多重抗侧力结构体系二阶效应及串并联模型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多重抗侧力结构体系很好得利用了框架的抗剪性能和剪力墙、支撑、筒体的抗弯性能,两者通过各楼层楼板的横隔板的作用使他们变形一致,达到协同工作的状态,发生对框架有利的相互作用。
     现行的双、多重抗侧力结构体系研究中,通常将剪力墙(或支撑、筒体)等效为一个仅受弯曲的悬臂柱,不发生剪切变形;将框架等效为一个连续受剪的悬臂柱,不发生弯曲变形,即框架柱的竖向刚度无限大;连接杆件由水平刚性连接介质代替,它仅传递水平力并且使得受弯和受剪两部分变形协调。而实际工程中广泛采用的框架—剪力墙结构体系、框架—核芯筒结构体系等多种双重抗侧力体系中的剪力墙结构、筒体结构与普通实腹式构件不同,通常采用空腹式、格构式,在水平荷载作用下发生侧向变形,或在竖向荷载作用下发生整体屈曲,其自身的剪切变形所占总的变形的比例是很大的,对于某些钢桁架、支撑框架,甚至剪切变形的比例大于弯曲变形。如此看来,对这样的结构体系,传统结构理论的简化会造成一定的误差。
     本文同时考虑弯曲变形和剪切变形,将双、多重抗侧力结构体系的所有子结构等效为弯剪型结构,并在此基础上对双、多重抗侧力结构体系子结构间的相互作用、整体结构的侧移、二阶效应等进行了深入的研究,提出了一系列模型和计算方法。
     根据Timoshenko弹性稳定理论,对由子结构等效成的悬臂构件由简到繁得进行研究。提出了一系列不同荷载方式和不同截面变化模型的弯矩二阶效应系数表达式,并通过ANSYS有限元程序检验了其计算精度。这些表达式不但简化了弯矩二阶效应系数的计算,而且为后续的研究带来了便利。
     推导了等截面双重抗侧力结构在顶部集中力作用下的解析式,分析了双重抗侧力结构中子结构间相互作用原理,提出刚度放大系数的概念,并给出计算方法。并由此提出双重抗侧力结构二阶效应系数的简化计算方法。
     研究了变刚度变轴力双、多重抗侧力结构体系,提出了刚度与荷载的等效方法。对等效后的结构,采用等截面等轴力时的计算方法计算二阶效应,对比大量有限元结果,证明提出的简化计算方法对截面、荷载沿高度变化的多重抗侧力结构体系均适用。
     刚度放大系数描述了子结构间的相互支持作用。以此为基础,可考虑两个子结构具有不同的二阶效应这一因素,结合叠加原理,提出了二阶侧移的串并联模型。利用刚度与荷载的等效方法,将一阶、二阶侧移的串并联模型推广至更接近实际工程的变刚度变轴力多重抗侧力结构体系。
     基于同时考虑弯曲变形和剪切变形的多重抗侧力结构体系,二阶效应系数、侧移等一系列公式与有限元分析结构吻合较好,简单实用、适用范围更广、概念明确。
Shearing property of frames and bending property of shear walls, bracing and tube structures are fully used in multiple structures system. Connected with diaphragm of the slabs, these structures are sharing the same horizontal deformation, and the interaction between them is advantageous to the steel frame.
     The present research of dual or multiple structures usually consider shear wall (or bracing, tube structure) as a flexural type cantilever, whose shear deformation is ignored. And ignoring its flexural deformation, frame is considered as a shear type cantilever, which means the gravity stiffnesses of frame columns are infinite. The interaction is provided by rigid links between these cantilevers, and their deformations are compatible. Different from plain solid web structure, vierendeel structure and lattice structure are wildly used in shear wall and tube structure of dual structure system, such as steel frame-shear wall structure and steel frame-core structure in practical engineering. The shear deformations for vierendeel and lattice structure occupy a high proportion of total deformation, when the structure deforms laterally under horizontal load or buckles integrally under vertical load. The shear deformations are even proportionately larger than bending deformations in some steel trusses and braced frames. That means errors are bound to produced when simplification is taken in traditional theory of structure to these structures.
     Both bending and shear deformations were considered, and the substructures of dual, multiple structures were considered as flexural-shear structures in this thesis. Based on these, interaction among substructures, total horizontal deformations of the structure, second-order effect were studied intensively. A series of models and computational methods were proposed in this thesis.
