半刚性基层沥青混凝土路面反射裂缝扩展和疲劳寿命研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半刚性基层沥青混凝土路面是我国高等级公路的主要结构形式,但该路面结构在运营早期容易因裂缝而出现各种病害,其中反射裂缝是半刚性基层沥青面层最主要的早期破坏形式之一。如何有效地控制其产生、发展和降低对路面结构疲劳寿命的影响至今仍是道路工程界面临的一大难题。采用传统的连续介质力学和疲劳强度理论难以真实描述裂缝问题的本质。本文利用改进的Williams级数、等参元和广义参数有限元法提出并建立了半刚性基层路面荷载型反射裂缝应力强度因子分析的广义参数Williams单元。将求解总体控制方程所得广义参数引入传统的疲劳断裂寿命预测中,计算路面结构反射裂缝扩展的疲劳寿命。因半刚性基层路面结构疲劳寿命与诸多因素有关,包括裂纹几何形状、扩展方向、扩展规律、材料自身特性、构件的几何形状、环境条件和载荷历程等,这些因素通常表现出一定的随机性,所以疲劳寿命也应是一随机量。基于此,本文开展了半刚性基层路面反射裂缝扩展的疲劳寿命随机分析,进而利用蒙特卡洛抽样计算路面结构的可靠度。主要研究工作如下:
     第一部分:研究建立半刚性基层沥青混凝土路面结构弹性层状平面应变分析模型,并对该模型做了合理的假定和简化。根据反射裂缝的开裂模式引出线弹性断裂力学在路面结构中的一些基本理论和概念,并在线弹性断裂范围内利用Westergaard应力函数法给出了三种断裂模式下的应力场和位移场表达式,由此引出应力强度因子的概念。因反射裂缝多以Ⅰ-Ⅱ混合型裂缝形式出现,文中推导了更具灵活性的平面裂纹Williams级数特征展开。
     第二部分:结合该模型,将其离散为裂尖奇异区和外围常规区,奇异区内部分别采用网格细分的普通有限单元和奇异单元处理。文中详细介绍了等参元和奇异元的一些基本概念以及构造原理等,并推导了二者的形函数,编制了相应的计算机程序。算例分析可知二者具有一个共同的缺陷:计算工作量大且不能直接确定裂尖应力强度因子,而需通过线性外推获得,此过程复杂,容易引入人为误差。
     第三部分:针对当前大多数研究人员需借助有限元分析软件,或者利用普通有限元法获得反射裂缝裂尖处应力强度因子存在的这一些缺陷,本文提出并建立了广义参数Williams单元分析半刚性基层路面荷载型反射裂缝裂尖应力强度因子。其单元模型中含有与应力强度因子相关的参数,可以直接确定裂尖处应力强度因子,有效避免了普通有限元后处理计算应力强度因子的缺陷。对Williams单元构造原理研究发现:该单元位移场不再用单元结点参数表示,而转换为用总体场Williams级数中待定参数表示,因此奇异区内单元离散个数多少对总体自由度数并无影响,只取决于选取的Williams级数项数,由此细分奇异区离散网格并不增加总体自由度,从而提高了计算效率。并且只需已知奇异区与常规区分界线上结点坐标信息即可根据等比级数求和的方法形成奇异区内Williams单元刚度方程,格式简单,易于编程实现。
     第四部分:将本文方法与传统的疲劳寿命预测理论和公式相结合,研究建立基于广义参数计算反射裂缝扩展的疲劳寿命的预测模型,避免了传统方法需根据结构响应量,先拟合确定应力强度因子再分析疲劳寿命的两步走思想。详细分析了面层模量和厚度与疲劳寿命之间的关系,据此给出了增大面层厚度或减小面层模量以提高路面疲劳寿命的工程措施。由于模量降低路面将会伴随产生一些新的早期破坏,因此选用降低模量提高路面疲劳寿命的方式尚需慎重对待。
     第五部分:将传统的Paris疲劳寿命预测公式改进为形式更为灵活的级数表达形式,并引入广义参数计算路面结构的疲劳寿命,其形式简单易被工程人员接受。算例中考虑了单变量的随机性,利用蒙特卡洛抽样模拟技术计算了路面结构从起裂扩展至贯通整个面层的疲劳寿命,并根据疲劳寿命和设计寿命建立了半刚性基层路面可靠度分析模型,进一步计算了路面结构可靠指标。
The asphalt concrete pavement on semi-rigid base course is the main form of high-grade road in China, but various kinds of damages will happen to it for crack in their early service. Reflective cracking is one of major forms of early destruction in asphalt overlay on semi-rigid base. So how to effectively control its initiation, propagation and reduce its influence on fatigue life in pavement structures still remains a huge problem in road engineering. Traditional continuum mechanics and fatigue strength theory are difficulty to describe the essence of the cracking performance. On the basis of the improved Williams series, isoperimetric element and the method of finite element with generalized degrees of freedom (GDOFs), Williams element with GDOFs was proposed for analyzing stress intensity factor (SIF) of reflective cracking under surface loading. The generalized parameters which were from the solution of govern equation were introduced into the model of prediction the fatigue life, and determined the fatigue life for the reflective cracking propagation on pavement structure. As fatigue life is affected by many factors, such as crack geometry, extending direction, expanding law, materials, structure geometry, environment conditions and loading procession. These factors usually have some randomness, so fatigue life is also a random variable. For these reasons, the study will focus on predicting random fatigue life caused by reflective cracking propagation on semi-rigid base course, and using Monte Carlo Simulation Method (MCS) to value the reliability of the pavement structure. Main works are as follows:
     Part I:the layered linear elastic plane strain fracture mechanics analysis model was constructed for semi-rigid pavement structure, and some reasonable assumptions and simplifications were made. By using the reflective cracking fracture modes, they led to some basic theory and concepts within the linear elastic fracture mechanics. Based on Westergaard stress function, study gave the stress and displacement field expression of three basic modes cracking, and then raised the conception of SIR Since reflective cracking usually acted as mixed mode I-II, this thesis deduced the more flexible Williams series characteristic expansion of plane crack.
