基于环境激励下预应力混凝土桥梁模态参数识别与损伤诊断
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于环境激励的结构动力检测方法是桥梁结构健康检测的重要手段。基于不同环境激励下模态参数识别方法在实际工程应用的可行性、有效性、适用性以及稳定性的研究较少。同时环境激励难以激发结构的高阶模态,而现有损伤诊断方法利用低阶模态对结构进行有效损伤诊断的能力不足。
     针对上述问题,本文主要研究基于不同环境激励的桥梁结构模态参数识别方法和基于低阶模态的结构损伤诊断方法。首先系统研究了基于环境激励的功率谱峰值法、随机减量技术、ITD方法、自然激励技术(NExT)、特征系统实现算法(ERA)等五种模态参数识别方法。在利用简单结构进行数值模拟分析验证方法可行性的基础上,提出利用随机减量技术结合ITD方法、自然激励技术结合特征系统实现算法形成两种时域联合算法对混凝土结构进行模态参数识别,并分别给出了方法的操作流程。然后通过分别模拟车载激励、风载激励、地震激励,并建立桥梁结构的有限元模型,对模型进行了数值仿真模拟,研究了各种方法基于不同环境激励下对桥梁结构进行模态参数识别的有效性、适用性、稳定性,同时指出了各种方法的不足。最后针对现有损伤诊断方法存在的不足,探讨仅利用低阶模态且适合环境激励下桥梁结构的损伤诊断方法,提出了改进的模态应变能方法,通过建立混凝土简支梁三维实体模型进行有限元数值仿真模拟,验证了方法的有效性和可行性。为桥梁结构健康监测技术的发展和应用提供理论依据,具有重要的理论意义和工程实用价值。
Along with the traffic increasing, the vehicle loads increasing, as well as the extension of service life, make the bridge traffic capacity, carrying capacity and other functional defects in the growing, the surface and internal defects of bridge structure inevitable exist. With the rapid development of China's bridge construction it is important how to determine the health status for a larger number of old bridges by certain detection means. With computer technology and the theory of bridge design rapid development, making the bridge health monitoring, damage diagnosis of engineering science and technology at home and abroad has gradually become a research hotspot. For the bridge structure the dynamic detection method is practical. Dynamic detection method is based on structural dynamic response. Modal parameters changes in the damage that occurred before and after is used to damage diagnosis. Modal parameter identification and reasonably accurate way to diagnose the damage detection method is the core technology of dynamic detection.
     For the bridge structure, using the dynamic detection effective external excitation is difficult to impose. Although there are some mechanical, electromagnetic excitation equipment and jumping off the tram, impact and other incentives, but there is the high cost of equipment bulky and a waste of manpower and material resources shortcomings, and the bridge must be closed to interrupt traffic when the test is carried out as to large economic losses are resulted in. To solve these problems, modal parameter identification techniques based on ambient random excitation have emerged. The technology use traffic loads, wind loads, earthquake and other natural excitations as a system input dynamic response obtained by the dynamic testing of structural modal parameters of information identification. This technology is a simple, easy, economical, fast way because it does not affects the structure of normal use, no damage to the structure and greatly reduces the cost of test.
     Judging from the current modal parameter identification and damage diagnosis of the status quo, although the study on modal parameter identification techniques based on ambient random excitation is more, but most study focused on basic theory research method itself and the analysis is carried through the use of homogeneous material cantilever and simple beam model as the authentication method. Under different ambient excitation there is few studies on feasibility and effectiveness and stability of the existing method in practical engineering application. At the same time higher-order modals of the structure are difficult to excite by using of ambient excitations, while the existing damage detection methods often require structural higher modals in order to effectively damage diagnosis.
     In this context, the study on modal parameter identification method of the bridge under different ambient excitation and based on the lower-order modes of structural damage diagnosis are performed in this paper. Around these objectives, the thesis from the theoretical analysis, methods, implementation, and numerical simulation is systematic studied. The main work of this paper is as follows:
     In chapter 1 the existing method of modal parameter identification and damage diagnostic methods are systematically reviewed and summarized especially for modal parameter identification method and damage diagnosis methods of civil engineering structures under ambient excitations. The comprehensive exposition about the theoretical background, the existing results, engineering applications as well as the main problems exist is made.
