末流动及变形阻力,是改善成形性能的主要原因。比表面积大、原子迁移距离缩小是促进烧结进程的主要原因。经1400℃烧结后,与未添加羰基铁粉的合金相比,添加30%羰基铁粉的合金力学明显提高,硬度由77.5HRA提高到81.8HRA,抗弯强度由1123MPa上或到1447MPa。
     制备了含微量稀土(RE)的TiC钢结硬质合金,比较了Fe-RE中间合金和CeO2两种不同添加形式对合金性能的影响。实验结果表明:以Fe-RE中间合金的形式添加RE效果更好,在球磨和烧结过程中,RE对合金粉末具有明显的脱氧和保碳作用,有助于不同组元间润湿性的提高,从而有利于致密化进程,达到减小孔隙率的目的。提出在液相烧结过程中,稀土聚集于TiC颗粒表面,使其表面能降低,阻碍TiC在液相中的溶解-析出过程,抑制TiC晶粒的长大。Fe-RE添加量为0.8%时,合金综合性能最佳。
     研究了锻造及热等静压工艺对钢结硬质合金致密性的影响。研究发现:采用自行设计锻模锻造时,合金受力状态有利于抑制裂纹的形成与扩展,合金开裂现象显著减少。通过锻造,合金中的孔隙变小或消失,TiC及其它碳化物脆性相碎裂细化,分布趋于均匀,力学性能提高。通过极差实验,确定了该合金的理想热等静压参数为:压力:140MPa;温度:1260℃;保温保压时间:0.5h。经过热等静压处理,合金在烧结过程中产生的孔洞等组织缺陷减小或消失,材料更加致密,材料综合性能明显提高。将锻造与热等静压工艺结合,合金的组织及性能改善更加明显,硬度达到86.8HRA,抗弯强度达到1677MPa。
     组织结构研究发现:烧结和热等静压过程中,TiC在基体液相中存在溶解-析出过程,伴随这一过程,小尺寸TiC颗粒减小或消失,大尺寸TiC颗粒长大且形状变得更加圆滑。本研究制备TiC钢结硬质合金界面处存在成分过渡,且无界面反应物生成,TiC相与基体结合良好。断口分析发现:基体断裂面表现为具有脆性特征的准解理断裂,TiC相断裂特征受颗粒尺寸影响,尺寸较大的TiC颗粒(>2μm)以解理断裂为主,尺寸较小(<1μm)的表现出沿晶断裂特征。
Steel bonded titanium carbide (SBTC), which has low proportion, high hardness, good high-temperature stability, advantageous machining and heat treatment performance, has been widely used in making industry molds, measuring tools, rigid shock-resistant parts. It is important materials of preparation wear-resistant parts that were used in aerospace, aviation, ships and weapons. At present, compares with the foreign productions, the SBTC of China's military and high-tech areas mainly relies on domestic production, which has high porosity, uneven texture and low strength, often exists some problems such as low machining yield, low abrasion ability etc. during machining and application. Powder metallurgy (PM) technology can manufacture metal matrix composites with different proportions'raw powder or complex compositions, and liquid phase sintering technology can strongly combine TiC and steel matrix, therefore, endow the alloy with excellent mechanical and wear resistance properties. SBTC was prepared by PM here, and the influences that preparation process, carbonyl iron powder substituting of reduced Iron powder and adding rare earth into raw powder on alloy's performance were studied, as well as alloy densification method and interface structure. Main results are as follows:
     The Fe-3.0Cr-3.0Mo-0.5Cu-0.5C-33TiC alloy was prepared by liquid phase sintering technology in the condition of vacuum degree below4.5×10-1pa. The influences of powder processing, pressing process and sintering process on alloy were evaluated. Alloying reaction happened between Fe and Mo, C, Cu, Ni, and the solid solution of Fe formed during high-energy ball milling. Billet's density increased with pressing pressure rising, however, alloy's bending strength, hardness and density by cold isostatic pressing (CIP) were higher than moulding pressing (MP) in same pressure. Within a determinate range, alloy's bending strength, hardness and density improved with the final sintering temperature and heat preservation time increasing, and the best comprehensive performances acquired by1420℃/1h.
     SBTC was prepared with the same constituents in which carbonyl iron powder substituted reduced iron powder partly. The study found that adding Carbonyl iron powder can promote powder's forming performance, pressure density, sintering process and decrease sintering temperature. The study revealed that carbonyl iron powder, which filled into the space among large particle in mold process and rolled in press process, can improve formability, and can promote sintering process because of specific surface area and reducing atom migration distance. Via sintering at1400℃, the hardness of alloy, which contained30%Carbonyl iron powder, improved to81.8HRA from77.5HRA, and the bending strength improved to1447Mpa from1123Mpa.