     Part II:the analysis model was discretized the singular region and regular region. And the singular region was disposed by employing the refined mesh of traditional finite element method and quarter-node singular element, respectively. Basic concepts and construction principles of isoperimetric element and quarter-node singular element were introduced in detail, and then their shape functions were derived. The two have a same defect from the examples:they cannot directly obtain SIF, but need use linear extrapolation method to acquire it. The process was very complex and large amount of calculation.
     Part III:it was focused on the defect that researchers mostly use finite element method analysis software or the traditional finite element method to predict the SIF at crack tip, this study presented the Williams element with GDOFs for SIF of the pavement on semi-rigid base course. In this element model which has a parameter that is related to SIF, so that we can directly determine the SIF at crack tip, and effectively avoid the defects of the traditional finite element method. From the construction principles of Williams element, we found that this kind element no longer treated node parameters as unknown quantities but denoted as undetermined parameter in Williams series. So the number of elements of singular region had no effect on total degrees of freedom, it was only determined by how many number of terms the Williams series have. With these virtues, the Williams element greatly reduced the discrete degrees of freedom and increased the calculation efficiency. We just need know coordinate information of boundary nodes in singular region and region regular, then according to geometric series summation, we can form Williams element stiffness matrix in singular region easily.
     Part IV:combining the Williams element with GDOFs and the traditional theory and formula for predicting fatigue life, the analysis model of fatigue life for reflective cracking propagation was constructed by the generalized parameters. It will avoid the two-step thinking that determined the SIF by the structural response, and soon the fatigue life was analyzed by the SIF. The relationship between surface modulus and layer thickness was analyzed in detail. The results show that when increasing surface layer thickness or decreasing surface modulus can improve the fatigue life, but modulus reduce will bring in some new pavement damage in their service. So the suggestion that was from decreasing surface modulus just for the aim of improving the fatigue life need deep consideration for choosing.
     Part Ⅴ:Paris formula from traditional fatigue life prediction was turned into a revised flexible series form, and then introducing generalized parameter to predict the fatigue life of pavement structure, this format is simple and can easily be accepted by the engineering staff. In examples, we took into account the randomness of single variable, and the fatigue life was calculated by Monte Carlo simulation method from the crack extension through the entire surface. The reliability analysis model was established by the fatigue life and design life. Moreover, the reliability index was obtained for pavement structure.
引文
[1]沙庆林.高速公路沥青路面早期破坏现象及预防[M].北京:人民交通出版社,2001.
    [2]交通运输部综合规划司.2010年公路水路交通运输行业发展统计公报,2011.(http://www.mot.gov.cn)
    [3]交通运输部.交通运输“十二五”发展规划,2011.