     In chapter 2 one of frequency domain identification methods-the power spectrum peak method based ambient excitation is studied regarding its basic theory, the traditional distinction between frequency-domain methods and application of background. An operational process of Power spectral peak method is given. Through the use of white noise as an input the numerical simulations of a concrete Simply-Supported Beam is carried out to verify the effectiveness of peak power spectral method which is based on ambient vibration modal parameter identification.
     In chapter 3 time-domain modal parameter identification method based on ambient excitation is discussed in detail. First the random decrement technique, ITD method, including the natural excitation technology (NExT), eigensystem realization algorithm (ERA) the basic theory of four kinds of time-domain method which are fitted for modal parameter identification under ambient excitation are discussed; then based on four methods the respective characteristics, the programs are proposed that random decrement technique combine ITD methods and NExT combined ERA to became two kinds of time-domain joint algorithm for structural modal parameter identification. An operational process of two kinds of time-domain joint algorithm is given, through the use of white noise as an input the numerical simulations of a concrete continuous beam is carried out to verify the effectiveness and feasibility of two kinds of time-domain joint algorithm.
     In chapter 4 a Pre-stressed concrete continuous beam bridge modal parameter identification of the finite element numerical simulation analysis is performed. In the process of numerical simulation power spectrum peak method and the NExT/ERA joint time-domain algorithm is used to further study on the practical application ability under ambient excitation by simulating traffic load.
     In chapter 5 a Pre-stressed concrete continuous beam bridge modal parameter identification of the finite element numerical simulation analysis is performed. In the process of numerical simulation random decrement technique/ITD and NExT/ERA is used to further study on the practical application ability under ambient excitation by simulating wind load. In particular, NExT/ERA joint time-domain algorithm are more in-depth discussed based on the aforementioned study.
     In chapter 6 further study on stability and applicability of the NExT/ERA Joint time-domain algorithm in different ambient excitations is carried out. A Pre-stressed concrete continuous beam bridge modal parameter identification of the finite element numerical simulation analysis is performed to in-depth study the effectiveness and feasibility of the NExT/ERA joint time-domain algorithm under seismic excitation. Under the common ambient excitation the stability and applicability and parameter identification capabilities of NExT/ERA Joint time-domain algorithm are validated.
     It is a great problem that because ambient excitation is difficult to stimulate higher-order mode of structure effective diagnosis can not be performed. In chapter 7 through improvement of the existing modal strain energy indicators, using only low-order modes for the bridge structure, damage diagnostic methods based on ambient excitation is discussed. Through the establishment of concrete simple beam model of three-dimensional solid finite element numerical simulation is performed to verified effectiveness and feasibility of the method.
     Basing on the work of the former Chapter 7, the major work done are summarized by this article in chapter 8, and reached the following conclusions:
     1. Through the concrete beams numerical example and numerical simulation by Pre-stressed concrete continuous beam bridge under traffic load effectiveness and feasibility of the peak power spectral method based on ambient excitation to identify concrete structure modal parameter is proved.
     2. Using power spectral peak parameter identification method to identify high-order modal error is relatively large; damping ratio of the recognition results error is big, the results can not be credible; Less able to resist noise interference, so poor practice, appropriate methods of signal processing must be taken .Otherwise, recognition accuracy will be significantly affected; phenomenon of modal loss may appear.
     3. Structural natural frequency and lower-order model identified by the power spectrum peak has high accuracy. The method is simple, quick, practical. In practical engineering application, other identification methods can be used as a supplement and confirmed.
     4. Through the concrete beams numerical example and numerical simulation by Pre-stressed concrete continuous beam bridge under wind load effectiveness and feasibility of random decrement technique/ITD based on ambient excitation to identify concrete structure modal parameter is proved.
     5. Though random decrement technique / ITD method is based on the white noise excitation, but through the simulation results can be seen that this method identifying the natural frequencies and mode shapes are a better accuracy, damping ratio identification is no good. The results fully show that the method can be practical engineering application.
     6. Through the concrete beams numerical example and numerical simulation by Pre-stressed concrete continuous beam bridge under three kings of common ambient excitation effectiveness and feasibility of NExT/ERA based on ambient excitation to identify concrete structure modal parameter is proved.