     Based on Timoshenko elastic stability theory, substructures were equal to Timoshenko cantilevers considering both bending and shear deformations. From constant to varied, these equivalent cantilevers were studied, and a series of moment second-order factors formulas were proposed for models with multifarious cross-sections under multifarious loads. The accuracy of these formulas was proved to be suitable by finite element method. These proposed formulas not only simplified the calculation in moment second-order factors, but also provides convenience for follow-up researches.
     Second-order elastic analytical equations were deduced for constant cross-section dual structures under lateral and vertical loads at the top of the structure. By analyzing the interaction between the substructures of dual structure, the concept of stiffness amplification factor and its computational method are proposed. According to these, simplified method for second-order factors of dual structures is also proposed.
     By studying dual and multiple structure systems with varied cross-section stiffnesses and axial forces along the height, equivalent methods are proposed for both stffnesses and loads. With the proposed method for second-order factors under constant cross-section stiffnesses and axial forces, the second-order factors for the equivalent structures are obtained. The comparisons with finite element method show that, after equivalent, the proposed method is acceptable for multiple structure systems with varied cross-section stiffnesses and axial forces along the height.
     Based on stiffness amplification factor which describes the interaction between two substructures, the difference between two second-order factors for both substructures is considered. According to the superposition principle, the series-parallel-circuit model for second-order horizontal deformation of dual structures is proposed. With the equivalent method used in calculating second-order factor, the series-parallel-circuit models for both linear elastic and second-order horizontal deformations of dual structures can be extend to multiple structures with varied cross-section stiffnesses and axial forces, which is more close to the structures in practical engineering.
     Considering the multiple structures with both bending and shear stiffness, the results for second-order factors and horizontal deformations, obtained by the series of proposed and finite element method, have good agreements. And these formulas are simple, having wider application and clear meaning.
引文
[1]包世华,张亿果.变截面高层建筑结构考虑楼板变形时的整体稳定分析[J],土木工程学报,1992,25(4),37-46.
    [2]曹喜,郭佳民,侯永利.高层钢框架考虑P—△效应影响的侧移简化计算[J],内蒙古工业大学学报,2004,23(4),304-308.
    [3]陈红英,童根树.弯曲型支撑框架的弹性稳定分析[J],土木工程学报,2001,34(6),17-22.
    [4]陈骥.钢结构稳定理论与设计[M].北京:科学出版社,2001.
    [5]陈绍蕃.钢结构设计原理(第二版)[M].北京:科学出版社,1982.
    [6]陈绍蕃.钢结构稳定设计的新进展[J],建筑钢结构进展,2004,6(2),1-13.
    [7]高宇.双重弯剪型抗侧力体系的相互作用[D],浙江大学硕士学位论文,2006.
    [8]管克俭,王新武,彭少民.钢框架支撑体系的应用和分析方法[J],中国工程科学,2003,5(5),20-21.
    [9]胡进秀.框架—弯曲型支撑体系中框架柱弯矩放大系数及整体弹性稳定[D],浙江大学硕士学位论文,2006.
    [10]季渊,童根树,施祖元.弯曲型支撑框架结构的临界荷载与临界支撑刚度研究[J].浙江大学学报(工学版),2002,5.
    [11]季渊.多高层框架—支撑结构的弹塑性稳定性分析及其支撑研究[D],浙江大学博士学位论文,2003.
    [12]李国强,姜丽人,张晓光,等.高层建筑钢—混凝土混合结构简化分析模型[J].建筑结构,1999,16(1):26-34.
    [13]李国强,刘玉姝,赵欣.钢结构框架体系高等分析与系统可靠度设计[M],北京:建筑工业出版社,2006.
    [14]李国强,刘玉姝.钢结构框架体系整体非线性分析研究综述[J],同济大学学报,2003,31(2),138-144.
    [15]李国强,沈祖炎.钢结构框架体系弹性及弹塑性分析及计算理论[M],上海:上海科学技术出版社,1998.
    [16]李君,张耀春.超高层结构新体系—巨型结构[J],哈尔滨建筑大学学报,1997,30(6),21-27.
    [17]李开禧,肖允徽.钢压杆的柱子曲线[J],重庆建筑工程学院学报,1985,(1).
    [18]连尉安,张耀春.钢支撑及框架—中心支撑双重抗侧力体系研究现状、不足及改进[J],地震工程与工程振动,2005,25(3),67-75.
    [19]梁启智,谢理.框—剪结构的二阶分析[J],建筑结构学报,1986,7(5).
    [20]梁启智.高层建筑结构分析与设计.[M].广州:华南理工大学出版社,1992.
    [21]梁启智.高层建筑结构分析与设计[M],广州:华南理工大学出版社,1992.