    [4]中国交通技术网.2010年底我国机动车保有量已达1.99亿辆.2011(http://www.tranbbs.com)
    [5]刘忠根,韩继承,孙广利.沥青路面结构的发展及展望[J].中外公路,2009,29(3):72-78.
    [6]沙庆林.高等级公路半刚性基层沥青路面[M].人民交通出版社,1998.
    [7]沙庆林.中国路面技术的发展和现状[J].国外公路,1998,18(2):1-8.
    [8]黄勇,田瑞芳.国内外高级沥青路面结构简述及对策探讨[J].公路交通科技(应用技术版),2008,41(5):57-61.
    [9]沈金安.国外沥青路面设计方法总汇[M].人民交通出版社,2004.
    [10]毛成.沥青路面裂纹形成机理及扩展行为研究[D].西南交通大学,2004.
    [11]张起森.半刚性基层沥青面层断裂应力分析及反射裂缝研究综述[J].国外公路,1987,(6):40-46.
    [12]周志刚.交通荷载下沥青类路面疲劳损伤开裂研究[D].中南大学,2003.
    [13]Majidzadeh K., Kauffmann E. M., Ramsamooj D. V. Application of fracture mechanics in the analysis of pavement fatigue [J]. Journal of the Association of Asphalt paving Technologists,1971, 40:227-246.
    [14]Majidzadeh K., Kauffmann E., Saraf C. Analysis of fatigue of paving mixtures from the fracture mechanics viewpoint [J]. Fatigue of Compacted Bituminous Aggregate Mixtures, ASTM STP,1972, (508):67-83.
    [15]周富杰,孙立军.反射裂缝的力学分析模型[J].上海公路,1996,(4):11-22+30.
    [16]Boussinesq J. Application des Potentials a I'Etude de l'Equilibre et du Mouvement des Solides Elastiques Gauthier Villars [M]. Paris.1885.
    [17]Terazawa K. On the elastic equilibrium of a semi-infinite solid under given boundary conditions, with some applications [J]. Journal of the College of sclence, Imperial University,Tokyo,1916,37(7): 1-64.
    [18]Love A. E. H. The stress produced in a semi-infinite solid by pressure on part of the boundary [J]. Philosophical Transactions of the Royal Society of London Series A, Containing Papers of a Mathematical or Physical Character,1929,228(659-669):377-420.
    [19]Burmister D. M. Theory of stresses and displacements in layered systems and application to the design of air-port runways [C],1943.
    [20]Burmister D. The general theory of stresses and displacements in layered systems. [J]. Journal of Applied Physics,1945,16(2):89-94.
    [21]王金昌.广义荷载作用下道路与软基共同作用研究[D].浙江大学,2003.
    [22]王凯.N层弹性连续体系在圆形均布垂直荷载作用下的力学计算[J].土木工程学报,1982,15(2):65-76.
    [23]郭大智,钟阳.刚性承载板下弹性多层连续体应力和位移分析[J].哈尔滨建筑大学学报,1995,28(2):17-22.
    [24]李朝阳,郭忠印.弹性四层体系显式化公式的研究[J].华东公路,1996,(2):47-50.
    [25]黄仰贤.路面分析与设计[M].北京:人民交通出版社.1998.
    [26]Coetzee N. F., Monismith C. L. Analytical study of minimization of reflection cracking in asphalt concrete overlays by use of a rubber-asphalt interlayer [J]. Transportation Research Record,1979, (700):100-108.
    [27]Chen N. J., DiVito J. A., Morris G. R. Finite Element Analysis of Arizona's Three Layer Overlay System of Rigid Pavements to Prevent Reflective Cracking [C],1982.
    [28]Rigo J., Hendrick S., Courard L., Costa C., CESCOTTO S., KUCK P. Evaluation of crack propagation in an overlay subjected to traffic and thermal effects [C],1993.
    [29]Lytton R. L., Shanmugham U., Garrett B. D. Design of asphalt pavements for thermal fatigue cracking [M]. Texas. State Dept. of Highways, Public Transportation, United States. Federal Highway Administration, Texas Transportation Institute:The Institute,1983.
    [30]Moghadasnejad F., Toolabi S. Finite element study of critical cracking condition in asphalt overlay [C]; proceedings of the 10th International Conference on Asphalt Pavements, Quebec City, Canada, 2006.
    [31]Ann Myers L., Roque R., Birgisson B. Propagation mechanisms for surface-initiated longitudinal wheelpath cracks [J]. Transportation Research Record:Journal of the Transportation Research Board, 2001,1778(2001):113-122.