     7. NExT/ERA joint algorithm has strong anti-noise ability. No signal processing, the method has outstanding practicality.
     8. The fact under different ambient excitation identification results of NExT/ERA joint algorithm were more accurate demonstrate a strong ability to adapt and the stability of identification. NExT/ERA joint algorithm is an advanced modal parameter identification methods, and fully meet the needs of engineering practice.
     9. This paper studies have shown that the appropriate method depends on the specific use, and in engineering practice should be used several ways to work together to complement each other, cross-checked to ensure reliable results.
     10. The improved the modal strain energy damage diagnosis method improve the original method can only be a simple locate or identify the extent of damage defects. Through numerical simulation by the establishment of concrete simple beam three-dimensional solid model, only with less lower-order modes can be well identified concrete beam structure location and extent of the damage, the method shows identify high precision, And fully reflects the validity and reliability of the method.
     11. The method initially solves the problem that effective damage diagnosis is difficult due to ambient excitation is difficult to stimulate of higher-order mode of the structure, avoiding the different damage location identification and damage assessment of the extent used in the structural dynamic testing methods. The method is simple, without a large number of terms, has a certain practical engineering application value.
     Current study on dynamic detection method of bridge structure is still at an exploratory stage, and there are still many more issues about modal parameter identification and damage diagnosis that must be resolved and further explored. In this paper, modal parameter identification and damage diagnosis based on ambient excitation for the bridge structure is studied systematically effective means and methods are put forward. Theoretical basis for the bridge structure health monitoring technology are provided. The study has important theoretical significance and practical engineering value.
引文
[1]周奎,王琦,刘卫东,张简.土木工程结构健康检测的研究进展综述[J].工业建筑,2009,39(3):96-102.
    [2] Yu Fan-hua, Liu Han-bing. Structural damage identification by support vector machine and particle swarm algorithm [J]. Journal of Jilin University (Engineering and Technology Edition).2008, 38(2):0434-0438.
    [3] Yu Fan-hua, Liu Han-bing, Tan Guo-jin. Application of neural network ensemble for structural damage detection [J]. Journal of Jilin University (Engineering and Technology Edition), 2007, 37(2):0438-0441.
    [4] A. Alvandia, C. Cremona. Assessment of vibration-based damage identification techniques [J].Journal of Sound and Vibration, 2006, (292):179-202.
    [5] Jong Jae Lee, Chung Bang Yun. Damage diagnosis of steel girder bridges using ambient vibration data [J].Engineering Structures, 2006, (28):912-925.
    [6] Housner G W, etal.Structural Control: Past, Present and Future [J].Journal of Engineering Mechanics.ASCE, 1997, 123(9):897-971.
    [7] Farrar CR, Jauregui DA. Comparative study of damage identification algorithms applied to a Bridge. I: experiment [J]. Smart Materials and Structures 1998:7(5): 704–719.
    [8] Farrar CR, Jauregui DA. Comparative study of damage identification algorithms applied to a Bridge. II: numerical study. Smart Materials and Structures, 1998: 7(5): 720–731.
    [9] Darryll Pines, A Emin Aktan. Status of structural health monitoring of long-span bridges in the United States [J]. Prog. Struct. Engng Mater. 2002, 4:372-380.
    [10]秦权.桥梁结构的健康监测[J].中国公路学报.2000, 13(2): 37-42.
    [11]李宏男,高东伟,伊廷华.土木工程结构健康监测系统的研究状况与进展[J].力学进展.2008,38(2):151-166.
    [12]张连振,黄侨,郑一峰,王宗林.桥梁结构损伤识别理论的研究进展[J].哈尔滨工业大学学报.2005,37(10):1415-1418.
    [13] Zong Z F, Wang T L, Huang D Z, Zheng Z F. State-of-the-art report of Bridge Health Monitoring[J]. Journal of Fuzhou University (Natural Science). 2002, 30(2):127—152.
    [14]韩大建,谢俊.大跨度桥梁健康监测技术的近期研究进展[J].桥梁建设.2002,(6):69-73.