    [22]刘东梅,孙香花,贾征.剪切变形对钢框架结构二阶效应的影响[J],石家庄铁道学院学报,2002,15(1),46-49.
    [23]刘开国.高层钢框架效应的简化计算[J],建筑结构学报,1991,12(5).
    [24]刘磊.框架—支撑结构体系的分类及优缺点[J],山西建筑,2007,36(33),66-67.
    [25]刘永华,张耀春.钢结构高等分析研究综述[J],哈尔滨工业大学学报,2005,37(9),1283-1290.
    [26]龙驭球,包世华.结构力学教程[M].北京:高等教育出版社,1998.
    [27]吕烈武,沈世钊,沈祖炎,胡学仁.钢结构构件稳定理论[M],北京:中国建筑工业出版社,1983.
    [28]饶芝英,童根树.多高层钢结构的分类及其稳定性计算[J].建筑结构,2002,5.
    [29]饶芝英.钢结构稳定性的新诠释[J],建筑结构,2002,32(5),12-14.
    [30]S.P.铁摩辛柯.弹性稳定理论(第二版)[M],北京:科学出版社,1982.
    [31]史密斯B.S,库尔A.高层建筑结构分析与设计[M].陈瑜,龚炳年等译.北京:地震出版社,1993,299-313.
    [32]舒赣平,孟宪德,陈绍礼.钢框架的高等分析与设计[J],建筑结构学报,2005,26(1),51-59.
    [33]孙训方,方孝淑,关来泰.材料力学(第二版)[M],北京:高等教育出版社,1995.
    [34]童根树,高宇.两个弯剪型抗侧力体系的线性相互作用[J].建筑钢结构进展,2008,10(5)
    [35]童根树,胡进秀.框架—弯曲型支撑体系的弯矩放大系数[J],建筑结构,2005.
    [36]童根树,胡进秀.弯曲型支撑-框架结构的屈曲及位移和弯矩放大系数[J].建筑钢结构进展,2007,9(1)
    [37]童根树,季渊.多高层框架-弯剪型支撑结构的稳定性研究[J].土木工程学报,2005,38(5)
    [38]童根树,金阳.框架柱计算长度系数法和二阶分析设计法的比较[J],土木工程学报,2005,38(5),28-32.
    [39]童根树,施祖元.非完全支撑的框架结构的稳定性[J],土木工程学报,1998,31(4),31-37.
    [40]童根树,施祖元.非完全支撑框架结构的稳定性[J].土木工程学报,1998,4.
    [41]童根树,翁赟.顶部带伸臂的框架—核心筒结构的稳定性和位移、弯矩放大系数[J],工程力学,2008,25(3),132-138.
    [42]童根树,翁赟.考虑剪切变形影响的框架柱弹性稳定[J],工程力学,2008,25(12),171-178.
    [43]童根树.钢结构的平面内稳定[M].北京:中国建筑工业出版社,2005.
    [44]童根树.钢结构设计方法[M].北京:中国建筑工业出版社,2007.
    [45]王磊,李家宝.结构分析的有限差分法[M],北京:人民交通出版社,1981.
    [46]王连坤,郝际平,李文岭等.钢结构高等分析理论研究综述[J],钢结构工程研究,2004,5,7-18.
    [47]王寿康,张毛心.厚度有突变的联肢剪力墙的整体稳定[J],建筑结构学报,1996,17(1).
    [48]温东辉,雷宏刚.浅谈钢结构住在的抗侧力体系[J],科学之友,2007.
    [49]翁赟.考虑剪切变形影响的框架及巨型框架稳定理论[D],浙江大学博士学位论文,2009.
    [50]武藤清.结构物动力设计[M].北京:中国建筑工业出版社,1984.
    [51]夏志斌,潘有昌.结构稳定理论[M],北京:高等教育出版社,1988.
    [52]夏志斌,姚谏.钢结构[M].杭州:浙江大学出版社,1996.
    [53]邢国然.纯框架和支撑框架弹塑性稳定分析[D],浙江大学博士学位论文,2007.
    [54]叶文洪,梁启智考虑二阶效应时框—剪结构的简化分析[J],工程力学,1999,16(1).
    [55]郑延银,董军,朱惠.高层钢结构双重抗侧力体系的二阶简化分析[J].南京建筑工程学院学报,2001(2).
    [56]郑延银.高层钢结构框架—支撑体系整体稳定与二阶分析的等效模型[J],钢结构,2000,(增刊),32-37
    [57]郑延银.高层建筑钢结构[M].北京:中国建筑工业出版社,2000.
    [58]周超.高层建筑结构体系与结构设计[J],建筑工程,2008,10,149-151.
