钢渣沥青混凝土的制备、性能与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢渣作为世界上产量最大的固体废弃物之一,其环保处置与资源化属当今世界上最热门的研究热点之一。在我国公路的蓬勃发展的背景下,钢渣在沥青混凝土中的应用技术将使钢渣资源有望得到大量合理的利用。这也将是资源化钢渣的新突破点。
     基于以上背景,本文以完善钢渣资源的“梯度利用技术”为目的,研究了钢渣及其沥青混凝土的组成、结构与性能。采用XRD、扫描电镜、X射线荧光光谱、电子探针显微镜、差示扫描量热仪及压汞仪等精密仪器研究了钢渣集料的物化特性:首次确定了钢渣集料吸热特征,指出导致钢渣热料产量骤降的主因是钢渣表面的杂质而非钢渣比热容过大,并提出了提升钢渣热料产量的解决方案;验证了钢渣对环境的无毒性及良好的热稳定性;证明了钢渣具有多孔集料特性。采用沥青浸渍法发现钢渣对沥青的吸收具有延时效应,且吸收速率随着时间逐渐减小:钢渣对沥青的最终吸收量约是瞬时吸收量的2倍,由此发展的钢渣沥青混合料沥青损耗预测模型与实验结果相关性良好。基于球体模型修正了钢渣集料的比表面积因子,发现钢渣比表面积系数要显著小于现行规范JTG F40-2004中的规定值;同时提出了钢渣沥青混凝土集料沥青膜厚度计算方法。
     根据流变学原理研究了钢渣沥青混合料的路用性能。动态蠕变实验结果发现温度主导着钢渣沥青混合料永久变形行为。永久变形可以显著地分为三阶段并可以用流变三阶段模型模拟。四点弯曲实验结果显示0℃时钢渣沥青料的低温疲劳寿命优于同类型的玄武岩沥青混合料。
     基于钢渣与沥青的界面特性研究了钢渣沥青混凝土的水稳性及其加速水损害机理。首先采用拉拔实验研究了钢渣与沥青的界面粘结性能,发现钢渣与沥青的粘结力及断裂能均优于玄武岩及花岗岩。DCSEf、动态模量主曲线以及疲劳寿命等实验结果从粘弹力学、现象学及能量等角度证实钢渣沥青混合料具有良好的水稳性能。设计了全新的沥青混合料动水损害实验,结果显示水损害后钢渣沥青混合料的疲劳寿命仍然优于玄武岩沥青混合料。动态模量主曲线显示经过三次冻融后钢渣沥青混合料在高频部分的动态模量下降显著。最后研究了钢渣表面物质及钢渣水化进程,揭示出钢渣沥青混凝土独特的加速水损害起因在于水化硅酸钙、氢氧化钙及结晶硫酸钙等钙类物质在钢渣与沥青界面处的生成;这也是钢渣沥青混凝土在潮湿环境中的主要破坏方式。
     钢渣的附属产物—钢渣球磨尾渣作为无机抗剥落剂使沥青混合料的劈裂抗拉强度提高了10%以上。采用红外吸收光谱及等效半径模型证实包括钢渣球磨尾渣在内的填料与沥青间的反应仅限于物理吸附而非化学反应;钢渣球磨尾渣表现出较大的等效半径,说明其有较强的沥青吸附活性。
     实体工程显示钢渣沥青路面建设中需特别注意钢渣冷料的堆放条件,且在集料破碎时需注意防范和解决振动筛孔堵塞等问题。降低冷料的含水率是减少钢渣沥青混凝土发生温度离析的主要措施。
Steel slag including basic oxygen furnace slag (BOF) is one of the largest amount of solid waste in the world. Its environmental friendly treatment and reutilization are one of the researching hot spots. At the moment high-speed development of road construction in China makes asphalt pavement a promising field for reasonable reutilization of BOF in large amounts.