    [15] Abdel-Ghaffar, et al. Ambient vibration studies of the Golden Gate Bridge: I [J].Journal of Engineering Mechanics (ASCE), 1985, 4:463-482.
    [16] C R Farrar, G H James. System identification from ambient vibration measurements on a bridge [J].Journal of Sound and Vibration, 1997, 205(1):1-18.
    [17] Wei-Xin Ren,et al..Ambient vibration-based seismic evaluation of a continuous girder bridge [J].Engineering Structures.2004, 26:631-640.
    [18] LMS International. The LMS Theory and Background Book, Leuven [E]. Belgium: LMS International, 2006.
    [19] Akaile H.Power Spectrum Estimation though Autogressive Model Fitting[J].Annals of the Institute of Statistical Mathematics,21,1969,407.
    [20]廖庆斌等.基于随机激励的某机匣模态实验与分析[J].航空动力学报.2005, 20(6):932-936.
    [21]淡丹辉,孙利民.在线监测环境下土木结构的模态识别研究[J].地震工程与工程振动.2004,24(3):82-88.
    [22] Y.Zhang, Z.Zhang, X.Xu, H.Hua. Modal parameter identification using response data only .Journal of Sound and Vibration, 2005,282, 282:367-380.
    [23] Guid De Roeck,et a1.Benchmark Study on system Identifications through Ambient Vibration Measurements[C].18thIMAC.2000, l106-1112.
    [24]宗周红等.西宁北川河钢管混凝土拱桥的理论和实验模态分析[J].铁道学报.2003, 25(4):89-96.
    [25]宗周红等.大跨度预应力混凝土连续刚构桥的动力特性分析[J].地震工程与工程振动.2004, 24(3):98-107.
    [26]陈宜言,许有胜,宗周红.九跨预应力混凝土连续梁桥的环境振动试验与模态分析[J].福州大学学报(自然科学版).2005, 33(6):782-785.
    [27]陈长松等.大跨度混凝土斜拉桥模态试验技术研究[J].土木工程学报.2005,38(10):72-75.
    [28]谢献忠等.环境激励下湘潭莲城大桥模态参数识别研究[J].湖南科技大学学报(自然科学版).2008, 23(4):53-56.
    [29] Rune Brincker, et a1.Modal Identification from Ambient Responses Using Frequency Domain Decomposition[C].18thIMAC, 2000:625—630.
    [30]李火坤,练继建.高拱坝泄流激励下基于频域法的工作模态参数识别[J].振动与冲击.2008, 27(7):149-153.
    [31]张坤,段忠东,刘洋.连续刚构桥动力特性参数识别与有限元模型修正[J].公路交通科技.2008, 25(9):67-72.
    [32]曹树谦,张文德,萧龙翔.振动结构模态分析:理论、实验与应用[M].天津:天津大学出版社,2001.
    [33]顾培英,邓昌,吴福生.结构模态分析及其损伤识别[M].南京:东南大学出版社,2008.
    [34] Ibrahim S R.Efficient Random Decrement Computation for Identification of Ambient Responses[C].Proceeding of 19 IMAC,Florida,USA.February5-8, 2001:1-6.
    [35]黄方林等,随机减量法在斜拉桥拉索模态参数识别中的应用[J].机械强度. 2002 ,24 (3) :331~334.
    [36]王学敏,黄方林,刘建军.大型桥梁模态参数识别的一种方法[J].工程力学.2007, 24(2):110-114.
    [37]徐良,过静君.用GPS和随机减量技术对悬索桥实时监测[J].清华大学学报(自然科学版).2002,42(6):822-824
    [38]高敏,刘剑锋,张启伟.超高索塔自立状态下环境振动试验与分析[J].结构工程师.2008, 24(3):129-134.
    [39]练继健,张建伟,王海军.基于泄流响应的导墙损伤诊断研究[J].水力发电学报.2008.27(1):96-101.
    [40] James G H, Carne T G, Lauffer J P. The natural excitation technique for modal parameter extraction from operating wind turbines [R]. No. SAND92-1666, UC-261, Sandia National Laboratories, Sandia, 1993.
    [41] James G H.Extraction of Modal Parameter from an Operating HAWT using the Natural Excitation Technique(NExT)[C].13 ASME Wind Energy Symposium, New Orleans,1994.