     SBTC containing micro rare earth (RE) was prepared, and the different influence that Fe-RE and CeO2on alloy's properties was investigated, the results showed that adding Fe-RE was better than CeO2. RE made powder deoxygenation, holding carbon and improving wetting during milling and sintering, therefore improving the densification process and decreasing porosity. In the course of liquid phase sintering, RE gathered at the surface of TiC particle and reduced surfacial energy, therefore, the dissolving-precipitating process of TiC in molten iron was inhibited, furthermore, the growing up of TiC grain was inhibited. The performance of alloy adding0.8%Fe-RE was the best.
     The influence of forging and hot isostatic process (HIP) on SBTC was studied. The study showed that forging plastic was markedly improved and cracking significantly reduced using own designed forging die, by which alloy suffered multi-directional stresses. The size of pore in alloy decreased or disappeared by forging, TiC and the other carbides brittle phase were broken into refinement and distributed more homogeneous, therefore, alloy's mechanical performance improved. The ideal parameters of HIP is140MPa/1260℃/0.5h by range analysis. The defects in alloy such as pore, which formed during sintering process, reduced or disappeared after HIP. Alloy's structure and performance improved more remarkable such as hardness to86.8HRA, bending strength to1677MPa, by incorporation of forging and HIP.
     The study on interface structure showed that TiC dissolved and precipitated in molten iron during sintering and HIP. With heat preservation time increasing, fine TiC particles decreased or disappeared, large TiC particles grown larger and appeared more smoothly. Components transition happened at the interface without interfacial reactionts, and had a larger bonding strength. Fracture analysis revealed that matrix fracture with quasi-cleavage features, the features of TiC fracture depended on particle size, the larger(>2μm) with cleavage fracture, the smaller(<1μm) with intergranular fracture characteristics.
引文
[1]邵荷生等.金属的磨料磨损与耐磨材料.北京:机械工业出版社,1988.12-35
    [2]张剑锋,周志芳.摩擦磨损与抗磨技术.天津:天津科技翻译出版公司,1993.3-5
    [3]株洲硬质合金厂.钢结硬质合金.北京:冶金工业出版社,1982.1-126
    [4]株洲硬质合金厂.硬质合金的生产.北京:冶金工业出版社,1974.56-87
    [5]李沐山.国外钢结硬质合金新进展.硬质合金,1994,11(2):105-114
    [6]宋思利.钨极氩弧原位合成TiC增强铁基熔敷层的研究:[博士学位论文].济南:山东大学,2007
    [7]张春友,熊惟皓.TiC系耐热钢结硬质合金研究.硬质合金,2000,17(3):134-138
    [8]Farooq T, Davies T J. Preparation of some new tugsten carbide hardmetals. Powder Metallurgy Intermational,1990,22(4):12-16
    [9]Thummler F, Gutsfeld C h. Sintered steel with high content of hard phases:A new class of wear resistant materials. Powder metallurgy,1991,23(5):285-290
    [10]王洪海.硬质颗粒钢基复合材料.硬质合金,1993,10(3):169-173
    [11]潘卫东.原位自生(Ti,W)C增强钢铁基复合材料的制备及组织与性能的研究:[博士学位论文].沈阳:东北大学,2005
    [12]Jiang W H, Pan W D, Song G H, et al. In-situ sythesis of TiC-Fe composite in liquid iron. J Mater Sci Lett,1997,16(10):1830-1833
    [13]Jiang W H, Pan W D, Song G H, et al. In-situ formation of TiC/Hadfield steel composites. J Mater Sci Lett,1998,17(4):1527-1529