     This paper is to systematically investigate the composition, structure and performance of BOF and its related asphalt mixture. Modern testing approaches were used to characterize BOF, including XRD, SEM, XRF. EPMA, TG-DSC and mercury injection. The investigation of endothermic property for BOF indicated the main wrongdoer for dramatic decrease of BOF production was the dust on it. instead of its specific heat capacity. BOF was thermal-stable and not harmful to environment. Innovatively. results showed that BOF was porous. Also the results of bulk-impregnate test indicated that the asphalt absorption of BOF was time dependent at a decreasing rate. The final absorption is almost two times as its instant absorption, based on what the predicting regression model for related absorptive characteristic of asphalt mixture was estabilished and had good correlation with experiment results. With spherical model, the author introduced a new method to determining specific surface factors of aggregates.The specific surface area factors of BOF were significantly less than the ones specified in Chinese norm JTG F40-2004.
     Dynamic creep test and four-points bending test were carried out. The permanent deformation behavior was dominated by temperature and exhibited three-stage rheological properties, which could be modeled precisely. The fatigue life at0℃of BOF based asphalt mixture was superior to that of limestone based asphalt mixture.
     The investigation based on the interface properties between BOF and asphalt was carried out to investigate the moisture sensitivity and accelerated damage mechanisms of BOF based asphalt mixture.The results of pull-off test exhibited that the bond strength and fracture energy between asphalt and BOF are both superior to those with basalt or granite. Also dissipated Creep Strain Energy limits (DCSEf). master curve of dynamic modulus and fatigue life all indicated the BOF based asphalt mixture exhibited less moisture damage. The new designed dynamic moisture treatment was cast on asphalt mixture and results showed that the fatigue life of BOF based asphalt mixture was superior to that of basalt based asphalt mixture. With regression analysis by fitting the dynamic modulus master curve, the author found that the dynamic modulus within higher frequency of BOF based asphalt mixture decreased significantly. Mechanisms analysis showed that the generation of hydrated calcium silicate, calcium hydroxide and calcium sulfate took the major responsibilities duringr destruction of BOF based asphalt mixture.
     Slag residue can be used as an antistripper in asphalt mixture. There was only physical adsorption instead of chemical reaction between slag residue and asphalt. The equilibrium radius model showed that slag residue exhibited the largest'equilibrium radius' than limestone filler, which represented its strong ability to adsorb asphalt.
     The storage condition of BOF aggregates should be attached much more attention to maintain clean and dry. Much work should be done on the preventing of the clogged screens during aggregate crushing. Keeping BOF aggregate dry is the major solution to prevent thermal segregation during compaction and rolling of asphalt mixture.
引文
[1]曹世璞.节约水泥善待有限的石灰石资源[J].砖瓦世界,2008,(07):10.
    [2]朱桂林,孙树杉,夏春.实现钢渣“零排放”对发展循环经济,推进钢铁行业节能减排具有重要作用:冶金循环经济发展论坛,中国北京.2008[C].
    [3]Emery JJ. Steel slag applications in highway construction[J]. Silicates Industriels,1977,42(4): 209-218.
    [4]陈盛建,高宏亮.钢渣综合利用技术及展望[J].南方金属,2004,(05):14-41.
    [5]秦萍.钢渣治理与利用技术的进展[J].沿海环境,2003,(01):42-43.
    [6]Kalyoncu RS. Slag-iron and steel[J]. US geological survey minerals yearbook,2001.
    [7]Motz H, Geiseler J. Products of steel slags an opportunity to save natural resources[J]. Waste Management,2001,21(3):285-293.
    [8]JTG F40-2004,公路沥青路面施工技术规范[S].2004.
    [9]Dunster A. The use of blastfurnace slag and steel slag as aggregates [C].2002.
    [10]Hunt L, Boyle G. Steel Slag in Hot Mix Asphalt Concrete[R].2000.
    [11]李灿华,刘思,陈琳,等.武钢钢渣用作AC-101型细粒沥青砼集料的研究[J].武钢技术,2011.(03):34-36.
