非均匀受火的方钢管混凝土柱抗火性能与设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
方钢管混凝土柱充分利用了钢材和混凝土的材料特性,具有抗弯性能好、施工方便、抗火性能好等优点,在国内外高层与超高层建筑中得到广泛应用。因钢管外露,方钢管混凝土柱的抗火性能与设计是其在工程实践中的关键问题之一。现有研究和现行规范及规程多假设其四面均匀受火,而实际火灾中方钢管混凝土柱也可能承受非均匀火灾作用,如单面火灾、两面火灾以及三面火灾作用等。背火面的形成,不同程度地降低了方钢管混凝土柱的整体温度,亦使材料的损伤程度较四面均匀受火情况有所减轻;受火方式的改变,使方钢管混凝土柱产生温度变形和附加偏心距,使非均匀受火的方钢管混凝土柱的受力机理和抗火性能与四面受火情况有较大差异。为此,进行了单面、相对两面及三面受火的方钢管混凝土柱的耐火极限和抗火性能的试验研究与理论分析,具体包括以下四部分:
     (1)三面、单面受火的方钢管混凝土柱抗火性能试验研究
     进行了4根三面受火和2根单面受火的方钢管混凝土柱足尺明火抗火性能试验,主要参数包括荷载比、荷载偏心距和受火方式。获得了两种火灾方式作用下的方钢管混凝土柱的变形全过程及破坏模式,实测了截面特征点温度、轴向变形、柱中侧向变形以及耐火极限等热学和力学参数。
     (2)方钢管混凝土柱截面温度分布及参数分析
     基于构成方钢管混凝土柱的钢材、混凝土以及防火保护层的热工性能模型,利用ANSYS有限元分析软件,建立了可考虑界面热阻的方钢管混凝土柱在单面、相对两面、三面及四面火灾作用下的截面温度场分析模型,并用现有试验结果进行了模型验证。分析了上述火灾作用下方钢管混凝土柱截面的典型温度场及分布规律,研究了升温时间、含钢率、截面边长以及防火保护层厚度对不同火灾作用下方钢管混凝土柱截面温度分布的影响规律。
     (3)方钢管混凝土柱耐火极限与抗火性能理论分析
     收集整理了钢材和混凝土在高温下的热膨胀系数、强度、弹性模量以及应力-应变关系模型,确定了适合本文的材料热力学参数。利用Fortran90编制了基于恒载升温作用路径的方钢管混凝土柱在单面、相对两面、三面以及四面火灾作用下的耐火极限与抗火性能理论分析程序。利用本文进行的三面、单面火灾试验结果以及其他研究者的相关试验数据,验证了提出的理论分析模型。在此基础上,研究了不同受火条件下方钢管混凝土柱轴向变形-时间关系曲线与侧向变形-时间关系曲线,分析了不同受火方式对方钢管混凝土柱抗火性能的作用机理和影响规律。
     (4)非均匀受火的方钢管混凝土柱耐火极限参数分析与抗火设计
     进行了单面、相对两面、三面以及四面火灾作用下方钢管混凝土柱耐火极限的参数分析,分析了荷载比、截面边长、长细比、荷载偏心率、钢材和混凝土强度、含钢率以及保护层厚度的影响规律。在工程常用范围内,提出了单面、相对两面和三面火灾作用下方钢管混凝土柱的剩余承载力简化计算公式,并提供了满足不同防火等级的方钢管混凝土柱所需的厚涂型防火防护层厚度设计建议。
By combining the mechanical advantages of steel and concrete materials, concrete filled square hollow steel (SHS) columns have been gaining their popularity in high-rise buildings recently due to the excellent moment bearing capacity, convenience in construction, and high fire resistance. In concrete-filled SHS applications, the fire resistance design is one of the crucial issues as the steel tubes are exposed when the structures are against fire. However, most current codes and researches focus on the situation when columns are under four-side fire, and can not be adopted to predict the bearing capacity of SHS columns under three-side, opposite-two-side or single-side fire which also occur in real applications. Concrete-filled SHS columns under the other three conditions may have lower overall temperature and less severe damage in materials than those under four-side fire. The absence of exposing to fire in some sides may also cause additional lateral temperature deformation and increase the bending moment on columns, making the static behaviour of such columns different from those ones under four-side fire. In this contest, experimental and theoretical studies were carried out to investigate the fire resistant behaviour and the ultimate capacity of concrete-filled SHS columns under high temperatures, including the following four main parts.