    [32]Dave E. V., Buttlar W. G. Thermal reflective cracking of asphalt concrete overlays [J]. International Journal of Pavement Engineering,2010,11(6):477-488.
    [33]刘善平,周任.半刚性基层沥青路面反射裂缝的空间有限元分析[J].湖南大学学报(自然科学版),1992,19(4):76-81+88.
    [34]周志刚,张起森.结构层组合对路面裂缝扩展的影响[J].中国公路学报,1997,10(2):5-10.
    [35]陈团结.半刚性基层沥青路面横向裂缝的动荷载响应[C]; proceedings of the2005全国博士生学术论坛(交通运输工程学科),中国北京,2005.
    [36]虞文锦.半刚性基层沥青路面的裂缝成因分析及处理研究[D].长安大学,2006.
    [37]张亚军,李春雷,黄晓明,周书林.基于有限元的半刚性基层沥青路面裂缝断裂力学分析[J].中南公路工程,2007,32(3):102-105.
    [38]况小根,刘长明.用断裂力学二维有限元模型分析路面加铺层反射裂缝形成机理[J].公路交通科技(应用技术版),2008,(S2):33-37.
    [39]Uzan J., Sides A., Perl M. Viscoelastoplastic model for predicting performance of asphaltic mixtures [J]. Transportation Research Record,1985,9(2):78-89.
    [40]Baek J., Al-Qadi I. L. Finite element modeling of reflective cracking under moving vehicular loading: investigation of the mechanism of reflective cracking in Hot-Mix asphalt overlays reinforced with interlayer systems [C]; proceedings of the the 2008 Airfield and Highway Pavements Conference, Bellevue, Washington, USA,2008.
    [41]Ceylan H., Gopalakrishnan K., Lytton R. L. Neural networks modeling of stress growth in asphalt overlays due to load and thermal effects during reflection cracking [J]. Journal of Materials in Civil Engineering,2011,23(3):221-230.
    [42]Ameri M., Mansourian A., Heidary Khavas M., Aliha M. R. M., Ayatollahi M. R. Cracked asphalt pavement under traffic loading-A 3D finite element analysis [J]. Engineering Fracture Mechanics, 2011,78(8):1817-1826.
    [43]胡雅琴.断裂力学理论在路面反射裂缝分析中的应用[J].长安大学学报(自然科学版),1990,10(2):15-20.
    [44]郑健龙,张起森.半刚性基层沥青路面表面裂缝的热效应分析[J].长沙交通学院学报,1992, 8(2):1-12.
    [45]才华.反射裂缝失稳断裂预测中的计算问题[J].沈阳建筑工程学院学报,1997,13(1):8-11.
    [46]符冠华,杨军,陆庆,陈荣生.夹层防裂作用的深入分析[J].公路交通科技,2000,17(4):1-3.
    [47]王金昌,朱向荣.面层与基层层间摩擦系数对应力强度因子影响的研究[J].岩石力学与工程学报,2005,24(15):2757-2764.
    [48]刘振清,钱国超,刘清泉,肖旺新.设ATPB的半刚性基层沥青路面结构疲劳特性分析[J].中国公路学报,2008,21(5):15-18+32.
    [49]元松,李雪莲.沥青面层反射裂缝荷载型应力强度因子回归分析[J].公路交通科技,2008,25(12):76-79+83.
    [50]李自林,龚能飞,栾小兵.半刚性基层沥青路面温缩型反射裂缝的扩展机理分析[J].公路交通科技,2008,25(1):43-46+63.
    [51]朱旺.半刚性基层裂缝稳定性相关因素研究[J].交通科技,2009,232(1):44-47.
    [52]Miao Y., He T. G., Yang Q., Zheng J. J. Multi-domain hybrid boundary node method for evaluating top-down crack in Asphalt pavements [J]. Engineering Analysis with Boundary Elements,2010, 34(9):755-760.
    [53]刘俊卿,陈诚诚,王保实,郝宁.考虑温度作用下的半刚性沥青路面的疲劳断裂分析[J].西安理工大学学报,2011,27(3):363-367.
    [54]黄志义,王金昌,朱向荣.含裂缝沥青混凝土路面的粘弹性断裂分析[J].中国公路学报,2006,19(2):18-23.
    [55]Paris P. C, Erdogan F. A critical analysis of crack propagation laws [J]. Journal of Basic Engineering, 1963,85(4):528-534.
