摇摆墙—框架结构抗震损伤机制控制及设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
强震下的损伤机制控制是保证建筑结构抗震安全的关键。本文在结构体系设计和抗震需求分析两个层次上系统地研究了摇摆墙-框架结构的抗震性能和基于损伤机制控制的抗震设计方法。主要研究工作和成果如下:
     1.基于通用有限元程序ABAQUS开发了用于纤维截面杆系单元的钢筋与混凝土单轴本构滞回模型,通过与试验数据的对比,验证了该模型在模拟钢筋混凝土杆系结构非线性地震响应方面的合理性。
     2.比较了动力弹塑性分析中常用的地震动记录选取方法,通过算例分析指出了结构在非线性响应阶段的等价周期对不同地震动记录选取方法效果的影响。建立了适用于评估不同建筑结构抗震性能的地震动记录选择集。
     3.通过研究摇摆墙-框架结构的变形模式与摇摆墙刚度之间的关系,提出了确定摇摆墙刚度需求的实用方法;通过对典型工程的计算分析指出,摇摆墙-框架结构在不同地震动作用下变形模式能够得到有效控制,结构损伤沿楼层分布比较均匀,具有优越的抗震性能。在此基础上,提出了符合我国工程抗震设防要求,适宜在我国推广应用的摇摆墙-框架结构体系。
     4.系统研究并完善了计算结构非线性地震峰值响应的等代结构法。首先,通过定性和定量地讨论结构主要参数的影响,基于大量非线性计算结果的统计分析,建立了新的能够全面反映主要参数影响的单自由度等价线性化模型。在此基础上,完善了等代结构法的计算流程和关键步骤,并通过算例分析指出,等代结构法能够比较准确的计算结构的非线性地震峰值响应,且具有适用性广,计算效率高等特点,适宜在工程抗震设计中推广应用。
     5.以等代结构法为基础,提出了基于损伤机制控制的抗震设计方法。与现行规范方法相比,该方法可定量分析结构中具有不同抗震性能目标的构件在非线性地震响应阶段的抗震能力需求,以保证预期损伤机制的实现。通过将其分别用于钢筋混凝土框架结构和摇摆墙-框架结构的抗震设计算例,验证了该方法的合理性。
The control of seismic damage mechanism is of crucial importance for the safety of building structures subjected to strong earthquakes. The research in this dissertation makes a contribution in both the system design philosophy and the seismic demand analysis by studying the seismic performance of rocking wall-frame structure and proposing a damage mechanism control-based seismic design methodology. Major achievements of the dissertation are as follows:
     1. Uniaxil hysteretic models for steel rebars and concrete are developed for fiber beam elements and implemented in a finite element software ABAQUS. Calibrated with existing experimental data, the model is proved applicable in simulating the nonlinear seismic response of reinforced concrete frame structures.
     2. Commonly-used methods of selecting earthquake ground motion records for nonlinear dynamic analysis are evaluated and compared through case studies. The influence of the equivalent period of damaged structure on the effectiveness of different selection methods is presented. Earthquake strong ground motion suites appropriate for evaluating the seismic performance of various building structures are established.
     3. The relationship between the extent of story drift concentration and the stiffness of rocking wall in a rocking wall-frame structure is studied, based on which a practical equation for determining the stiffness demand for rocking wall is proposed. The superior seismic performance of rocking wall-frame structures over moment-resisting frames is demonstrated though comprehensive analysis of a typical rocking wall-frame structure with emphasis on its well-controlled deformation pattern and more uniformly distributed damage. A simplified rocking wall-frame structure is proposed for the use in less-developed earthquake prone regions.
     4. Substitute structure analysis (SSA) as a method of predicting the nonlinear seismic peak responses of building structures is studied. As a basis, a new equivalent linear model for single-degree-of-freedom system is proposed based on comprehensive discussions, both conceptually and quantitatively, in the influence of various structural parameters on equivalent linear parameters. The procedure of substitute structure analysis is completed and errors studied. The performance of substitute structure analysis in predicting the nonlinear seismic peak responses of building structures is proved adequate for seismic design practice through several case studies. The wide applicability and high computational efficiency of SSA are demonstrated.
     5. In determining the seismic demands of building structures, a damage mechanism control-based seismic design procedure is proposed with SSA as its analysis basis. The seismic damage mechanism is expected to be under control by means of explicitly determining the required strength and deformability of structural members with different seismic performance objectives. A moment resisting frame and a rocking wall-frame structure with similar structural layouts are designed using the proposed procedure to prove its rationality.