    [42] Hermans L, Vender H, Auweraer.Modal Testing and analysis of Structures under Operational Conditions: Industrial Applications [J].Mechanical Systems and Signal processing 1999, 13(2):193-216.
    [43] Yang He Zhen, et al. Experimental modal analysis of offshore platform under operational conditions [J].Journal of Vibration and Shock, 2005, 24(2): 129-133.
    [44]纪晓东,钱稼如,徐龙河.模拟环境激励下结构模态参数识别试验研究[J].清华大学学报(自然科学版). 2006, 46(6): 769-772.
    [45]王刚,姚谦峰.环境激励下框架结构体系的模态识别方法研究[J].工业建筑.2004, 34(12):45-47.
    [46] Caicedo Juan M. Dyke Shirley J. Implementation of a SHM method on a numerical model of a cable-stayed bridge[C]. Proceedings of the American Control Conference, v 5, Proceedings of the 2004 American Control Conference (AAC), 2004:4213-4218.
    [47] Heo Gwanghee, et al. An analysis of the characteristics of SPG bridges using NExT and ERA for real-time monitoring [J]. Advances in Nondestructive Evaluation.2004, v 270-273, n III: 2012-2017.
    [48] J N Juang and R S Pappa. Effects of Noise on Modal Parameters Identified by the Eigensystem Realization Algorithm [J]. Journal of Guidance, Control, and Dynamics. 1986, 9(3):294-303.
    [49] J N Juang and R S Pappa. An Eigensystem Realization Algorithm (ERA) for Modal Parameter Identification and Model Reduction [J]. Journal of Guidance, Control, and Dynamics. 1985, 8(5): 620-627.
    [50] B L Ho,R. E. Kalman. Effective Construction of Linear State Variable Models from Input/Output Data[J].Proceedings of the 3rd Annual Allerton Conference on Circuit and System Theory. 1965, 449-459.
    [51] Dionysius M, Siringoringo, Yozo Fujino. System identification of suspension bridge from ambient vibration response [J]. Engineering Structures.2008, 30(2): 462-477.
    [52]李蕾红,陆秋海,任革学.特征系统实现算法的识别特性研究及算法的推广[J].工程力学.2002, 19(1):109-114.
    [53]杨和振,李华军,王国兴.海洋平台结构模态参数识别的仿真研究[J].海洋工程.2003, 21(4):75-80.
    [54] Wang Shu-Qing, Li, Hua-Jun, Takayama T. Modal identification of offshore platforms using statistical method based on ERA [J]. China Ocean Engineering.2005, 19(2): 175-184.
    [55]陆秋海等.结构应变模态辨识的特征系统实现算法[J].机械强度.2004, 26(1):001-005.
    [56]韩建平,王飞行,李慧.基于振动台试验的模态参数识别算法比较研究[J].华中科技大学学报(城市科学版).2008, 25(3):57-60.
    [57] Sun Z,Chang C C. Covariance-driven wavelet technique for structural damage assessment[J] .Smart Structures and Systems, 2006,2, 2 (2) :127—140.
    [58] B F Yana, A Miyamotoa, E Bruhwiler. Wavelet transform-based modal parameter identification considering uncertainty [J].Journal of Sound and Vibration, 2006, 291 (1-2):285-301.
    [59] Sun Z, Min Z H. Structural modal parameter estimation based on wavelet transform and singular value decomposition[C] .The Second International Conference on Structural Condition Assessment, Monitoring and Improvement. Changsha: Science Press, 2007, 11: 1474-1481.
    [60] Huang N E, Shen Zheng, Long S R, et al. The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis [J]. Proc R Soc Lond A, 1998, 454:903-995.
    [61] Huang N E, Shen Zheng, Long S R. A new view of nonlinear water waves: the Hilbert spectrum [J]. Annual Review of Fluid Mechanics, 1999, 31:417-457.
    [62] S W Doebling, et al. A summary review of vibration-based damage identification methods [J].The Shock and Vibration Digest, 1998, 30(2):91-105.
    [63] R Ghanem, G Ferro. Health monitoring for strongly non-linear systems using the ensemble kalman filter [J]. Structural Control and Health Monitoring.2006, 13:245-259.