    [56]Rauhut J. B., Kenis W. J., Hudson W. R. Improved techniques for prediction of fatigue life for asphalt concrete pavements [J]. Transportation Research Record,1976, (602):27-32.
    [57]Abdulshafi A, A., Majidzadeh K. J-integral and cyclic plasticity approach to fatigue and fracture of asphaltic mixtures [J]. Transportation Research Record,1985, (1034):112-123.
    [58]Tigdemir M., Kalyoncuoglu S. F., Kalyoncuoglu U. Y. Application of ultrasonic method in asphalt concrete testing for fatigue life estimation [J]. NDT& E International,2004,37(8):597-602.
    [59]Abo-Qudais S., Shatnawi I. Prediction of bituminous mixture fatigue life based on accumulated strain [J]. Construction and Building Materials,2007,21(6):1370-1376.
    [60]Perez S. A., Balay J. M., Tamagny P., Petit C. Accelerated pavement testing and modeling of reflective cracking in pavements [J]. Engineering Failure Analysis,2007,14(8):1526-1537.
    [61]Yeo I., Suh Y, Mun S. Development of a remaining fatigue life model for asphalt black base through accelerated pavement testing [J]. Construction and Building Materials,2008,22(8):1881-1886.
    [62]Doh Y. S., Baek S. H., Kim K. W. Estimation of relative performance of reinforced overlaid asphalt concretes against reflection cracking due to bending more fracture [J]. Construction and Building Materials,2009,23(5):1803-1807.
    [63]张婧娜,朱希岭,张肖宁.沥青混合料疲劳损伤的研究[J].哈尔滨建筑大学学报,1997,30(5):106-112.
    [64]彭妙娟,张登良,夏永旭.半刚性基层沥青路面的断裂力学计算方法及其应用[J].中国公路学报,1998,11(2):32-40.
    [65]周富杰,孙立军.复合路面荷载型反射裂缝的力学分析和试验路验证[J].土木工程学报,2002,35(1):50-56.
    [66]杨涛.半刚性基层沥青路面反射裂缝的产生机理及其防治措施[D].武汉理工大学,2005.
    [67]葛折圣,黄晓明.运用损伤力学理论预测沥青混合料的疲劳性能[J].交通运输工程学报,2003, 3(1):40-42+51.
    [68]曾梦澜,马正军,易听.广义Paris公式预测沥青路面的疲劳寿命[J].湖南大学学报(自然科学版),2005,32(6):20-23.
    [69]罗辉,朱宏平.基于断裂分析的沥青路面疲劳寿命预测[J].中外公路,2007,27(4):49-52.
    [70]关宏信,郑健龙,张起森.沥青混合料的黏弹性疲劳损伤模型研究[J].力学与实践,2007,29(2):50-53.
    [71]王宏畅,李国芬,黄晓明.高等级沥青路面表面裂缝扩展规律及寿命研究[J].公路交通科技,2007,24(7):10-14.
    [72]元松,谈至明.沥青路面荷载型竖向反射裂缝疲劳断裂分析[J].同济大学学报(自然科学版),2007,35(10):1352-1357.
    [73]元松,张显安.荷载与温度耦合下沥青路面结构复合型反射裂缝断裂分析[J].长沙交通学院学报,2008,24(1):49-53.
    [74]元松,李雪莲.交通荷载下半刚性基层沥青路面反射裂缝疲劳断裂分析[J].中外公路,2008,28(4):59-63.
    [75]龙光.行车荷载作用下沥青路面表面裂缝的扩展以及疲劳寿命的研究[D].湖南大学,2008.
    [76]赵磊,樊统江,何兆益,李超.荷载作用下半刚性基层沥青路面开裂原因分析[J].重庆交通大学学报(自然科学版),2009,28(1):49-53+133.
    [77]韦金城,庄传仪,高雪池,王林.基于疲劳损伤的沥青路面设计温度及预估模型研究[J].公路交通科技,2010,27(5):6-10.
    [78]Shell Pavement Design Manual. Asphalt Pavements and Overlays for Road Traffic [CP]. Shell International Petroleum Company, London,1978.
    [79]Shook J. F., Finn F. N., Witczak M. W., Monismith C. L. Thickness design of asphalt pavements—The Asphalt Institute method [C]; proceedings of the Fifth International Conference on the Structural Design of Asphalt Pavement, University of Michigan and Delft University of Technology,1982.
    [80]岳福青,杨春风.断裂力学理论在道路疲劳寿命预测中的应用[J].昆明理工大学学报(理工版),2003,28(6):87-90.