引文
程光煜. 2007.基于能量抗震设计理论及其在钢支撑框架中的应用[博士学位论文],北京: 清华大学.
    程文瀼,曹征良,牛润生,等. 1993.钢筋砼抗震连系梁的试验研究.建筑结构学报, 14(1): 17-25.
    曹万林,董宏英,胡国振等. 2004钢筋混凝土带暗支撑双肢剪力墙抗震性能试验研究. 建筑结构学报, 25(3): 22-28.
    曹征良,洪翔. 2004.带自控连梁的双肢剪力墙振动台试验研究.建筑结构学报, 25(3): 51-57.
    胡聿贤. 2006.地震工程学(第2版).北京:地震出版社.
    刘伯权,白绍良,徐云中等. 1998.钢筋混凝土柱低周疲劳性能的试验研究.地震工程与工程振动, 18(4): 82-89.
    陆新征,叶列平,缪志伟等. 2009.建筑抗震弹塑性分析——原理、模型与在ABAQUS,MSC.MARC和SAP2000上的实践.北京:中国建筑工业出版社.
    缪志伟. 2009.钢筋混凝土框架剪力墙结构基于能量抗震设计方法研究[博士学位论文], 北京:清华大学.
    钱稼茹,徐福江. 2007a.钢筋混凝土梁基于位移的变形能力设计方法.四川建筑科学研究, 33(2): 1-3.
    钱稼茹,徐福江. 2007b.钢筋混凝土柱基于位移的变形能力设计方法.建筑结构, 37(12): 30-32.
    清华大学抗震抗爆工程研究室. 1981.科学研究报告集(3):钢筋混凝土结构的抗震性能. 北京:清华大学出版社.
    曲哲,叶列平. 2009.基于有效累积滞回耗能的钢筋混凝土构件承载力退化模型.工程力学,已录用
    日本建筑学会. 2006.隔震结构设计.北京:地震出版社
    王国周,瞿履谦. 1993.钢结构原理与设计.北京:清华大学出版社
    谢礼立,翟长海. 2003.最不利设计地震动研究.地震学报, 25(3): 250-261.
    杨溥,李英民,赖明. 2000.结构时程分析法输入地震动记录的选择控制指标.土木工程学报33(6): 33-37.
    叶列平. 2004.体系能力设计法与基于性态/位移抗震设计.建筑结构, 34(6): 10-14.
    叶列平,马千里,缪志伟. 2009a.抗震分析用地震动强度指标的研究.地震工程与工程振动29(4): 9-22.
    叶列平,陆新征,赵世春,等. 2009b.框架结构抗地震倒塌能力的研究.建筑结构学报, 30(6): 67-76.
    叶列平,陆新征,马千里,等. 2009c.屈服后刚度对建筑结构地震响应影响的研究.建筑结
    构学报, 2009, 30(2): 17-29.
    翟长海,谢礼立. 2002.估计和比较地震动潜在破坏势的综合评述.地震工程与工程振动22(5): 1-7.
    翟长海,谢礼立. 2005.抗震结构最不利设计地震动研究.土木工程学报, 38(12): 51-58.
    中国工程建设标准化协会标准. 2004. CECS 160:2004.建筑工程抗震性态设计通则(试用). 北京:中国计划出版社.
    中华人民共和国建设部. 2001. GB50011-2001.建筑抗震设计规范.北京:中国建筑工业出版社.
    中华人民共和国建设部. 2002. GB50010-2002.混凝土结构设计规范(2008版).北京:中国建筑工业出版社.
    太田俊也,溜正俊,鴇田隆,等. 2005平成16年(2004年)新潟県中越地震における小千谷市内の免震建物の挙動:その1~3.日本建築学会大会学術講演梗概集. B-2: 653-658.
    坂田弘安,中井敏文,杉山智昭,等. 2008. PC坮着関節工法を用いた士形架構の力学的挙動に関する研究.日本建築学会構造系論文集, 73(624): 307-315.
    岩田衛,黄一華,川合広樹,等. 1995.被害レベル制御構造「Damage Tolerant Structure」に関する研究.日本建築学会技術報告集, 1995(1): 82-87.
    壁谷澤寿一,壁谷澤寿海,松森泰造,等. 2008.実大3層鉄筋コンクリート建物の振動実験.日本建築学会構造系論文集, 73(632): 1833-40.