    [59]周坚.高层建筑空间协同工作体系的二类稳定问题及二阶效应[J],建筑结构学报,1994,15(1).
    [60]Aktan A.E., Bertero V.V., Sakino K. Lateral Stiffness Characteristics of R/C Frame-Wall Structure [C], In Deflection of Concrete Structures, ACI Pub. Sp86-10.Detroit,1985.
    [61]ANSI/AISC 360-05. Specification for Structural Steel Buildings [S], American Institute of Steel Construction, INC,2005.
    [62]ANSYS非线性分析指南[M],美国AN SYS公司北京办事处.
    [63]Aristizabal-Ochoa J.D., Elastic stability of beam columns with flexural connections under various conservative ends axial forces [J], Journal of Structural Engineering, ASCE,1997,123(9),1149-1200.
    [64]Arvidsson K. Non-Uniform Shear Wall-Frame Systems with Elastic Foundations [M], Proc.Inst. Civil Engineer, London,1975,59(2),139-148.
    [65]AS4100-1990. Steel structures [S], Australian Institute of Steel Construction, Sydney,1990.
    [66]Basu A.K., Nagpal A.K., Frame-Wall Systems with Rigidly Jointed Link Beams [J], J.Struct.Div ASCE,1980, 106(5),1175-1190.
    [67]Basu A.K., Nagpal A.K., Nagar A.K., Dynamic Characteristics of Frame-Wall System [J], J.Struct.Div. ASCE, 1982,108(6),1201-1218.
    [68]Bleich F., Buckling Strength of Metal Structures [M], McGraw-Hill, New York,1952.
    [69]Cardan B., Concrete Shear Walls Combined with Rigid Frames in Multistory Buildings Subject to Lateral Loads [J], Am.Conc.Inst.,1961,58(3),299-316.
    [70]Chen W.F., Lui E.M., Structural Stability:Theory and Implementation [M], Elsevier, New York,1987.
    [71]Cheung Y.K., Kasemset C., Approximate Frequency Analysis of Shear Wall Frame Structures [J], Earthquake Engineer.And Struct.Dynam.,1978,6(2).
    [72]Chowdhary B., Nagpal A.K., Nayar K.K., Laterally Loaded Frame Wall Systems [J], Int.J.Struct.,1986,6(2), 57-70.
    [73]Clough R.W., King I.P., Wilson E.L., Structural Analysis of Multistory Buildings [J], Struct.Div.ASCE,1964, 90(3),19-34.
    [74]Cocchi, GM. (1995) "Elastic-Static Analysis of Shear Wall/Slab-Frame Systems Using the Framework Method" J. Computers & Structures,54(2),303-313.
    [75]Coull A., Hachatoorian H., Analysis of Laterally Loaded Wall-Frames Structures [J], Struct.Engineer.ASCE, 1984,100(6),1396-1399.
    [76]Deierlein GG, Proposed new provisions for frame stability using second-order analysis [C], Proceedings,2002 Annual Stability Conference SSRC,1-20.
    [77]Derecho A.T., Frames and Frame-Shear Wall System [C], In Response of Multistory Concrete Structures to Lateral Forces. ACI Publ.Sp-36.Detroit,1987.
    [78]Elias Z.M., Lateral Stiffness of Flat Plate Structures [J], J.Am.Conc.Inst.,1983,80(l),50-54.
    [79]Fraser D.J., Equivalent Frame Method for Beam-Slab Structures [J], J.Am.Conc.Inst.,1977,74(5),223-228.
    [80]Frischmann W.W., Toppler J.F., Multi-story Frames Interconnected Shear Walls Subjected to Lateral Loads [J], Cone, and Construct Engineer.London, June 1963,227-234.
    [81]GB50009-2001.建筑结构荷载规范[S],北京:中国计划出版社,2002.
    [82]GB50017-2003.钢结构设计规范[S],北京:中国计划出版社,2003.
    [83]GB50018-2002.冷弯薄壁型钢结构技术规范[S],北京:中国计划出版社,2002.
    [84]GBJ 17-88.钢结构设计规范[s],北京:中国计划出版社,1989.
    [85]Gould P.L., Interaction of Shear Wall-Frame System in Multistory Building [J], J.Am.Conc.Inst.,1965,62(1), 45-70.
    [86]Holmes M., Steel Frame with Brickwork and Concrete Infilling [J], Civil Engineer, London,1961,19,473-478.
    [87]Irwin A.W., Afshar A.B., Performance of Reinforced Concrete Frames with Various Infills Subject to Cyclic Loading [J], Civil Engineer, London,1979,69(2),509-520.