    [12]薛永杰,吴少鹏,廖卫东,等.钢渣在武黄高速公路加铺工程中的应用研究[C].湖北省公路交通科技2004年会.2004.
    [13]吴少鹏,杨文锋,薛永杰,等.钢渣沥青混凝土的研究与应用[C].中国硅酸盐学会2003年学术年会,2003.
    [14]李灿华,陈琳,刘思,等.钢渣沥青混凝土路面及其服役性能研究[J].安徽工业大学学报(自然科学版),2011,(02):136-140.
    [15]魏巍,陈美祝,李灿华,等.钢渣沥青混凝土路面抗滑性能研究[J].建材世界,2010,(04):33-35.
    [16]陈美祝,魏巍,汪晖,等.钢渣沥青路面耐久性能研究[J].建材世界,2010,(04):36-38.
    [17]Shi C. Steel Slag?Its Production, Processing, Characteristics, and Cementitious Properties[M]. ASCE,2004:230-236.
    [18]Setien J, Hernandez D, Gonzalez JJ, et al. Characterization of ladle furnace basic slag for use as a construction material[J]. Construction and Building Materials.2009,23(5):1788-1794.
    [19]牛冬杰.工业固体废物处理与资源化[M].治金工业出版社,2007.
    [20]Shi C. Characteristics and cementitious properties of ladle slag fines from steel production[J]. Cement and concrete research.2002,32(3):459-462.
    [21]Deniz D, Tutumluer E, Popovics JS, et al. Expansive Characteristics of Reclaimed Asphalt Pavement(RAP) [C]. University of Illinois at Urbana-Champaign,2009.
    [22]Kandhal PS, Hoffman GL. Evaluation of steel slag fine aggregate in hot-mix asphalt mixtures[J]. Journal of the Transportation Research Board,1997,1583(-1):28-36.
    [23]H H, N R, B T,et al. Contribution a la determination de la chaux libre dans les laitiers LD: problemes rencontres, principales conclusions[J]. Laitiers siderurgiques,1995,(78):30-40.
    [24]Wachsmuth F, Geiseler J. Contribution to the structure of BOF-steel slags and its infuence in their volume stability [J]. Sympon Metallurgical Slags,1980:1-18.
    [25]Tsakiridis P, Papadimitriou G, Tsivilis S, et al. Utilization of steel slag for Portland cement clinker production[J]. Journal of Hazardous Materials,2008,152(2):805-811.
    [26]Ducman V, Mladenovic A. The potential use of steel slag in refractory concrete[J]. Materials Characterization,2011,62(7):716-723.
    [27]Waligora J, Bulteel D, Degrugilliers P, et al. Chemical and mineralogical characterizations of LD converter steel slags:A multi-analytical techniques approach[J]. Materials Characterization, 2010,61(1):39-48.
    [28]Mahieux PY, Aubert JE, Escadeillas G, et al. Utilization of weathered basic oxygen furnace slag in the production of hydraulic road binders[J]. Construction and Building Materials,2009,23(2): 742-747.
    [29]Terrel RL, S.A1-Swailmi. Water Sensitivity of Asphalt Paving Mixture[J]. Serviceability and Durabiitiy of Construction Materials:Proceedings of the First Materials Engineering Congress, Auguest 13-15, Denver, CO,1990.
    [30]方宏辉.转炉钢渣胶凝细集料试验研究和应用[J].工业建筑,1991,(02):36-40.
    [31]王强.钢渣的胶凝性能及在复合胶凝材料水化硬化过程中的作用[D].清华大学,2010.
    [32]Bohac M, Gregerova M. The influence of blast-furnace slag hydration products on microcracking of concrete[J]. Materials Characterization,2009,60(7):729-734.
    [33]Zhang YJ, Zhao YL, Li HH, et al. Structure characterization of hydration products generated by alkaline activation of granulated blast furnace slag[J]. Journal of Materials Science,2008,43(22): 7141-7147.