    林康裕. 2003.直接基礱構造物の基礱浮上りによる地震被害低減効果.日本建築学会構造系論文集, 485: 53-62.
    齋藤裕一郎,吹田啓一郎,松岡祐一,等. 2008.実大4層建物完全崩壊実験における弾塑性加振結果.日本建築学会大会学術講演梗概集, 835-836.
    島田侑子,吹田啓一郎,松岡祐一,等. 2008.実大4層建物完全崩壊実験における崩壊加振結果.日本建築学会大会学術講演梗概集, 839-840.
    柴田明德. 1975.等価線形系による非線形地震応答の解析に関する一考察.東北大学建築学報, 16: 27-39.
    吹田啓一郎,松岡祐一,山田哲,等. 2008.実大4層建物完全崩壊実験の概要.日本建築学会大会学術講演梗概集, 833-834.
    日本建築学会. 1997.鉄筋コンクリート造建物の靱性保证型耐震設計指針(案)·同解説. 東京:日本建築学会.
    山田哲,吹田啓一郎,松岡祐一,等. 2008.実大4層建物完全崩壊実験における弾性加振結果,日本建築学会大会学术讲演梗概集, 837-838.
    ACI. 2005. ACI 318M-05. Building code requirements for structural concrete and commentary. Farmington Hills, Michigan, US: American Concrete Institute.
    Ajrab J J, Gokhan P, Mander J B. 2004. Rocking wall-frame structures with supplemental tendon systems. Journal of Structural Engineering, ASCE 130(6): 895-903.
    Akiyama H. 1985. Earthquake-resistant limit-state design for buildings. Tokyo: University of Tokyo Press.
    Ang B G, Priestley M J N, Park R. 1981. Ductility of reinforced concrete bridge piers under seismic loading. Research Report 81-3, Department of Civil Engineering, University of Canterbury.
    ASCE. 2005. ASCE/SEI 7-05. Minimum design loads for buildings and other structures. Reston, Virginir, US: American Society of Civil Engineers.
    ATC. 1996. ATC-40. Seismic evaluation and retrofit of concrete buildings. Applied Technology Council. Redwood City, California, US.
    ATC. 2008. ATC-63. Quantification of Building Seismic Performance Factors. Applied Technology Council. Redwood City, California, US.
    Bazzurro P, Cornell C A. 1999. Disaggregation of Seismic Hazard. Bulletin of the Seismological Society of America 89(2): 501-20.
    Bentz E C. 2000. Sectional analysis of reinforced concrete members [D]. University of Toronto, Toronto, Canada.
    Bertalanffy v L. 1973. General system theory: Foundations, development, applications (revised edition). New York: George Braziller, Inc.
    Biot M A. 1942. Analytical and experimental methods in engineering seismology. American Society of Civil Engineers - Proceedings, 68(1): 49~69.
    Bonacci J F. 1994. Design forces for drift and damage control: A second look at the substitute structure approach. Earthquake Spectra, 10(2): 319-331.
    Bondy K D. 1996. A more rational approach to capacity design of seismic moment frame columns. Earthquake Spectra 12(3): 395-406.
    BCJ. 2004. The building standard law of Japan. The Building Center of Japan.Translated by Sansei International Inc. 4th ed. Tokyo.
    Chopra A K, Goel R K. 2002. A modal pushover analysis procedure for estimating seismic demands for buildings. Earthquake Engineering & Structural Dynamics, 31(3): 561-582.
    Chopra A K, Goel R K. 2003. Evaluation of NSP to estimate seismic deformation: SDF systems. Journal of Structural Engineering, ASCE, 126(4): 482-490.
    Chopra A K, Goel R K. 2004. A modal pushover analysis procedure to estimate seismic demands for unsymmetric-plan buildings. Earthquake Engineering & Structural Dynamics, 33(8): 903-927.
    Chung Y S, Meyer C, Masanobu S. 1989. Modeling of concrete damage. ACI Structural Journal, 86(3): 259-271.
    Clough, Ray W. 1966. Effect of stiffness degradation on earthquake ductility requirements. SESM 66-16. Berkeley: Department of Civil Engineering, University of California, Berkeley.
    Constantinou M, Whittaker A S, Velivasakis E. 2000. Seismic evaluation and retrofit of the Ataturk international airport terminal building; MCEER Research Progress and Accomplishment 2000-2001, Buffalo, NY, USA.