    [88]Kahn L.F., Hanson R.D., Infilled Walls for Earthquake Strengthening [J], J.Struct.Div.ASCE,1979,105(2), 283-296.
    [89]Khan, F. R. and Sbarounis, J. A. Interaction of Shear Walls and Frames. Journal of the Structural Division, ASCE, Vol.90(3),June 1964,285-335.
    [90]King GJ.W., Pandey P.C., The Analysis of Infilled Frames Using Finite Elements [J], Civil Engineer, London, 1978,65(2),749-760.
    [91]Klingner R.E., Bertero V.V., Earthquake Resistance of Infilled Frames [J], J.Struct.Div.ASCE,1978,104(6), 973-989.
    [92]Liauw T.C., Kwan K.H., Plastic Theory of Infilled Frames with Finite Interface Shear Strength [M], Proc.Inst.Civil Engineer, London,1983.
    [93]Liauw T.C., Tests on Multistory Infilled Frames Subject to Dynamic Lateral Loading [J], J.Am.Conc.Inst.,1979, 76(4),551-563.
    [94]Macleod I. A., Simplified Analysis of Shear Wall-Frame Interaction [J], Building Science,1972,7(2),121-125.
    [95]Mainstone R.J., On the Stiffness and Strength of Infilled Frames [M], Proc.Inst.Engineer, London,1971,57-90.
    [96]Majumdar S.N.G, Adams P.F., Test on Steel-Frame.Shear-Wall Structures [J], J.Struct.Div.ASCE,1971, 97(4),1097-1111.
    [97]Marie, J.N., and Bryan, S.S. (1998) "Stiffened-Story Wall-Frame Tall Building Structure" J. Computers & Structures,66(2),225-240.
    [98]Pecknold D.A., Slab Effective Width for Equivalent Frame Analysis [J], J.Am.Conc.Inst.,1975,72(4),135-137.
    [99]Rad F.N., Furlong R.W., Behavior of Unbraced Reinforced Concrete Frames [J], J.Am.Conc.Inst,1980,77(4), 269-278.
    [100]Riko Rosman. Stability and dynamics of shear-wall frame structures [J], Building Science,1974,9(1),55-63.
    [101]Rosenblueth, E. and Holtz. I. Elastic Analysis of Shear Walls in Tall Buildings[J]. ACJJ,1960,56(12)
    [102]Rutenberg A., Heidebrecht A.C., Approximate Analysis of Asymmetric Wall-Frame Structures [J], Building Science,1975,10(1),27-35.
    [103]Rutenberg A., Itai Leviathan, Moshe Decalo. Stability of Shear-Wall Structures [J], Journal of Structural Engineering,1988,114(3).
    [104]Rutengberg A. Plane Frame Analysis of Laterally Loaded Asymmetric Bulidings-An Uncoupled Solution [J], Computers and Structures,1979,10(3),553-555.
    [105]Stamato M.C., Mancini E., Three-Dimensional Interaction of Walls and Frames [J], J.Struct.Div. ASCE,1973, 99(12),2375-2390.
    [106]Stamato M.C., Stafford S.B., An Approximate Method for the Three-Dimensional Analysis of Tall Buildings [M], Civil Engineer. London,1969,361-379.
    [107]Swaddiwudhipong, S., and Lee, S.L. (1985) "Core-Frame Interaction in Tall Buildings" J. Engineering Structures,7(1),51-55
    [108]Tall L., Structural Steel Design [M], Ronald Press, New York,1964.
    [109]Timoshenko S.P., Gere J.M., Theory of elastic stability [M], Engineering Societies Monograph,2nd Ed, McGraw Hill Co. Inc, New York,1961
    [110]Vanderbilt M.D., Corley W.G, Frame Analysis of Concrete Buildings [J], Conc.Int.,1983,5(12),33-43.
    [111]Vanderbilt M.D., Equivalent Frame Analysis for Lateral Loads [J], J.Struct.Div.ASCE,1979,105(10), 1981-1998.
    [112]Wang, C.M., Ang, K..K. and Quek, S.T. (1991) "Stability formulae for shear-wall frame structures" J. Building and Environment,26(2),217-222
    [113]Weaver W., Brandow G.E., Manning T.A., Tier Buildings with Sheer Cores Bracing and Stetbacks [J], Computers and Structures,1971,2(1),57-83.
    [114]Winokur A., Gluck J., Lateral Loads in Asymmetric Multistory Structures [J], J.Srruct.Div.ASCE,1968,94(3), 645-656.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700