    [81]Shinozuka M., Astill C. J. Random eigenvalue problems in structural analysis [J]. AIAA Journal, 1972,4(10):456-462.
    [82]Yamazaki F. Neumann expansion for stochastic finite element analysis [J]. Journal of Engineering Mechanics,1988,114(8):1335-1355.
    [83]Isukapalli S. S. Uncertainty analysis of transport-transformation models [D]. Rutgers, The State University of New Jersey,1999.
    [84]Box G. E. P., Wilson K. B. On the experimental attainment of optimum conditions [J]. Journal of the Royal Statistical Society Series B (Methodological),1951,13(1):1-45.
    [85]Faravelli L. Response-Surface Approach for Reliability Analysis [J]. Journal of Engineering Mechanics,1989,115(12):2763-2781.
    [86]Bucher C. G, Bourgund U. A fast and efficient response surface approach for structural reliability problems [J]. Structural safety,1990,7(1):57-66.
    [87]Kim S. H., Na S. W. Response surface method using vector projected sampling points [J]. Structural safety,1997,19(1):3-19.
    [88]Gayton N., Bourinet J., Lemaire M. CQ2RS:a new statistical approach to the response surface method for reliability analysis [J]. Structural safety,2003,25(1):99-121.
    [89]Duprat F., Sellier A. Probabilistic approach to corrosion risk due to carbonation via an adaptive response surface method [J]. Probabilistic engineering mechanics,2006,21(3):207-216.
    [90]Kleiber M., Tran D. H. The stochastic finite element method:basic perturbation technique and computer implementation [M]. Wiley New York,1992.
    [91]Spanos P. D., Ghanem R. Stochastic finite element expansion for random media [J]. Journal of Engineering Mechanics,1989,115(5):1035-1053.
    [92]Ghanem R. G., Spanos P. D. Stochastic finite elements:A spectral approach [M]. New York,1991.
    [93]Ghanem R., Saad G., Doostan A. Efficient solution of stochastic systems:application to the embankment dam problem [J]. Structural safety,2007,29(3):238-251.
    [94]Doostan A., Ghanem R. G, Red-Horse J. Stochastic model reduction for chaos representations [J]. Computer Methods in Applied Mechanics and Engineering,2007,196(37-40):3951-3966.
    [95]朱位秋,任永坚.随机场的局部平均与随机有限元[J].航空学报,1986,7(6):604-611.
    [96]朱位秋,任永坚.基于随机场局部平均的随机有限元法[J].固体力学学报,1988,7(6):604-611.
    [97]刘更,吴立言.概率有限元基本理论的建立与发展[J].机械科学与技术,1991,38(2):12-17.
    [98]温卫东,高德平.随机有限元方程一般式的两种推导方法[J].南京航空航天大学学报,1993,25(6):832-838.
    [99]张汝清,高行山.随机变量的变分原理及有限元法[J].应用数学和力学,1992,13(5):383-388.
    [100]杨绿峰,高兑现,李桂青.随机结构在随机激励下的二阶摄动随机势能泛函及其应用[J].应用力学学报,1999,16(4):35-39.
    [101]Yang L. F., Leung A. Y. T., Yan L. b. Stochastic spline Ritz method based on stochastic variational principle [J]. Engineering Structures,2005,27(3):455-462.
    [102]杨绿峰,邓尚敏,孙昌,高亮.Monte—Carlo有限元法分析薄壁箱梁可靠性[J].固体力学学报,2005,26(专辑):176-180.
    [103]孙昌,杨绿峰.数值模拟法分析薄壁箱梁的可靠性[J].铁道科学与工程学报,2007,4(6):25-29.
    [104]杨绿峰,李朝阳,周月娥,周明,赵修敏.多变量随机场下箱形梁剪力滞效应的随机模拟[J].广西大学学报(自然科学版),2011,36(1):1-8+14.
    [105]杨绿峰,刘萍,毛立敏,唐冲.基于随机场正交级数展开的蒙特卡洛有限元法[J].桂林工学院学报,2009,29(1):84-87.
    [106]杨绿峰,汪梅兰,梁维.预处理谱随机变分原理和随机有限元法[J].广西大学学报(自然科学版),2009,34(3):270-276.
    [107]Yang L.F. Z. Y, Zhou J J, Wang M L. Hierarchical stochastic finite element method for structural analysis [J]. Acta Mechanica Solida Sinica,2012.