    Deierlein G G, Ma X, Eatherton M, et al. 2009. Collaborative research on development of inoovative steel braced frame systems with controlled rocking and replaceable fuses. Proc. 6th International Conference on Urban Earthquake Engineering, Tokyo, Japan: 413-416
    Deierlein G G, Ma X, Hajjar J, et al. 2010. Seismic resilience of self-centering steel braced frames with replaceable energy-dissipating fuses - part II: e-defense shake table test. Proc. 7th International Conference on Urban Earthquake Engineering (7CUEE) & 5th International Conference on Earthquake Engineering (5ICEE) [CD], Tokyo, Japan.
    Dooley K L, Bracci J M. 2001. Seismic evaluation of column-to-beam strength ratios in reinforced concrete frames. ACI Structural Journal, 98(6): 843-851.
    Earthquake Engineering Research Institute (EERI). 2010a. Observations on building damage from Francisco Medina [DB/OL]. [2010-03-20]. http://www.eqclearinghouse.org/20100227-chile/general-information/observations-on-building-damage-from-francisco-medina/.
    Earthquake Engineering Research Institute (EERI). 2010b. Observations from Jack Moehle, 3/12/2010 [DB/OL]. [2010-03-20]. http://www.eqclearinghouse.org/20100227-chile/general-information/observations-from-jack-moehle-3122010
    Eatherton M R, Hajjar J F, Deierlein G G, et al. 2008. Controlled rocking of steel-framed buildings with replaceable energy-dissipating fuses. Proc. 14th World Conference on Earthquake Engineering [CD], Bejing, China.
    Fajfar P. 1999. Capacity spectrum method based on inelastic demand spectra. Earthquake Engineering & Structural Dynamics, 28(9): 979-993.
    FEMA. 1997. FEMA 273. NEHRP Guidelines for the seismic rehabilitation of buildings. Federal Emergency Management Agency, Washington, D.C., US.
    FEAM. 2000a. FEMA 355D. State of the Art report on connection performance. Federal Emergency Management Agency, Washington, D.C., US.
    FEMA. 2000b. FEMA 356. Prestandard and commentary for the seismic rehabilitation of buildings. Federal Emergency Management Agency, Washington, D.C., US.
    FEMA. 2005. FEMA 440. Improvement of nonlinear static seismic analysis procedures. Federal Emergency Management Agency, Washington, D.C., US.
    Fintel M. 1995. Performance of buildings with shear walls in earthquakes of the last thirty years. PCI Journal, 40(3): 62-80.
    Freeman S A. 1978. Prediction of response of concrete buildings to severe earthquake motion. ACI Special Publication, SP-55: 589~605.
    Ghee A B, Priestley M J N, Park R. 1981. Ductility of reinforced concrete bridge piers under seismic loading. Report 81-3, Department of Civil Engineering, University of Canterbury, Christchurch, New Zealand.
    Gates N C. 1977. The earthquake response of deteriorating systems[D], the California Institute of Technology, Pasadena, California, U.S.
    Gulkan P, Sozen M A. 1974. Inelastic response of reinforced concrete structures to earthquake motions. ACI Journal, 71(12): 601-609.
    Gulkan P, Sozen M A. 1999. Procedure for determining seismic vulnerability of building structure. ACI Structural Journal, 96(3): 336-342.
    Gunay M S, Sucuoglu H. 2009. Predicting the seismic response of capacity-designed structures by equivalent linearization. Journal of Earthquake Engineering, 13(5): 623-649.
    Gunay, M S, Sucuoglu H. 2010. An improvement to linear-elastic procedures for seismic performance assessment. Earthquake Engineering & Structural Dynamics. doi: 10.1002/eqe.980.
    Hadjian A H. 1982. Re-evaluation of equivalent linear models for simple yielding systems. Earthquake Engineering & Structural Dynamics, 10(6): 759-767.
    Harada Y, Akiyama H. 1998. Seismic design of flexible-stiff mixed frame with energy concentration. Engineering Structures, 20(12): 1039-44.
    Hasselman T K. 1976. Modal coupling in lightly damped structures. AIAA Journal, 14(11): 1627-1628.
    Hernandez-Montes E, Aschleim M. 2003. Estimates of the yield curvature for design of reinforced concrete columns. Magazine of Concrete Research, 55(4): 373-83.