    [64] Feng Gao, Yong Lu.A Kalman-filter based time-domain analysis for structural damage diagnosis with noisy signals [J]. Journal of Sound and Vibration.2006, 297: 916–930.
    [65]张立涛等.基于加速度时域信息的结构损伤识别方法的研究[J].振动与冲击.2007, 26(9):138-141.
    [66]杨和振,李华军.互谱能量法在激励力未知条件下对结构的诊伤研究[J].振动与冲击.2006, 25(6):112-116.
    [67] Samman M M.Vibration testing for nondestructive evaluation of bridges [J].Journal of Structural Engineering, 1994, 120(1):269-300.
    [68] S-E Fang, R Perera Power mode shapes for early damage detection in linear structures [J]. Journal of Sound and Vibration (2009), doi:10.1016/j.jsv.2009.02.002
    [69]郭健,孙炳楠.多尺度结构动力方程及其在损伤识别中的应用[J].浙江大学学报(工学版).2006, 40(4):654-657.
    [70]廖锦翔,袁明武.结构裂缝群的小波方法识别和数值模拟[J].华南理工大学学报(自然科学版).2005, 33(2):75-78.
    [71] Salawu O S. Detection of structural damage through changes in frenquency: a review [J]. Engineering Structures. 1997, 19(9):718-723.
    [72] Stubbs N, Broome T H, Osegueda R. Nondestructive Construction Error Detection in Large Space Structures [J]. AIAA Journal.1990, 28(1):146-152.
    [73] Hearn G, Testa R B. Modal analysis for damage detection in structures [J]. Journal of Structural Engineering.1991, 138(2):233-243.
    [74] Kim-Ho Ip, Ping-Cheung Tse. Locating damage in circular cylindrical composite shells based on frequency sensitivities and mode shapes [J]. European Journal of Mechanics A/ Solids, 2002, 21:615-628.
    [75] Jeong-Tae Kim, Yeon-Sun Ryu, Hyun-Man Cho, Norris Stubbs. Damage identification in beam-type structures: frequency-based method vs. modeshape- based method [J], Engineering Structures, 2003, 25:57-67.
    [76] Fox C HJ. The Location of Defects in Structures: A Comparison of the Use of Natural Frequency and Mode Shape Data[C]. Proceedings of the 10th International Modal Analysis Conference. 1992, 522-528.
    [77]耿浩,王睿,高芳清.模态变化对钢桁梁模型桥的损伤检测研究[J].桥梁建设,1998 ,(2) :67-70.
    [78] West W M. Illustration of the Use of Modal Assurance Criterion to Detect Structural Changes in an Orbiter Test Specimen[C]. in Proc.Air Force Conference on Aircraft Structural Integrity ,1984 ,1-6.
    [79] Kim J H ,Jeon H S ,Lee C W. Application of the Modal Assurance Criteria for Detecting and Locating Structural Faults[C] .Proceedings10th International Modal Analysis Conference. 1992, 536-540.
    [80] Ko J M, Wong C W, Lam H F. Damage Detection in Steel Framed Structures by Vibration Measurement Approach[C]. Proceedings of 12th International Modal Analysis Conference. 1994, 280-286.
    [81] Salawu O S, Williams C. Bridge Assessment Using Forced Vibration Testing [J]. Journal of Structural Engineering .ASCE 1995 , 121(2) :161—173.
    [82] Wang M L, Heo G, Satpathi D. Dynamic characterization of a long span bridge: a finite element based approach [J]. Soil Dynamics and Earthquake Engineering.1997, 16:503-512.
    [83] Pandey M B, Samman M. Damage Detection from Changes in Curvature Mode Shapes [J].Journal of Sound and Vibration. 1991, 145(2):321-332.
    [84] Wahab M A, Roeck G D.Damage Detection in Bridges Using Modal Curvatures:Application to a Real Damage Scenario [J].Journal of Sound and Vibration. 1999, 226(2):217-235.
    [85]邓焱,严普强.梁及桥梁应变模态与损伤测量的新方法[J].清华大学学报(自然科学版),2000,40(11):123-127.