    [34]Juenger MCG, Monteiro PJM, Gartner EM, et al. In situ imaging of ground granulated blast furnace slag hydration[J]. Journal of Materials Science,2006,41(21):7074-7081.
    [35]Wang Q, Yan P. Hydration properties of basic oxygen furnace steel slag[J]. Construction and Building Materials,2010,24(7):1134-1140.
    [36]Coomarasamy A, Walzak T. Effects of moisture on surface chemistry of steel slags and steel slag-asphalt paving mixes[J]. Transportation Research Record,1995,(1492):85-95.
    [37]陈南,薛明.钢渣与沥青粘附性的评价[J].粉煤灰,2008,(05):12-14.
    [38]Tarrer A, Program SHR. The effect of the physical and chemical characteristics of the aggregate on bonding:Strategic Highway Research Program, National Research Council,1991.
    [39]Roe P. Basic Oxygen Steel Slag as Surface Course Aggregate:An Investigation of Skid Resistance[J]. TRL REPORT TRL 566,2003.
    [40]Stock A, Ibberson CM, Taylor I, et al. Skidding characteristics of pavement surfaces incorporating steel slag aggregates[J]. Transportation Research Record:Journal of the Transportation Research Board 1996,1545(-1):35-40.
    [41]Airey GD, Collop AC, Thom NH, et al. Mechanical performance of asphalt mixtures incorporating slag and glass secondary aggregates[C].2004.
    [42]Noureldin AS, McDANIEL RS. Performance Evaluation of Steel Furnace Slag-Natural Sand Asphalt Surface Mixtures[C].2000.
    [43]Noureldin A, McDaniel R. Evaluation of steel slag asphalt surface mixtures[C].1990.
    [44]Ali NA, Chan JSS, Papagiannakis T, et al. The Use of Steel Slag in Asphaltic Concrete[J]. Effects of aggregates and mineral fillers on asphalt mixture performance,1992:3.
    [45]Ali L, Fiaz A. Use of Fly Ash Alongwith Blast Furnace Slag as Partial Replacement of Fine Aggregate and Mineral Filler in Asphalt Mix at High Temperature[C]. ASCE.2009.
    [46]Maslehuddin M, Sharif AM, Shameem M, et al. Comparison of properties of steel slag and crushed limestone aggregate concretes[J]. Construction and Building Materials,2003,17(2):105-112.
    [47]Hassan Z, Khabiri MM. Preventive maintenance of flexible pavement and mechanical properties of steel slag asphalt[J]. Journal of Environmental Engineering and Landscape Management,2007,15(Compendex):188b-192b.
    [48]Shen DH, Wu CM, Du JC, et al. Laboratory investigation of basic oxygen furnace slag for substitution of aggregate in porous asphalt mixture[J]. Construction and Building Materials. 2009.23(1):453-461.
    [49]Xue YJ, Wu SP, Hou HB, et al. Experimental investigation of basic oxygen furnace slag used as aggregate in asphalt mixture[J]. Journal of Hazardous Materials,2006.138(2):261-268.
    [50]Wu SP, Xue YJ, Ye QS, et al. Utilization of steel slag as aggregates for stone mastic asphalt (SMA) mixtures[J]. Building and Environment,2007.42(7):2580-2585.
    [51]张登良.沥青与沥青混合料[M].北京:人民交通出版社,1993.
    [52]梁锡三.沥青混合料设计及质量控制原理[M].北京:人民交通出版社,2008.
    [53]Stiady J, Galal K, Noureldin S, et al. Identification of aggregate role in performance of superpave mixtures employing accelerated testing facility:Aggregate Contribution to Hot Mix Asphalt (HMA) Performance[C]. Orlando, FL, United states,2001.
    [54]Kandhal PS, Mallick RB. Effect of mix gradation on rutting potential of dense-graded asphalt mixtures[J]. Transportation Research Record,2001,(Compendex):146-151.
    [55]World Bank Handbook. Pollution Prevention and Abatement, Iron and Steel manufacturing, Draft technical background document[M]. Washington, DC,1998:327-331.