    Hognestad E. 1952. Inelastic behavior in tests of eccentrically loaded short reinforced concrete columns. ACI Journal, 49(10): 117-139.
    Housner G W, Martel R R, Alford A L. 1953. Spectrum analysis of strong-motion earthquakes. Bulletin of Seismological Society of America, 43(2): 97~119.
    Huckelbridge A A. 1977. Earthquake simulation tests of a nine story steel frame with columns allowed to uplift. Earthquake Engineering Research Center.
    Ibarra L F, Krawinkler H. 2005. Global collapse of frame structures under seismic excitations. PEER Report 2005/06. Berkeley: Pacific Earthquake Engineering Research Center.
    ICC. 2006. International Building Code (IBC 2006). International Code Council, Inc., Country Club Hills, Illinois, US.
    ICBO. 1994. Uniform Building Code (UBC 1994), International Conference of Building Officials, Los Angeles, US.
    Iwan W D, Gates N C. 1979. Estimating earthquake response of simple hysteretic structures. Journal of Engineering Mechanics Division, ASCE, 105(EM3): 391-405.
    Iwan W D. 1980. Estimating Inelastic response spectra from elastic spectra. Earthquake Engineering and Structural Dynamics, 8(4): 375-388.
    Jacobsen L S. 1930. Steady forced vibrations as influenced by damping. ASME Transactions, 52: 169–181.
    Jennings P. 1968. Equivalent damping for yielding structures. Journal of Engineering Mechanics, ASCE, 94(EM1): 103-116.
    Ji X D, Kata M; Wang T, et al. 2009. Effect of gravity columns on mitigation of drift concentration for braced frames. Journal of Constructional Steel Research, doi:10.1016/j.jcsr. 2009.07.003.
    Kawashima K, Koyama T. 1988. Effect of number of loading cycles on dynamic characteristics of reinforced concrete bridge pier columns. Structural Engineering and Earthquake Engineering, JSCE, 5(1): 183-191.
    Kawashima K, Koyama T. 1988. Effects of cyclic loading hysteresis on dynamic behavior of reinforced concrete bridge piers. Structural Engineering and Earthquake Engineering, JSCE, 5(2): 343-350.
    Kowalsky M J. 1994. Displacement-based design - a methodology for seismic design applied to RC bridge columns[D]. University of California at San Diego, La Jolla.
    Kowalsky M J. 2002. A displacement-based approach for the seismic design of continuous concrete bridges. Earthquake Engineering & Structural Dynamics, 31: 719-747.
    Krawinkler H, Seneviratna G D P K. 1998. Pros and cons of a pushover analysis of seismic performance evaluation. Engineering Structures, 20(4-6): 452-464.
    Kurama Y C, Sause R, Pessiki S, Lu L. 1999. Lateral load behavior and seismic design of unbonded post-tensioned precast concrete walls. ACI Structural Journal, 96(4): 622-633.
    Kurama Y C. 2000. Seismic design of unbonded post-tensioned precast concrete walls with supplemental viscous damping. ACI Structural Journal, 97(4): 648-658.
    Kurama Y C, Sause R, Pessiki S, Lu L. 2002. Seismic response evaluation of unbonded post-tensioned precast walls. ACI Structural Journal, 99(5): 641-651.
    Kwan W P, Billington S L. 2003. Influence of hysteretic behavior on equivalent period and damping of structural systems. Journal of Structural Engineering, 129(5): 576-585.
    Lai S S, Will G T, Otani S. 1984. Model for inelastic biaxial bending of concrete members.Journal of Structural Engineering, ASCE, 110(11): 2563-2584.
    Li L, Mander J B, Dhakal R P. 2008. Bidirectional cyclic loading experiment on a 3D beam-column joint designed for damage avoidance. Journal of Structural Engineering, ASCE 134(11): 1733-1742.
    Lin Y Y, Chang K C. 2003. A study on damping reduction factor for buildings under earthquake ground motions. Journal of Structural Engineering, ASCE, 129(2):206–214.
    Lu X L, Zhou Y, Yan F. 2008. Shaking table test and numerical analysis of RC frames with viscous wall dampers. Journal of Structural Engineering, ASCE, 134(1): 64-76.
    MacRae G A, Kimura Y, Roeder C. 2004. Effect of column stiffness on braced frame seismic behavior. Journal of Structural Engineering, ASCE, 130(3): 381-391.