     (1) Experimental study on the fire resistant behaviour of concrete-filled SHS columns under three-side and single-side fire.
     Six full-scale SHS columns subjected to sustained loading with different loading levels or loading eccentricities were tested to collapse, among which four were under three-side fire and the other two were under single-side fire, to investigate the deformation-loading curves and the failure mode of the columns. The measurement includes both thermal and mechanical parameters, like the temperatures at the representative points along the cross-section, the axial deformation, the lateral deflection at the mid-hight of the column, and the ultimate fire resistance capacity, et al.
     (2) Cross-sectional temperature distribution of concrete-filled SHS columns and parametric analysis
     Based on the thermal properties of material components like steel, concrete and fire coating, finite element models were built by ANSYS to investigate the typical temperature field and temperature distribution along the cross-section of concrete-filled SHS columns under three-side, opposite-two-side and single side fires with the consideration of the contact thermal resistance. The models were verified by test results from papers published to date. Parameteric analysis was then conducted to discuss the influence of the exposure time, the area of steel over concrete, the dimension of cross-sections, and the thickness of fire coats on the temperature distribution along the cross-section of concrete-filled SHS columns.
     (3) Theoretical analysis on the fire resistant behaviour of concrete-filled SHS columns at high temperatures
     Theoretical analysis were conducted using Fortran 90, considering the path of constant loading under elevating temperatures, to investigate the fire resistance of concrete-filled SHS columns under three-side, opposite-two-side and single side fires with the material thermal-mechanical parameters determined according to the collected studies on the thermal expanding coefficients, the strength, the elastic modulus and the stress-strain relationship for steel and concrete under high temperatures. Using the test results in this thesis and those from published papers as benchmark, the analysis method was proved to be reliable to predict the fire resistant behaviour of concrete-filled SHS columns. The axial deformation versus time curves and the mid-height deflection versus time relations were investigated for the concrete-filled SHS columns under single-side, opposite-two-side, and three-side fires, respectively, to clarify the mechanism of the columns under different fire conditions and the influence of the different fire boundary conditions.
     (4) Parameteric analysis on the fire resistance of concrete-filled SHS columns under non-uniform fires and practical design
     Parameteric analysis was carried out to investigate the influence of the loading level, the cross-sectional dimension, the slenderness ratio, the loading eccentricity, the steel and concrete strength, the ratio of steel area over concrete and the thickness of the fire coats on the fire resistant capacity of concrete-filled SHS columns under single-side, opposite-two-side and three-side side fires. Based on the analysis results, equations were brought up to predict the residual strength of concrete-filled SHS columns with parameters whithin the range of real concrete-filled SHS applications when subjected to single-side, opposite-two-side and three-side side fires. Designing recommendations for the thichness of spray insulation were suggested for concrete-filled SHS columns under different fire resistant levels.
引文
1钟善桐.钢管混凝土结构.清华大学出版社. 2003
    2叶再利.方形、矩形钢管高强混凝土轴压短柱基本力学性能研究.哈尔滨工业大学工学硕士学位论文. 2001
    3郭兰慧.方形、矩形钢管高强混凝土构件力学性能分析与试验研究.哈尔滨工业大学硕士学位论文. 2002
    4陶忠.方形截面钢管混凝土构件力学若干关键问题的研究.哈尔滨工业大学博士学位论文. 2001
    5 B. Uy. Concrete-Filled Fabricated Steel Box Columns for Multistory Buildings: Behavior and Design. Progress in Structural Engineering and Materials. 1998, 1(2): 150~158
    6 D. Forbes. Three Tall Buildings in Southern China. Structural Engineering International. 1997, 7(3): 157~159
    7 http://www.gov.cn/gzdt/2009-07/03/content_1356580.htm
    8 R. W. Furlong. Strength of Steel-Encased Concrete Beam Columns. Journal of the Structural Division, ASCE. 1967, 93(5): 113~124
    9 J. Gardner, E. R. Jacobson. Structural behaviour of concrete filled steel tubes. ACI Structural Journal. 1967, 64 (7): 404~413.