    [56]Gondal M, Hussain T, Yamani Z, et al. Study of hazardous metals in iron slag waste using laser induced breakdown spectroscopy[J]. Journal of Environmental Science and Health Part A, 2007,42(6):767-775.
    [57]Lin KL, Chang CT. Leaching characteristics of slag from the melting treatment of municipal solid waste incinerator ash[J]. Journal of Hazardous Materials,2006,135(1-3):296-302.
    [58]Xue Y, Hou H, Zhu S, et al. Utilization of municipal solid waste incineration ash in stone mastic asphalt mixture:Pavement performance and environmental impact[J]. Construction and Building Materials,2009,23(2):989-996.
    [59]Ritter HL, Drake LG. The volume of pores in lg solid is defined as specific pore volume[J]. Industrail & Engineering Chemistry Research,1945,17:782-786.
    [60]Washburn EW. Nat. Acad. Sci. Proc[J].1921,115.
    [61]涂文懋,魏茂.钢渣显微构造和特性及其在混凝土中的应用研究[J].混凝土,2007,(11):77-79.
    [62]Lee DY, Guinn J, Khandhal P, et al., Absorption of asphalt into porous aggregates[R],1990.
    [63]D.Y.Lee. Absorptive aggregates in asphalt paving mixtures[R] Iowa State University, Engineering Research Institute,1971.
    [64]Kandhal PS, Lee D. Asphalt absorption as related to pore characteristics of aggregates[J]. Highway Research Record,1972,(404).
    [65]Lee D, Campen W, Krchma L, et al. The relationship between physical and chemical properties of aggregates and their asphalt absorption[C]. Association of Asphalt Paving Technologists Proc, 1969.
    [66]Lemish J, Rush FE, Hiltrop CL, et al. RELATIONSHIP OF PHYSICAL PROPERTIES OF SOME IOWA CARBONATE AGGEGATES TO DURABILITY OF CONCRETE[J]. Highway Research Board Bulletin,1958.
    [67]Dallman. Iowa State University,1966.
    [68]Cechetine, James. Modified CKE/centrifuge kerosine equivalent test[J]. Proc Assoc Asphalt Paving Technol,1971,40:509-526.
    [69]Mix design method for asphalt concrete and other hot-mix-types (MS-2)[S].
    [70]Kandhal PS, Chakraborty S. Effect of asphalt film thickness on short-and long-term aging of asphalt paving mixtures[J]. Transportation Research Record:Journal of the Transportation Research Board,1996,1535(-1):83-90.
    [71]Hinrichsen JA, Heggen J. Minimum voids in mineral aggregate in hot-mix asphalt based on gradation and volumetric properties[J]. Journal of the Transportation Research Board,1996,1545(-1):75-79.
    [72]Sengoz B, Agar E. Effect of asphalt film thickness on the moisture sensitivity characteristics of hot-mix asphalt[J]. Building and Environment,2007,42(10):3621-3628.
    [73]Stuart K, Administration USFH. Moisture Damage in Asphalt Mixtures:A State-of-the-Art Report[M]. Federal Highway Administration,1990.
    [74]Scherocman JA, Mesch KA, Proctor JJ, et al. The effect of multiple freeze-thaw cycle conditioning on the moisture damage in asphalt concrete mixtures[J]. Journal of Association of Asphalt Paving Technologists,1986.
    [75]Boris R. Analytical Formulas for Film Thickness in Compacted Asphalt Mixture[J].Transpotation Research Record,2003,1829:26-32.
    [76]Li X, Williams CR, Marasteanu MO, et al. Investigation of In-Place asphalt film thickness and performance of hot-mix asphalt mixtures[J]. Journal of Materials in Civil Engineering,2009,21(6): 262-270.
    [77]Monismith CL, Ogawa N, Freeme CR, et al. Permanent deformation characterization of subgrade soils due to repeated loading[J]. Transportation Research Record,1975,537.