    [14]Degnan C C, Shipway P H. A comparison of the reciprocating sliding wear behaviour of steel based metal matrix composites processed from self-propagating high-temperature synthesized Fe-TiC and Fe-TiB2 masteralloys. Wear,2002,252(9-10):832-841
    [15]Bengt G. ESP-a new tool material. Metal Powder Report,1991,46(12):24-29
    [16]长谷正一(卞为一译).喷射弥散强化合金.北京:国防工业出版社,1986
    [17]戚力.自生(TiW)C增强钢铁基复合材料的制备与显微组织的研究:[博士学位论文].沈阳:沈阳工业大学,2002
    [18]周晓明,任英磊,姜文辉等.铸造凝固冷速对原位自生(TiW)C/Fe复合材料组织的影响.航空材料学报,2004,24(6):25-28
    [19]王玉玮,刘越.铁基/SiC颗粒复合材料界面的稳定性.东北大学学报,1994,15(4):395-398
    [20]梅志,杨峰.原位合成TiC颗粒增强铁基复合材料的微观结构研究.材 料工程,2000,(6):16-19
    [21]Kattamis T Z, Suganuma T. Solidification processing and tribological behavior of particulate TiC-Ferrous matrix composites. Mater Sci Eng A,1990,128(2):241-252
    [22]Cliche G, Dallaire S. Synthesis of TiC and (Ti,W)C in solvent metals,1991, 43(2):319-328
    [23]严有为,魏伯康,傅正义等. Fe-Ti-C熔体中TiC颗粒的原位合成及长大过程的研究.金属学报,1999,35(9):909-912
    [24]张二林,朱兆军,曾松岩.自生颗粒增强钛基复合材料的研究进展.稀有金属,1999,23(6):436-441
    [25]梅炳初.自蔓延高温合成-熔铸法(SHS-Melting)原位复合制备TiC/Ni3AL基复合材料的研究.:[博士学位论文].武汉:武汉工业大学,1995
    [26]范跃华,金云学,李为清等.TiC颗粒增强铁基复合材料的研究.热处理,2007,22(5):37-39
    [27]苏广才,刘志科,任素波等TiCp/Fe复合材料制备及组织分析.铸造技术,2006,27(3):243-245
    [28]严有为,威伯康,林汉同等.化学成分对TiCp/Fe复合材料组织和性能的影响.中国有色金属学报,1999,9(2):225-230
    [29]王一三,张欣苑,李凤春等.反应铸造生成Fe-TiC梯度表面复合材料的研究.热加工工艺,1999,(4):13-15
    [30]张卫方,韩杰才.Fe含量对自蔓延高温合成TiC-AL2O3-Fe复合材料的影响.中国有色金属学报,1999,9(A01):178-183
    [31]郭志猛.SHS制备钢结硬质合金.粉末冶金技术,2001,19(2):67
    [32]邹正光,傅正义,袁润章.自蔓延高温合成TiC复合添加剂增强铁基粉末冶金材料.中国有色金属学报,2001,11(3):408-411.
    [33]吴军,王成国,孙康宁.TiC弥散强化铁基合金粉末的研究.金属热处理学报,1996,17(4):57-60
    [34]Akhtar Farid, Shiju Guo. On the processing, microstructure, mechanical and wear properties of cermet/stainless steel layer composites. Acta Materialia,2007, 55(4):1467-147
    [35]刘建永,张元好,曾大新等.反应铸渗法制备Fe-WC表面复合材料的工艺研究.热加工工艺,2005,(8):28-32
    [36]周永欣.SiC颗粒增强钢基表面复合材料的制备及冲蚀磨损性能研究:[博士学位论文].西安:西安建筑科技大学,2007
    [37]A Hidouci, J M Pelletier, F Ducion, et al. Micro-structural and mechanical characteristics of laser coationgs. Surface and Coatings Technology,2000, 123(1):17-23
    [38]Tang Jinke, Jeffrey S Zabinski, John E Bultman. TiC coatings prepared by pulsed laser deposition and magnetron sputtering. Surface and Coating Technology, 1997,91(1-2):69-73
    [39]彭如恕,王剑彬,欧阳敏玲.不同基体激光溶覆涂层组织和性能特点.表面技术,2004,11(2):58-66
    [40]Arvind Agarwal, Narendra B, Dahotre. Comparative wear in titanium diboride coatings on steel using high energy density processes. Wear,2000, 240(1-2):144-151
    [41]杨松岚,王福会,冯钟潮等.激光溶覆Fe-Ti-B复相涂层的组织研究.金属热处理,1999,42(3):20-23
    [42]Roberto Orru', Barbara Sinmoncini, Giacomo Cao, et al. Computer-aided manufacturing of centrifugal SHS coatings, Computer and Chemical Engineering,1996,20(2):1185-1190
    [43]殷声.自蔓延高温合成技术和材料.北京:冶金工业出版社,1995.122
    [44]王洪海.喷射成形法制备TiC钢结硬质合金.粉末冶金工业,1991,(3):21-27
    [45]M Jones, A J Horlock, P H Shipwayetal. Microstructure and abrasive wear behaviour of FeCr-TiC coatings deposited by HVOF spraying of SHS powders. Wear,2001,249(3-4):246-253
    [46]刘长松,刘永和,殷声.火焰喷涂合成TiC-Fe涂层的热力学分析.金属学报,2000,36(1):62-66
    [47]王忠億.热等静压工艺在钢结硬质合金中的应用.粉末冶金技术,1990,8(1):7-11
    [48]张春友.GT35钢结硬质合金大坯料的锻造.湖南冶金,1999,(4):19-22
    [49]Jayantilal M, Panchal. New HIP processes for the production of carbides wear parts. Powder Metallurgy,1997,4(2):95-114