    10 R.B. Knoeles, R. Park. Strength of Concrete Filled Steel Tubular Columns. Journal of the Structural Division, ASCE. 1969, 195(ST12): 2565~2586
    11 R.B. Knoeles, R. Park. Axial Load Design for Concrete Filled Steel Tubular Columns. Journal of the Structural Division, ASCE. 1970, 195(ST10): 2125~2153
    12 M. Tomii, K. Yashimaro. Experimental Studies on Concrete Filled Steel Tubular Stub Column under Concentric Loading. Proc. of the Inter. Colloquium on Stability of Structures under Static and Dynamic Loads, SSRC/ASCE, Washington. 1979: 718~741
    13 Y. Morishita, M. Tomii, Y. Yoshimura. Experimental studies on bond strength in concrete filled square and octagonal steel tubular columns subjected to axial loads. Transactions of Japan Concrete Institute. 1979: 359~366
    14 Y. Morishita, M. Tomii, Y. Yoshimura. Experimental studies on bond strength in concrete filled circular steel tubular columns subjected to axial loads. Transactions of Japan Concrete Institute. 1979: 351~358
    15 Y. Morishita, M. Tomii. Experimental studies on bond strength between square steel tube and encased concrete core under cyclic shearing force and constant axial force. Transactions of Japan Concrete Institute. 1982, 4: 363~370
    16 T. Skamato, T. Maeno. Experimental Study on Rectangular Steel Tube Columns Infilled with Ultra High Strength Concrete Hardened by Centrifugal Force. Annual Meeting of AIJ, Proceedings, China. 1988: 1359~1374
    17 L. K. Luksha, A. P. Nesterovich. Strength Testing of Large-Diameter Concrete on Steel-Concrete Composite Construre, ASCCS, Fukuoka, Japan. 1991:67~70
    18 H. B. Ge, T Usami. Strength of concrete-filled thin-walled steel box columns: experiment. Journal of Structural Engineering. 1992, 118(11): 3006~3054
    19 H. B. Ge, T Usami. Strength analysis of concrete-filled thin-walled steel box columns. Journal of Constructional Steel Research. 1994, 30: 607~612
    20 M. D. O’Shea, R. Q. Bridge. Local buckling of thin-walled circular steel sections with or without internal restraint. Journal of Constructional Steel Research. 1997, 41(2/3): 137~157
    21 R. Q. Bridge, M. D. O’Shea. Behaviour of thin-walled steel box sections with of without internal restraint. Journal of Constructional Steel Research. 1998, 47(1-2): 73~91
    22 M. D. O’Shea, R. Q. Bridge. Tests on circular thin-walled steel tubes filled with medium and high strength concrete. Department of Civil Engineering Research Report No. R755. The University of Sydney, Sydney, Australia. 1997
    23 M. D. O’Shea, R. Q. Bridge. Tests on circular thin-walled steel tubes filled with very high strength concrete. Department of Civil Engineering Research Report No. R754. The University of Sydney, Sydney, Australia. 1997
    24 S.P. Schneider. Axially Loaded Concrete-Filled Steel Tubes. Journal of Structural Engineering, ASCE. 1998, 124(10): 1125~1138