    [108]杨绿峰,李朝阳.结构随机分析的向量型层递响应面法[J].工程力学,2012,29(11).
    [109]杨绿峰,李朝阳,杨显峰.结构可靠度分析的向量型层递响应面法[J].土木工程学报,2012,45(7):105-110.
    [110]Yang L., Yu B., Ju J. System reliability analysis of spatial variance frames based on random field and stochastic elastic modulus reduction method [J]. Acta Mechanica,2012,223(1):109-124.
    [111]任永坚,朱位秋.具有随机参数的含裂纹板弯曲应力强度因子的统计分析[J].力学学报,1991,23(3):339-346.
    [112]李建康,孙训方.随机有限元方法在断裂分析中的应用[J].计算力学学报,2001,18(3):349-354.
    [113]黄义仿,李建康.板的弹塑性断裂随机有限元分析[J].机械强度,2007,29(4):666-671.
    [114]Wilson W. Finite element methods for elastic bodies containing cracks [J]. Methods of analysis and solutions of crack problems:Recent developments in fracture mechanics,1973,484-515.
    [115]Moavenzadeh F., ELLIOTT J. A Stochastic Appoach to Analysis and Design of Highway Pavements [C],1972.
    [116]Shahin M. Y., McCullough B., Deme I. Damage model for predicting temperature cracking in flexible pavements [J]. Transportation Research Record,1974, (521):30-46.
    [117]Moavenzadeh F., Brademeyer B. A stochastic model for pavement performance and management [C]; proceedings of the 4th International Conference on Structural Design of Asphalt Pavements, Ann Arbor, Michigan,1977.
    [118]Parvini M., Stolle D. F.E. Application of stochastic finite-element method to deflection analysis of pavement structures [J]. Journal of the Transportation Research Board,1996,1540:65-71.
    [119]Hadidi P.E. R., Gucunski N. A probabilistic approach to falling-weight deflectometer backcalculation [C]; proceedings of the Transportation Research Board 86th Annual Meeting, Washington DC, United States,2007.
    [120]Shin H. Development of a semi-parametric stochastic model of asphalt pavement crack initiation [J]. KSCE Journal of Civil Engineering,2006,10(3):189-194.
    [121]Liu M. L., Lee D. S. The Stochastic Finite Element for Pavement Analysis [J]. Journal of the Eastern Asia Society for Transportation Studies,2009,6:1-11.
    [122]李朝阳,郭忠印,许志鸿.沥青路面结构的可靠性设计[J].同济大学学报(自然科学版),1996,24(6):631-635.
    [123]田莉,刘玉,胡霞光,王秉纲.模拟沥青混合料集料的多面体颗粒随机生成算法及程序[J].中国公路学报,2007,20(3):5-10.
    [124]郑木莲,孙家伟,王秉纲.贫混凝土疲劳方程的建立及其应用研究[J].西安建筑科技大学学报(自然科学版),2007,39(1):92-97.
    [125]袁峻,孙立军.复杂荷载下沥青混合料剪切疲劳性能[J].长沙交通学院学报,2008,24(4):32-37+51.
    [126]宋云连,林敏,李翀鹏.基于随机摄动理论的沥青路面结构可靠度分析[J].内蒙古工业大学学报(自然科学版),2008,27(3):219-224.
    [127]李皓玉,杨绍普,齐月芹,徐步青.移动随机荷载下沥青路面的动力学特性和参数影响分析[J].工程力学,2011,28(11):159-165.
    [128]Liu X. Y., Shi C. J., Chen S. J. A theory research of asphalt pavement dynamic response under vehicle random stimulation [J]. Applied Mechanics and Materials,2012,105-107(13):13-19.
    [129]Cotterell B. The past, present, and future of fracture mechanics [J]. Engineering Fracture Mechanics, 2002,69(5):533-553.
    [130]孙立军.沥青路面结构行为理论[M].北京:人民交通出版社,2005.
    [131]郑健龙,周志刚,张起森.沥青路面抗裂设计理论与方法[M].北京:人民交通出版社,2003.
    [132]范天佑.断裂理论基础[M].科学出版社,2003.
    [133]黄作宾.断裂力学基础[M].中国地质大学出版社,1991.
    [134]尹双增,建筑科学.断裂·损伤理论及应用[M].清华大学出版社,1992.
    [135]Williams M. L. On the stress distribution at the base of a stationary crack [J]. Journal of Applied Mechanics,1957,24(1):109-114.