    [50]Roger Nabb. The development of steel bonded carbides. Metal Powder Report, 1988,43(3):198-200
    [51]李沐山.八十年代世界硬质合金技术进展.株洲:《硬质合金》编辑部,1991:125-126
    [52]L prakash et al. Towards improved Performance of tool materials. Lodon:The Metal society,1982.118-121
    [53]C Gutsfeld. New steel bonded carbide. Metal Powder Report,1981,36(7):342
    [54]Rolf Oskarsson. Steel bonded carbide improve PM tool.12th International Plansee seminar'89 proceedings,1989.531-549
    [55]Bengt G, Larsson. Mechanically alloyed sintered steel with high hard Phase content. Metal Powder Report,1991,46(12):24-29
    [56]Norimasa Uchida. mechanical properties of H34A steel bonded TiCN.12th International Plansee seminar'89 proceedings,1989.541-551
    [57]New Tough. A new development of steel bonded carbide. Refractory and Hard Materials,1988,7(3):134
    [58]坂口茂也.WC增强高铬铸铁的研究.粉体与粉末冶金,1989,36(8):908-912
    [59]B Chompagene et al. Evaluation of binder Phase for hard metal system. Refractory and Hard Metals,1987,6(3):155-160
    [60]陈飞雄.热等静压烧结-连接法制取硬质合金/钢复合材料初探.粉末冶金技术,1997,15(1):38-42
    [61]Baoshuai Du, Zengda Zou, Xinhong Wang, et al. In situ synthesis of TiB2/Fe composite coating by laser cladding. Materials Letters,2008,62(4-5):689-691
    [62]M Darabara, G D Papadimitriou, L Bourithis. Tribological evaluation of Fe-B-TiB2 metal matrix composites. Surface and Coatings Technology,2007, 202(2):246-253
    [63]Animesh Anal, T K Bandyopadhyay, Karbi Das. Synthesis and characterization of TiB2 -reinforced iron-based composites. Journal of Materials Processing Technology,2006,172(1):70-76
    [64]Pagounis E, Lindroos V K. Proecssing and properties of particulate reinforced steel matrix composties. Materials Science and Engineering,1998, A246(2):221-234
    [65]WANG Jing, WANG Yi-san,DING Yi-chao. Production of (Ti,V)C reinforced Fe matrix composites. Materials Science and Engineering:A,2007,454-455: 75-79.
    [66]Akhtar Farid, GUO Shi-ju, CUI Feng-e, et al. TiB2 and TiC stainless steel matrix composites. Materials Letters,2007,61:189-191.
    [67]Farid Akhtar. Processing, microstructure, properties and wear behavior of in situ synthesized TiB2 and TiC thick films on steel substrates. Surface and Coatings Technology,2007,201:9603-9609.
    [68]Kubarsepp J, Kallast V. Stainless hardmetals and their electro-chemical corrosion resistance. Workstoffe and Korrosion,1994, (45):452-458
    [69]唐仁正.物理冶金基础.北京:冶金工业出版社,1997
    [70]国外硬质合金编写组.国外硬质合金.北京:冶金工业出版社,1976.166-172
    [71]Kattamis T Z, Suganuma T. Solidification processing and tribological behavior of particulate TiC-ferrous matrix composites. Material Science and engineering,1990,28(2):241-252
    [72]Patrik Persson, Anders E. W. Jarfors, Steven Savage. Self-propagating high-temperature synthesis and liquid-phase sintering of TiC/Fe composites. Journal of Materials Processing Technology,2002,127:131-139.
    [73]Hans Berns, Birgit Wewers. Development of an abrasion resistant steel composite with in situ TiC particles. Wear,2001,251:1386-1395.
    [74]Nabb R.Advantages of Ferro-Titanit for the metal working industry. Metal Powder Rrport,1988,43(3):198-200.