    [86]常军.曲率模态识别桁架结构的损伤位置方法研究[J].昆明理工大学学报(理工版).2005, 30(6):85-87.
    [87] Pandey A K, Biswas M. Damage Detection in Structures Using Changes in Flexibility [J]. Journal of Sound and Vibration. 1994, 169(1):3-17.
    [88] Pandey A K, Biswas M. Damage Diagnosis of Truss Structures by Estimation of Flexibility Change [J]. Modal Analysis-the International Journal of Analytical and Experimental Modal Analysis, 1995, 10(2):104-117.
    [89] Toksoy T, Aktan A E. Bridge condition Assessment by Modal Flexibility [J]. Experimental Mechanics. 1994, 34:271-278.
    [90] Bernal D. Load Vectors for Damage Localization [J]. ASCE Journal of Engineering Mechanics.2002 ,128(1) :7-14
    [91] Bernal D, Gunes B. Damage localization in output-only systems: A flexibility based approach[C]. IMAC-XX, Los Angeles, California, 2002:1185-1191.
    [92] Yong GAO, Manuel E, Ruiz-Sandoval, Spencer B F, Jr. Flexibility-Based Damage Localization Employing Ambient Vibration [C]. 15th ASCE Engineering Mechanics Conference, Columbia University, New York, NY. 2002, 6:1-8.
    [93]荆龙江,项贻强.基于柔度矩阵法的大跨度斜拉桥主梁的损伤识别[J].浙江大学学报(工学版).2008,42(1):164-169.
    [94]曹晖,张新亮,李英民.利用模态柔度曲率差识别框架的损伤[J].振动与冲击.2007, 26(6):116-124.
    [95]宗周红,D Z Huang,T L Wang.钢-混凝土组合桥损伤诊断[J].土木工程学报.2004, 37(5):59-64.
    [96] Stubbs N, Kim J T, Farrar C R. Field Verification of a Nondestructive Damage Localization and Sensitivity Estimator Algorithm [C]. Proceedings of the 13th International Modal Analysis Conference.1995, 210-218.
    [97] Cornwell P J, Doebling S W, Farrar C R. Application of the Strain Energy Damage Detection Method to Plate-Like Structures [J]. Journal of Sound and Vibration, 1999,224(2):359-374.
    [98]史治宇,吕令毅.由模态应变能诊断结构破损的实验研究[J].东南大学学报.1999 ,29(2)134-138.
    [99]袁明,贺国京.基于模态应变能的结构损伤检测方法研究[J].铁道学报.2002 ,24(2):92—94.
    [100]袁明,贺国京.大跨度桥梁损伤诊断研究[J].铁道工程学报.2003, (4):81-85.
    [101]范立础等.悬索桥结构基于敏感性分析的动力模型修正[J].土木工程学报.2000, 33(1):9-14.
    [102]张启伟.基于环境振动测量值的悬索桥结构动力模型修正[J].振动工程学报.2002, 15(1):74-78.
    [103]丁幼亮等,润扬大桥斜拉桥结构安全评估的有限元建模与修正[J].东南大学学报(自然科学版),2006,36(1):92-96.
    [104]丁幼亮等,大跨桥梁结构损伤诊断与安全评估的多尺度有限元模拟研究[J].地震工程与工程振动.2006, 26(2):66-72.
    [105]田仲初等.佛山东平大桥静动力分层次有限元模型修正研究[J].振动与冲击.2007, 26(6):162-165.
    [106]王兆辉,樊可清,李霆.系统辨识在桥梁状态监测中的应用[J].中南公路公程.2006, 31(3):159-163.
    [107]禹丹江.土木工程结构模态参数识别-理论、实现与应用[D].2006,福州大学土木工程学院.
    [108]淳庆,邱洪义.基于环境激励下钢桁梁桥的模态识别[J].特种结构.2005,22(2):62-65.
    [109]应怀樵,刘进明,沈松.半功率带宽法与INV阻尼计法求阻尼比的研究[J].噪声与振动控制.2006, (2):4-6.
    [110]李中付等.基于环境激励的工作模态参数识别[J].上海交通大学学报.2001, 35(8):1167-1171.
    [111]谭冬梅等.振动模态的参数识别综述[J].华中科技大学学报,2002,19(3):73-78.