    Mahin S A, Bertero V V. 1975. Nonlinear seismic response of a coupled wall system. Proc. ASCE National Convention.
    Marriott D S, Pampanin D B, Palermo A. 2008. Dynamic testing of precast, post-tensioned rocking wall systems with alternative dissipating solutions. Bulletin of The New Zealand Society for Earthquake Engineering, 41(2): 90-103.
    McKenna F. 1997. Object oriented finite element programming: frameworks for analysis, algorithms and parallel computing[D], University of California, Berkeley, California, U.S.
    Midorikawa M, Tatsuya A, Tadashi I, et al. 2002. Earthquake response reduction of buildings by rocking structural systems. Proc. SPIE-The Internation Society for Optical Engineering [CD].
    Midorikawa M, Tatsuya A, Tadashi I, et al. 2003 Shaking table tests on earthquake response reduction effects of rocking structural systems. Proc. SPIE-The Internation Society for Optical Engineering [CD].
    Midorikawa M, Tatsuya A, Tadashi I, et al. 2007 Shaking table tests on seismic response of steel braced frames with column uplifts. Earthquake Engineering & Structural Dynamics 35(14): 1767-1785.
    Midorikawa M, Tatsuya A, Tadashi I, et al. 2010 Seismic Behavior of Steel Rocking Frames By Three-Dimensional Shaking Table Tests. Proc. the 7th International Conference on Urban Earthquake Engineering (7CUEE) & 5th International Conference on Earthquake Engineering (5ICEE) [CD], Tokyo, Japan.
    Miranda E, Ruiz-Garcia J. 2002. Evaluation of approximate methods to estimate maximum inelastic displacement demands. Earthquake Engineering & Structural Dynamics, 31(3): 539-560.
    Mork K J. 1991. Response analysis of reinforced concrete structures under seismic excitation. Earthquake Engineering & Structural Dynamics, 23(1): 33-48.
    Newmark N M, Rosenblueth E. 1971. Fundamentals of earthquake engineering. EnglewoodCliffs: Prentice-Hall
    Panagiotakos T B, Fardis M N. 2001. Deformations of reinforcemed concrete members at yielding and ultimate. ACI Structural Journal 98(2): 135-148.
    Panian L, Steyer M, Tipping S. 2007. An innovative approach to earthquake safety and concrete construction in buildings. Journal of the Post-Tensioning Institute 5(1): 7-16.
    Paulay T. 1980. Deterministic design procedures for ductile frames in seismic areas. ACI publication, SP-63: 357-81.
    Paulay T. 1983. Deterministic seismic design procedures for reinforced concrete buildings. Engineering Structures, 5(1): 79-86.
    Paulay T, Priestley M J N. 1992. Seismic design of reinforced concrete and masonry buildings. New York: John Wiley & Sons, Inc.
    Pacific Earthquake Engineering Research Center (PEER). 2004. PEER structural performance database [DB/OL]. [2006-02-22]. http://nisee.berkeley.edu/spd/.
    Pacific Earthquake Engineering Research Center (PEER). 2005. PEER NGA database [DB/OL]. [2006-09-22]. http://peer.berkeley.edu/nga/.
    Priestley M J N. 1998. Displacement-based approaches to rational limit states design of new structures. Proc. 11th European Conference on Earthquake Engineering, Paris, P. Bisch, P. Labbe and A. Pecker, eds., Balkema, Rotterdam: 317-335.
    Priestley M J N. 2000. Direct displacement-based seismic design of concrete buildings. Bulletin of the New Zealand National Society for Earthquake Engineering, 33(4):421~444.
    Rahnama M, Krawinkler H. 1993. Effect of soft soils and hysteresis models on seismic design spectra. John A. Blume Earthquake Engineering Research Center Report No. 108, Department of Civil Engineering, Stanford University.
    Remmetter M E, Fei, Q, Shahrooz B M. 1992. Seismic resistance of composite coupled structural walls. Cincinnati, Ohio: Cincinnati Infrastructure Institute.
    Rojas P, Ricles J M, Sause R. 2005. Seismic performance of post-tensioned steel moment resisting frames with friction devices. Journal of Structural Engineering, ASCE, 131(4): 529-530.
    Roufaiel M S L, Meyer C. 1987. Analytical modeling of hysteretic behavior of R/C frames. Journal of Structural Engineering, 113(3): 429-444.