    [75]陈华辉,邢建东,李卫.耐磨材料应用手册.北京:机械工业出版社,2006
    [76]李荣久.陶瓷-金属复合材料.北京:冶金工业出版社,2004
    [77]徐波,丁厚福,郑治祥.SiC颗粒增强铁基复合材料的现状及展望.合肥工业大学学报(自然科学版),2002,25(1):19-22
    [78]熊容廷,段汉桥,严有为等.原位合成VC/Fe复合材料的微观组织及性能.现代铸铁,2004(6):16-19
    [79]蒋业华,周荣,张玉勤等.颗粒体积分数对WC/铁基表面复合材料冲蚀磨损性能的影响.铸造,2002,51(7):428-430
    [80]于波,徐林,赵芳欣等.原位(TiB2(p)+TiCp)/Fe复合材料的制备和微结构.铸造,2003,52(8):551-553
    [81]刘海峰,刘耀辉,于思荣.原位合成VC颗粒增强钢基复合材料组织及其形成机理.复合材料学报,2001,18(4):58-63
    [82]肖玉麟.美国钢结硬质合金的若干应用实例.硬质合金,1996,13(4):47-52
    [83]杨瑞林,李力军.钢结硬质合金的磨料磨损耐磨性.硬质合金,1996,13(2):73-77
    [84]Das K, Bandyopadhyay T K. Effect of form of carbon on the microstructure of in situ synthesized TiC-reinforced iron-based composite. Materials Letters,2004, 58(12-13):1877-1880
    [85]Berns H, Wewers B. Development of an abrasion resistant steel composite with in situ TiC particles. Wear,2001,251(1-12):1386-1395
    [86]Galgali R K, Ray H S, Chakrarti A K. Wear charateristics of composites TiC reinforced cast iron composites (part 1-Ashesive Wear). Mater Sci Technol, 1998,14(2):123-126
    [87]J L Ellis. Wear resistant alloy bonded carbide produced by PM. Powder Metallurgy International,1984,16(2):53-59
    [88]Roger Nabb. Advantages of Ferro-Titanium for the metal working Industry. Metal powder Report,1989,41(4):227-228
    [89]T J Robisch. Steel bonded carbides now offer harden wear resistance overlays. Modern Development in Powder Metallurgy,2001,14(2):467-483
    [90]李良福.钢结硬质合金在工业中的应用.硬质合金,2000,17(2):120-124
    [91]严有为,魏伯康,傅正义等.TiC颗粒含量及尺寸对原位TiC/Fe复合材料耐磨性的影响.金属学报,1999,19(3):193-197
    [92]Gutsfeld C, Thiimmler. Mechanically alloyed sintered steels with a high hard phase content. Metal Powder Reporter,1990,45(11):769-771
    [93]蹇福全,何高凤,于海.添加羰基铁粉提高铁基合金烧结密度的研究. 粉末冶金技术,1994,12(4):278-281
    [94]罗永弟.超细羰基铁发展、市场及应用前景.四川冶金,2001,(4):39-42
    [95]屈子梅.共热法制取羰基镍铁合金粉.粉末冶金材料科学与工程,1997,2(3):216-220
    [96]骞福全,何高风,于海.添加羰基铁粉提高铁合金烧结密度的研究.粉末冶金技术,1994,11:276-281
    [97]Jiang Wan Quan, Zhang Fu Dian, Chen Zu Yao,et al. Carbonyl iron modified with nano cobalt and its magnetorheological effect. Gongneng Cailiao/Journal of Functional Materials,2006,37(7):1163-1165
    [98]黄培云.粉末冶金原理.北京:冶金工业出版社,1997.280-282
    [99]稀土编写组.稀土(下册).北京:冶金工业出版社,1978.351-372
    [100]稀有金属应用编写组.稀有金属应用(下册).北京:冶金工业出版社,1988
    [101]李规华.稀土元素在硬质合金中的应用.硬质合金,1995,12(6):25-291974.7-10.