    [78]Bernasconi G. Creep of engineering materials and structures[M]. London:Applied science publishers Ltd.,,1978.
    [79]Zhou FJ, Scullion T, Sun LJ, et al. Verification and modeling of three-stage permanent deformation behavior of asphalt mixes[J]. Journal of Transportation Engineering-Asce,2004,130(4): 486-494.
    [80]Little DN, Jones I. Chemical and mechanical processes of moisture damage in hot-mix asphalt pavements[C].2003.
    [81]Tarefder RA, Zaman A. Characterization of Asphalt Materials for Moisture Damage Using Atomic Force Microscopy and Nanoindentation[J].2011:237-256.
    [82]Tarefder RA, Zaman AM. Nanoscale Evaluation of Moisture Damage in Polymer Modified Asphalts[J]. Journal of Materials in Civil Engineering,2010.22(7):714-725.
    [83]Hefer AW, Bhasin A, Little DN. Bitumen surface energy characterization using a contact angle approach[J], Journal of Materials in Civil Engineering.2006.18(6):759-767.
    [84]Zhou WF, Zhang XL. Yuan JA, et al. Development of new anti-stripping agent based on adhesion of asphalt with aggregate[J]. Chang'an Daxue Xuebao (Ziran Kexue Ban)/Journal of Chang'an University (Natural Science Edition),2005,25(Compendex):16-20.
    [85]Arabani M, Hamedi GH. Using the Surface Free Energy Method to Evaluate the Effects of Polymeric Aggregate Treatment on Moisture Damage in Hot-Mix Asphalt[J]. Journal of Materials in Civil Engineering,2011,23(6):802-811.
    [86]Jahromi SG. Estimation of resistance to moisture destruction in asphalt mixtures[J]. Construction and Building Materials,2009.23(6):2324-2331.
    [87]Wekumbura C, Stastna J, Zanzotto L, et al. Destruction and recovery of internal structure in polymer-modified asphalts[J]. Journal of Materials in Civil Engineering,2007,19(3):227-232.
    [88]Youtcheff J, Aurilio V. Moisture sensitivity of asphalt binders:evaluation and modeling of the pneumatic adhesion test results[C]. Proceedings of the annual conference-canadian technical asphalt association,1997.
    [89]Birgisson B, Roque R, Page GC, et al. Evaluation of water damage using hot mix asphalt fracture mechanics[C]. Asphalt Paving Technology,2003.
    [90]Roque R, Birgisson B, Sangpetngam B, et al. Hot mix asphalt fracture mechanics:a fundamental crack growth law for asphalt mixtures[J]. Journal of the Association of Asphalt Paving Technologists,2002,71.
    [91]Twagira EM, Jenkins KJ. Development of a New Moisture Conditioning Procedure for Bitumen Stabilized Materials:proceedings of the Paving Materials and Pavement Analysis[C]. GeoShanghai 2010 International Conference, June 3-5,2010, Shanghai, China,2010.
    [92]Rowe G, Brown S. VALIDATION OF THE FATIGUE PERFORMANCE OF ASPHALT MIXTURES WITH SMALL SCALE WHEEL TRACKING EXPERIMENTS (WITH DISCUSSION)[J]. Journal of the Association of Asphalt Paving Technologists,1997:66.
    [93]赵延庆,吴剑,文健,等.沥青混合料动态模量及其主曲线的确定与分析[J].公路,2006,(08):163-167.
    [94]APA. Guide for mechanistic-empirical design:National Cooperative Highway Research Program 1-37A,2004.
    [95]Kiggundu BM, Roberts FL. Stripping in HMA Mixtures:State-of-the-Art and Critical Review of Test Methods.[J]. NCAT Report No88-2 National Center for Asphalt Technology(NCAT), Auburn University, Auburn:1988.
    [96]Lea FM. The chemistry of cement and concrete[J].1970.