    Roesset J M, Whitman R V, Ricardo D. 1973. Modal analysis for structural with foundation interaction. ASCE Journal of the structural division, 99(ST3): 399-416.
    Rosenblueth E, Herrera I. 1964. On a kind of hysteretic damping, Journal of Engineering Mechanics Division, ASCE, 90:37-48.
    Rutenberg A, Jennings P C, Housner G W. 1980. The response of Veterans hospital building 41in the San Fernando earthquake. Pasadena, CA: Earthquake Engineering Research Laboratory.
    Saito T. 2006. Observed response of seismically isolated buildings. Chapter 4 in Response Control and Seismic Isolation of Buildings. Higashino, M. and Okamoto, S. eds., Taylor & Francis.
    SEAOC. 1999. Recommended lateral force requirements and commentary, 7th Ed. Structural Engineers Association of California, San Francisco, U.S.
    Shibata A. 1975. Equivalent linear models to determine maximum inelastic response of nonlinear structures for earthquake motions. Proc. 4th Japan Earthquake Engineering Symposium.
    Shibata A, Sozen M A. 1976. Substitute-structure method for seismic design in R/C structures. Journal of Structural Division, ASCE 102(1): 1-18.
    SNZ. 2004a. Structural Design Actions (NZS 1170.5). Standards New Zealand, Wellington, New Zealand.
    SNZ. 2004b. Concrete structures standard (NZS 3101.1). Standards New Zealand, Wellington, New Zealand.
    Soesianawati M T, Park R, Priestley M J N. 1986. Limited ductility design of reinforced concrete columns. Report 86-10, Department of Civil Engineering, University of Canterbury, Christchurch, New Zealand.
    Stevenson M, Panian L, Korolyk M, et al. 2008. Post-tensioned concrete walls and frames for seismic-resistance - a case study of the David Brower Center. Proc. the SEAOC Annual Convention, Hawaii, US.
    Sucuoglu H, Erberik A. 2004. Energy-based hysteresis and damage models for deteriorating systems. Earthquake Engineering & Structural Dynamics, 33(1): 69-88.
    Tagawa H. 2005. Towards an understanding of seismic response of 3D structures - stability & reliability [D]. Washington: University of Washington.
    Takeda T, Sozen M A, Nielson N N. 1970. Reinforced concrete response to simulated earthquakes. Journal of Structural Division, ASCE, 96(12): 2557-2573.
    Takemura H, Kawashima K. 1997. Effect of loading hysteresis on ductility capacity of reinforced concrete bridge pier. Journal of Structural Engineering, Japan, 43A: 849-858.
    Tanaka H, Park R. 1990. Effect of lateral confining reinforcement on the ductile behavior of reinforced concrete columns. Report 90-2, Department of Civil Engineering, University of Canterbury, Christchurch, New Zealand.
    Thomson W T, Calkins T, Caravani P. 1974. A numerical study of damping. Earthquake Engineering & Structural Dynamics, 3(1): 97-103.
    Trifunac M D, Brady A G. 1975. A study on the duration of strong earthquake ground motion. Bulletin of Seismological Society of America, 65(3): 581-626.
    Wada A, Connor J J, Kawai H, et al. 1992. Damage tolerant structure. Proc the 5th U.S.-Japan Workshop on the Improvement of Building Structural Design and Construction Practice.
    Wada A, Qu Z, Ito H, et al. 2009. Seismic retrofit using rocking walls and steel dampers. Proc. ATC/SEI Conference on Improving The Seismic Performance of Existing Buildings and Other Structures, San Francisco, CA, U.S.
    Warburton G B, Soni S R. 1977. Errors in response calculations for non-classically damped structures. Earthquake Engineering & Structural Dynamics, 5(4): 365-376.
    Watson S. 1989. Design of reinforced concrete frames of limited ductility. Report 89-4, Department of Civil Engineering, University of Canterbury, Christchurch, New Zealand.
    Youssef M, Ghobarah A. Strength deterioration due to bond slip and concrete crushing in modeling of reinforced concrete members. ACI Structural Journal, 96(6): 956-968.
    Villaverde R. 1991. Explanation for the numerous upper floor collapses during the 1985 Mexico City earthquake. Earthquake Engineering & Structural Dynamics, 20(3): 223-241.
    Villaverde R. 1997. Discussion of "A more rational approach to capacity design of seismic moment frame columns" By K. Dirk Bondy. Earthquake Spectra, 13(2): 321-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700