    [102]王连成.稀土铁基粉末热锻材料的研制应用.粉末冶金技术,1989,7(2):95-100
    [103]贺从训等.稀土在硬质合金中的应用研究.硬质合金,1994,11(3):129-133
    [104]罗重麟.稀土元素对YT5R硬质合金的使用性能与显微结构的影响.稀有金属与硬质合金,1991,(2),14-19
    [105]熊继等.添加稀土的YGR8硬质合金拉丝模研究.粉末冶金技术,1994, 12(2):118-121
    [106]柳春林.添加稀土的新型矿用硬质合金的研究.稀有金属与硬质合金,1995,(2),11-13
    [107]岳丽杰Cu-P-RE耐候钢中稀土行为作用及机理的研究:[博士学位论文].沈阳:东北大学,2006
    [108]《稀土》编写组.《稀土》(下册).北京:冶金工业出版社,1974.7-10
    [109]洪彦岩等.稀土处理球墨铸铁的热力学研究.中国稀土学报,1988,6(1):59-64
    [110]伍燕生等.Ce添加量对Fe-2.4C-17Cr-1.8Mo-l.0Cu合金性能的影响.粉末冶金技术,2000,18(3),200-203
    [111]梁英教,车荫昌.无机物热力学数据手册.沈阳:东北大学出版社1993.25-26
    [112]Bose A, German R M. Micro structural refinement of W-Ni-Fe Heavy Alloys by Alloying Additions. Metallurgical Transactions A,1988,19:3100-3103
    [113]梁工英,顾林喻.稀土对白口铸铁中碳化物形貌及冲击疲劳的影响.中国稀土学报,1993,11(4):341-344
    [114]稀土编写组.稀土(上册).北京:冶金工业出版社,1978.24-26
    [115]余宗森.稀土在钢铁中应用研究的新进展.中国稀土学报,1990,8(3):269-276
    [116]杜挺.稀土元素在铁基溶液中的热力学.钢铁研究学报,1994,6(3):6-12
    [117]稀土在钢铁中的应用编委会.稀土在钢铁中的应用.北京:冶金工业出版社,1987.251-263
    [118]崔国文.缺陷、扩散与烧结.北京:清华大学出版社,1990.15-19
    [119]王荣滨,海波.GT35曲柄热压辊锻成形模.硬质合金,1996,13(4):236-241
    [120]刘舜尧.GT35钢结硬质合金应用技术研究.稀有金属与硬质合金,2001,(145):25-29
    [121]Bolton J D, Youseffi M. Fracture toughness of sintered metal matrix composites based upon high speed steels enriched with hard ceramic carbides. Powder Metallurgy,1993,36(2):142-152
    [122]Ticalloy. Steel-bonded Titanium carbides by means of Hot Isostatic pressing. Powder Metallurgy International,1988,20(4):38-39
    [123]Pagounis E, Taluitie M,et al. Microstructure and mechanical properties of hot work tool steel matrix composites produced by hot isostatic pressing. Powder Metallurgy,1997,40(1):55-59
    [124]张永青,李翠玲.M2钢锻造裂纹产生的原因及防止措施.山西机械,1998,100(3):46-48
    [125]关佳亮,郭东明,袁哲俊.钢结硬质合金的精密镜面磨削技术的研究.中国机械工程,2000,11(3):288-289
    [126]方宁象,徐润泽.孔隙在粉末冶金铁基材料磨损中的作用.粉末冶金技术,1996,14(3):193-197
    [127]Mei Z, Yan Y W, Cui K. Effect of matrix composition on the micro structure of in situ synthesized TiC particulate reinforced iron-based composites. Materials Letters,2003,57(21):3175-3181
    [128]李恒德,肖纪美.材料表面与界面.北京:清华大学出版社,1990
    [129]Hui X D, Yang Y S, Wu X Q. Structure and stability of TiC/y interface in Fe-Cr-Ni base composites. Mater Science Technology,1999,15(2):151-154
    [130]中国农业机械化科学研究院工艺材料研究所.磨粒磨损与抗磨技术论文集.北京:中国农业机械出版社,1980.51-53
    [131]魏全金.材料电子显微分析.北京:冶金工业出版社,1990.157-161
    [132]Farid Akhtar, Shiju GUO, Peizhong FENG, et al. TiC-maraging stainless steel composite:microstructure, mechanical and wear properties. Rare Metals,2006, 25(6):630-635
    [133]S J Harris. Microstructure and abrasive wear behaviour of FeCr-TiC by PM.Materials sci and Techno,1988,4(3):232-234
    [134]Mansour Razavi, Mohammad Reza Rahimipour, Amir Hossein, et al. Effect of nanocrystalline TiC powder addition on the hardness and wear resistance of cast iron. Materials Science and Engineering A,2007, (454-455):144-14
    [135]Rosskamp H, Ostgathe M. Sintered steels with inert hard phase produced by mechanical alloying in ball milling. Powder Metallurgy,1996,39(1):37-43
    [136]Farid Akhtar, GUO Shi-ju, FENG Pei-zhong, et al. TiC-maraging stainless steel composite:microstructure, mechanical and wear properties. Rare Metals, 2006,25:630-635

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700