    25 B.Uy. Local and post-local buckling of concrete-filled steel welded box columns. Journal of Constructional Steel Research. 1998, 47: 47~72
    26 B.Uy. Strength of concrete filled steel box columns incorporating local buckling. Journal of Structural Engineering. 2000, 126(3): 341~352
    27 B.Uy. Strength of short concrete filled high strength steel box columns. Journal of Constructional Steel Research. 2001, 57: 113~134
    28 Q. Q. Liang, B.Uy. Theoretical study on the post-local buckling of steel plates in concrete-filled box columns. Computers and Structures. 2000, 75: 479~490
    29 L. M. Gupta, P. M. Parlewar. An investigation of concrete-filled steel box columns. Journal of Structural Engineering. 2001, 28 (1): 33~38
    30 M. A. Bradford. Design strength of slender concrete filled rectangular steel tubes. ACI Structural Journal. 1996, 93 (2): 229~235
    31 M. A. Bradford, H. Y. Loh, B.Uy. Slenderness limits for filled circular steel tubes. Journal of Constructional Steel Research. 2002, 58 (2): 243~252
    32 N. E. Shanmugam, B. Lakshmi, B.Uy. An analytical model for thin-walled steel box columns with concrete in-fill. Engineering Structures. 2002, 24: 825~838
    33 M. Mursi, B.Uy. Strength of concrete filled steel box columns incorporating interaction buckling. Journal of Structural Engineering. 2003, 129(5): 626~639
    34 G. Georgios, L. Dennis. Axial capacity of circular concrete-filled tube columns. Journal of Constructional Steel Research. 2004, 60(7): 1049~1068
    35何若全.钢管混凝土轴压构件的工作性能和稳定承载力.哈尔滨建筑工程学院硕士学位论文. 1981
    36张素梅.空心钢管混凝土三维非线性全过程分析.哈尔滨建筑工程学院博士学位论文. 1991
    37屠永清.钢管混凝土压弯构件恢复力特性的研究.哈尔滨建筑大学博士学位论文. 1994
    38查晓雄.钢管初应力对钢管混凝土压弯扭构件工作性能影响的理论分析和试验研究.哈尔滨建筑大学博士学位论文. 1996
    39贺军利.钢管混凝土柱耐火性能的研究.哈尔滨建筑大学博士学位论文. 1998
    40张文福.单层钢管混凝土框架恢复力特性研究.哈尔滨工业大学博士学位论文. 2001
    41中华人民共和国经济贸易委员会.钢-混凝土组合结构设计规程DL/T-5085-1999.中国电力出版社. 1999
    42蔡绍怀等.钢管混凝土柱的性能和强度计算.建筑科学研究报告, No.1-3.中国建筑科学研究院. 1984
    43蔡绍怀.现代钢管混凝土结构.人民交通出版社. 2003
    44中国工程建设标准化协会标准.钢管混凝土结构设计与施工规程CECS 28:90.中国计划出版社. 1992
    45顾维平,蔡绍怀,冯文林.钢管高强混凝土长柱性能和承载能力的研究.建筑科学. 1991, (3): 3~8
    46范重.正方形断面钢管混凝土短柱轴心受压极限承载力的研究.工程力学. 1994, (3): 80~86
    47蒋继武,朱金铨,陈肇元.钢管高强混凝土压弯构件抗震性能试验研究.高强与高性能混凝土(论文集)国家自然科学基金重点项目(59338120). 1998: 191~248
    48贺锋,周绪红,唐昌辉.钢管高强混凝土轴压短柱承载力性能的研究.工程力学. 2000, (4):61~66
    49谭克锋,蒲心诚,蔡绍怀.钢管超高强混凝土的性能与极限承载能力的研究.建筑结构学报. 1999, 20(1): 10~15
    50谭克锋,蒲心诚.钢管超高强混凝土长柱及偏压柱的性能与极限承载能力的研究.建筑结构学报. 2000, 21 (2): 12~19
    51张素梅,周明.方钢管约束下混凝土的抗压强度.哈尔滨建筑大学学报增刊(中国钢协钢-混凝土组合结构协会第七次年会论文集). 1999, (3): 14~18
    52吕西林,余勇,陈以一, K Tanak, S Sasaki.轴心受压方钢管混凝土短柱的性能研究: I试验.建筑结构. 1999, 10: 41~43
    53余勇,吕西林, K Tanaka, S Sasaki.轴心受压方钢管混凝土短柱的性能研究: II分析.建筑结构. 2000, 30(2): 43~46
    54王力尚,钱稼茹.钢管高强混凝土柱轴心受压承载力试验.高强与高性能混凝土及其应用第四届学术讨论会论文集,长沙. 2001: 455~459
    55王力尚,钱稼茹.钢管高强混凝土柱轴心受压承载力试验研究.建筑结构. 2003, 37(7): 46~49
    56余志武,丁发兴,林松.钢管高性能混凝土短柱受力性能研究.建筑结构学报. 2002, 23(2): 41~47
    57韩林海.钢管混凝土结构-理论与实践(第二版).科学出版社,2006
    58冯九斌.钢管高强混凝土轴压性能及强度承载力研究.哈尔滨工业大学硕士学位论文. 1995