    [136]Williams M. L. Stress singularities resulting from various boundary conditions in angular corners of plates in extension [J]. Journal of Applied Mechanics,1952,19:526-528.
    [137]徐华,杨绿峰,佘振平.Ⅲ型应力强度因子分析的Williams单元[J].中南大学学报(自然科学版),2012,43(8):3237-3243.
    [138]Irwin G. R. Analysis of stresses and strains near the end of a crack traversing a plate [J]. J Appl Mech, 1957,24:361-364.
    [139]李庆芬.断裂力学及其工程应用[M].哈尔滨工程大学出版社,2004.
    [140]郑传超.道路结构断裂力学基础[M].西北工业大学出版社,1997.
    [141]Chan S. K., Tuba I. S., Wilson W. K. On the finite element method in linear fracture mechanics [J]. Engineering Fracture Mechanics,1970,2(1):1-17.
    [142]Henshell R. D., Shaw K. G. Crack tip finite elements are unnecessary [J]. International Journal for Numerical Methods in Engineering,1975,9(3):495-507.
    [143]Barsoum R. S. On the use of isoparametric finite elements in linear fracture mechanics [J]. International Journal for Numerical Methods in Engineering,1976,10(1):25-37.
    [144]王勖成.有限单元法[M].清华大学出版社,2003.
    [145]钱伟长.有限元法的最新发展[J].力学与实践,1980,(4):4-11+16.
    [146]Woo C. W., Wang Y. H., Cheung Y. K. The mixed mode problems for the cracks emanating from a circular hole in a finite plate [J]. Engineering Fracture Mechanics,1989,32(2):279-288.
    [147]Cheung Y. K., Jiang C. P. Application of the finite strip method to plane fracture problems [J]. Engineering Fracture Mechanics,1996,53(1):89-96.
    [148]Leung A. Y. T, Su R. K. L. Mode I crack problems by fractal two level finite element methods [J]. Engineering Fracture Mechanics,1994,48(6):847-856.
    [149]Leung A. Y. T, Su R. K. L. Mixed-mode two-dimensional crack problem by fractal two level finite element method [J]. Engineering Fracture Mechanics,1995,51(6):889-895.
    [150]Leung A. Y. T., Hu J. D. Mode Ⅱ stress intensity factors for a circular ring or a hollow cylinder with a radial crack [J]. International Journal of Pressure Vessels and Piping,1997,72(2):149-156.
    [151]Leung A. Y. T., Tsang K. L. Mode Ⅲ two-dimensional crack problem by two-level finite element method [J]. International Journal of Fracture,2000,102(3):245-258.
    [152]杨绿峰.二次样条元[J].广西科学,1994,1(2):7-11.
    [153]Li Q. S., Yang L. F., Ou X. D., Li G. Q., Liu D. K. The quintic finite element and finite strip with generalized degrees of freedom in structural analysis [J]. International Journal of Solids and Structures,2001,38(30/31):5355-5372.
    [154]Li Q. S., Yang L. F., Zhao Y. L., Li G. Q. Dynamic analysis of non-uniform beams and plates by finite elements with generalized degrees of freedom [J]. International Journal of Mechanical Sciences,2003,45(5):813-830.
    [155]Li Q. S., Yang L. F., Li G. Q. The quintic finite element/strip with generalized degrees of freedom and their application [J]. Finite Element in Analysis and Design,2001,37(4):325-339.
    [156]杨绿峰,徐华,汪梅兰.应力强度因子分析的三角形Williams单元[J].应用力学学报,2011,28(6):570-575+670.
    [157]中国航空研究院.应力强度因子手册(增订版).[M].北京:科学出版社,1993.
    [158]杨绿峰,徐华,李冉.广义参数有限元法计算应力强度因子[J].工程力学,2009,26(3):48-54.
    [159]杨绿峰,徐华,彭俚,李冉.断裂问题分析的Williams广义参数单元[J].计算力学学报,2009,26(1):33-39.
    [160]徐东伟.沥青路面加铺层力学分析及疲劳寿命预估[D].长安大学,2005.
    [161]林广平.基于断裂力学的钢桥面铺装层疲劳寿命研究[D].东南大学,2006.
    [162]马启明.基于断裂力学的机械零件寿命预测的模糊可靠性研究[D].大连理工大学,2004.
    [163]黄培彦.疲劳裂纹扩展的概率分析模型[J].华南理工大学学报(自然科学版),1995,23(5):56-65.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700