    [97]Wang G, Wang Y, Gao Z, et al. Use of steel slag as a granular material:Volume expansion prediction and usability criteria[J]. Journal of Hazardous Materials,2010,184(1-3):555-560.
    [98]Anderson DA, Goetz W. Mechanical behavior and reinforcement of mineral filler-asphalt mixtures:proceedings of,1973[C].
    [99]Tayebali AA, Goodrich JL, Sousa JB, et al. Relationships between modified asphalt binders rheology and binder-aggregate mixture permanent deformation response[C]. Asphalt Paving Technology.1991.
    [100]Chen J-S, Kuo P-H, Lin P-S, et al. Experimental and theoretical characterization of the engineering behavior of bitumen mixed with mineral filler[J]. Materials and Structures,2008,41(6): 1015-1024.
    [101]袁迎捷.基于Superpave的沥青胶浆流变特性与级配优化研究[D]:长安大学,2004.
    [102]Standard specification for superpave volumetric mix design[S].
    [103]邹桂莲,张袁.应用流变学的方法研究填料对沥青胶浆高温性能的影响[J].公路,2004,(03).
    [104]刘丽,郝培文,肖庆一,等.沥青胶浆高温性能及评价方法[J].长安大学学报(自然科学版),2007,(05).
    [105]刘丽 郝培文.沥青胶浆低温性能及评价方法研究[J].公路,2005,(08).
    [106]张永满,张郑.沥青混合料中沥青胶浆的低温蠕变研究[J].辽宁交通科技,2004,(08).
    [107]Richardson C. The modern asphalt pavement[M]. J. Wiley & sons,1905.
    [108]Traxler R. The evaluation of mineral powders as fillers for asphalt[C]. Association of Asphalt Paving Technologists,1937.
    [109]Puzinauskas V, Filler in asphalt mixtures,1983.
    [110]Dukatz E, Anderson D. The Effect of Various Fillers on the Mechanical Behavior of Asphalt and Asphalt Concrete[C]. Association of Asphalt Paving Technologists Proceedings,1980.
    [111]Anderson DA, Tarris JP.Characterization and specification of baghouse fines[C]. Association of Asphalt Paving Technologists,1983.
    [112]Craus J, Ishai I, Sides A, et al. Some physico-chemical aspects of the effect and the role of the filler in bituminous paving mixtures[C].1978.
    [113]Rigden P. The use of fillers in bituminous road surfacings. A study of filler-binder systems in relation to filler characteristics[J]. Journal of the Society of Chemical Industry,1947,66(9):299-309.
    [114]Anderson DA, Goetz WH. Mechanical Behavior and Reinforcement of Mineral Filler-Asphalt Mixtures:Technical Paper[J].1973.
    [115]Grabowski W, Wilanowicz J. The structure of mineral fillers and their stiffening properties in filler-bitumen mastics[J]. Materials and Structures,2008,41(4):793-804.
    [116]张兴友.沥青和沥青混合料的硅藻土改性机理研究[D],2006.
    [117]Cong P, Chen S, Chen H, et al. Effects of diatomite on the properties of asphalt binder[J]. Construction and Building Materials,2012,30:495-499.
    [118]Shashidhar N, Shenoy A. On using micromechanical models to describe dynamic mechanical behavior of asphalt mastics[J]. Mechanics of Materials,2002,34(10):657-669.
    [119]Buttlar WG, Bozkurt D, Al-Khateeb GG, et al. Understanding asphalt mastic behavior through micromechanics[J]. Journal of the Transportation Research Board,1999,1681(-1):157-169.
    [120]乔生儒,曾燮榕.复合材料细观力学性能[M].西北工业大学出版社,1997.
    [121]朱桂林,杨景玲,李可,等.生产钢渣粉是钢渣高价值利用的重要途径[C].中国北京.2005.
    [122]孙家瑛,任传军.钢渣微粉对沥青混合料性能影响研究[J].公路交通科技,2007,(06):17-19.
    [123]李天祥.沥青路面抗滑性能衰减试验研究[D].长安大学硕士论文,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700