    59 L. H. Han, X. L. Zhao, Z. Tao. Tests and mechanics model of concrete-filled shs stub columns, columns and beam-columns. Steel & Composite Structures. 2001, 1(1): 51~74
    60韩林海,杨有福.矩形钢管混凝土轴心受压构件强度承载力的试验研究.土木工程学报. 2001, 34(4): 22~31
    61 L. H. Han. Tests on stub columns of concrete-filled RHS sections. Journal of Constructional Steel Research. 2002, 58(3): 353~372
    62 W. Klingsch. New developments in fire resistance of hollow section structures, Symposium on Hollow Structural Sections in Building Construction. ASCE, Chicago Illinois. 1985: 1~34
    63 W. Klingsch. Optimization of Cross Sections of Steel Composite Columns. Proc. of the Third International Conference on Steel-Concrete Composite Structures (II), ASCCS, Fukuoka. 1991: 99~105
    64 R. Hass. On Realistic Testing of the Fire Protection Technology of Steel and Cement Supports. Translations of BHPR/NL/T/1444. 1991:171
    65 T. Inha. A Simple Method for the Structural Fire Design of Composite Structures. Proc. of an Engineering Foundation Conference on Steel-Concrete Composite Structures. New York, the Structure Division of the ASCE. 1992: 210~223
    66 T. Okada, T. Yamaguchi, Y. Sakumoto, K. Keira. Loaded Heat Tests of Full-Scale Columns of Concrete-Filled Tubular Steel Structure Using Fire-Resistance Steel for Buildings. Proc. of 4th International Conference on Steel-Concrete Composite Structures of ASCCS, Fukuoka, Japan. 1991, 9: 101~106
    67 D. K. Kim, S. M. Chot, K. S. Chung. Structural characteristics of cft columns subject to fire loading and axial force. Proceedings of the 6th ASCCS Conference, Los Angeles, USA. 2000: 271~278
    68 T. T. Lie. Fire and buildings. Applied Science Publishes LTD. 1972
    69 T. T. Lie, M. Chabot. Experimental studies on the fire resistance of hollow steel columns filled with plain concrete. NRC-CNRC Internal Report. 1992: 611
    70 T. T. Lie, D. C. Stringer. Calculation of the fire resistance of steel hollow structural section columns filled with plain concrete. Can. J. Civ. Eng. 1994, (21): 38~385
    71 T. T. Lie, M. Chabot. A Method to predict the fire resistance of circular concrete filled hollow steel columns. Journal of Fire Engineering. 1990, 2(4):11~126
    72 T. T. Lie, R. J. Irwin. Evaluation of Fire Resistance of Reinforced Concrete Columns with Rectangular Cross-Section. NRC-CNRC Internal Report. 1990: 601
    73 T. T. Lie, R. J. Irwin. Method to calculate the fire resistance of reinforced concrete columns with rectangular cross section. ACI Structural Journal. 1993, 90(1): 52~60
    74 T. T. Lie, E. M. A. Denham. Factors affecting the fire resistance of circular hollow steel columns filled with bar-reinforced concrete. NRC-CNRC Internal Report. 1993: 651
    75 T. T. Lie. Fire resistance of circular steel columns filled with bar-reinforced Concrete. Journal of Structural Engineering. 1994, 120: 1489~1509