    [112] James G H, Carne T G, Lauffer J P. The natural excitation technique (NExT) for modal parameter extraction from operating structures [J]. International Journal of Analytical and Experimental Modal Analysis, 1995, 10(4): 260-277.
    [113]续秀忠等.基于环境激励的模态参数识别方法综述[J].振动与冲击.2002,21(3):1-5.
    [114]徐增丙等.基于互相关技术与小波分析的模态参数识别[J].华中科技大学学报.2008,36(5):67-70.
    [115]杨和振,李华军.海洋平台结构环境激励的实验模态分析[J].振动与冲击,2005,24(2):129-133.
    [116]姜浩,郭学东.环境激励下桥梁结构模态参数识别方法的研究[J].振动与冲击.2008,27(11):126-128.
    [117]练继建,李火坤,张建伟.基于奇异熵定阶降噪的水工结构振动模态ERA识别方法[J].中国科学E辑:技术科学.2008,38(9):1398-1413.
    [118]俞云书.结构模态试验分析[M].北京:宇航出版社,2007.
    [119]钟万勰等.大跨度桥梁分析方法的一些进展[J].大连理工大学学报.2000,40(2):127-135.
    [120]侯立群,欧进萍.基于时频分析的运营桥梁模态参数识别方法[J].振动工程学报.2009, 22(1):19-25.
    [121]项海帆,林志兴.公路桥梁抗风设计指南[M].北京:人民交通出版社,1996.
    [122]曹映泓,项海帆,周颖.大跨度桥梁颤振和抖振统一时程分析[J].土木工程学报.2000,33(5):57-62.
    [123]曹映泓,项海帆,周颖.大跨度桥梁随机风场的模拟[J].土木工程学报.1998, 31(3):72-78.
    [124]李元齐,董石麟.大跨度空间结构风荷载模拟技术研究及程序编制[J].空间结构,2001;17(3).
    [125] E Simiu, R H Scanlan.Wind effects on structures: an introduction to wind engineering [M].New York; John Wiley, 1986.
    [126]王之宏.风荷载的模拟研究[J].建筑结构学报. 1994, 15(1):44-52.
    [127]赵建飞,谢步瀛.大跨度桥梁风荷载模拟及程序编制[J].结构工程师. 2006, 22(2):42-44.
    [128]胡雪莲,李正良,晏致涛.大跨度桥梁结构风荷载模拟研究[J].重庆建筑大学学报.2005, 27(3): 63-67.
    [129]史志利,李忠献.随机地震动场多点激励下大跨度桥梁地震反应分析方法[J].地震工程与工程振动.2003,23(4):124-130.
    [130]李英民,赖明,白绍良.工程结构的地震动输入问题[J].工程力学.2003(s):76-87.
    [131]陈兴冲,严松宏,高峰.青藏铁路多年冻土区桥墩随机地震反应分析[J].世界地震工程.2006, 22(1):79-83.
    [132] Housner GW.Characteristic of strong motion earthquake [J].Bull Seism Soc Am, 1947, 37:17-31.
    [133]徐赵东,马乐为.结构动力学[M].北京:科学出版社,2007.
    [134]郝文化.ANSYS土木工程应用实例[M].北京:中国水利水电出版社,2005.
    [135]王树清,王长青,李华军.基于模态应变能的海洋平台结构的损伤定位的试验研究[J].振动、测试与诊断.2006, 26(4):282-287.
    [136] Huajun Li, Hezhen Yang, S.-L. James Hu. Modal Strain Energy Decomposition Method for Damage Localization in 3D Frame Structures [J]. ASCE 2006, 132(9): 941-951.
    [137]李华军,方辉, S L James Hu.工程结构损伤定位方法的研究[J].中国海洋大学学报.2005, 35(4):641-648.
    [138] Sau-Lon James Hu, Shuqing Wang, Huajun Li.Cross-Modal Strain Energy Method for Estimating Damage Severity [J]. ASCE 2006, 132(4): 429-437.
    [139]姜浩,郭学东,杨焕龙.预应力混凝土桥梁模态参数识别方法的研究[J].沈阳建筑大学学报.2009, 25(5):914-919.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700