    76 T. T. Lie, R. J. Irwin. Fire resistance of rectangular steel columns filled with bar-reinforced Concrete. Journal of Structural Engineering. 1995, 121(5): 797~805
    77 V. K. R. Kodur, T. T. Lie. Fire resistance of steel columns filled with Fiber-reinforced concrete. Journal of Structural Engineering. 1996, 122(7): 776~782
    78 T. T. Lie, V. K. R. Kodur. Fire resistance of steel columns filled with bar-reinforced concrete. Journal of Structural Engineering. 1996, 122(1): 30~36
    79 T. T. Lie, M. Chabot. Evaluation of fire resistance of compression members using mathematical models. Fire Safety Journal. 1993(20): 135~149
    80 T. T. Lie, M. Chabot. Fire resistance of hollow steel columns filled with carbonate aggregate concrete: test results. NRC-CVRC Internal Report. 1998,No.573
    81 T. T. Lie, S. E. Cargon. Fire resistance of hollow steel columns filled with silicate aggregate concrete: test results. NRC-CVRC Internal Report. 1998: 573
    82 V. K. R. Kodur, D. H. MacKinnon. Design of concrete filled hollow section columns for fire endurance. Engineering Journal, AISC. 2000, 37(1): 13~24
    83 Y. C. Wang, J. M. Davies. An Experimental Study of the Fire Performance of Non-Sway Loaded Concrete-Filled Steel Tubular Column Assemblies with Extended End Plate Connections. Journal of Constructional Steel Research. 2003, 59(7): 819~838
    84 B.Uy, M. A. Bradford. Local Buckling of Cold Formed Steel in Composite Structural Elements at Elevated Temperatures. Journal of Constructional Steel Research. 1995, 34(1): 53~73
    85 A. M. Al-Khaleefi, M. J. Terro. Prediction of Fire Resistance of Concrete Filled Tubular Steel Columns using Neural Networks. Fire Safety Journal. 2002, 37(4): 339~352
    86 A. H. Varma, J. Srisa-Ard, S. Hong. Analytical Investigations of the Fire Behavior of Concrete Filled Steel Tube (CFT) Columns. Proceedings of the 2004 Structures Congress-Building on the Past: Securing the Future. 2004: 1171~1181
    87 S. Hong, A. H. Varma. Behavior of CFT Beam-Columns under Elevated Temperatures from Fire Loading. Annual Stability Conference, Structural Stability Research Council. 2004: 557~580
    88 K. H. Tan, C. Y. Wang. Interaction Model for Unprotected Concrete Filled Steel Columns under Standard Fire Conditions. Journal of Structural Engineering. 2004, 130(9): 1405~1413
    89过镇海,时旭东.钢筋混凝土的高温性能及其计算.清华大学出版社. 2003: 1~49
    90 L. Y. Li, J. Purkiss. Stress-Strain Constitutive Equations of Concrete Material at Elevated Temperatures. Fire Safety Journal. 2005, 40(7): 669~686
    91 Y. C. Wang. The Effects of Structural Continuity on the Fire Resistance of Concrete Filled Columns in Non-Sway Frames. Journal of Constructional Steel Research. 1999, 50(2): 177~197
    92 Y. C. Wang. A Simple Method for Calculating the Fire Resistance of Concrete- Filled CHS Columns. Journal of Constructional Steel Research. 2000, 54(3): 365~386
    93浙江省工程建设地方标准. 2003.建筑钢结构防火技术规范(送审稿)杭州
    94中国工程建设标准化协会标准《矩形钢管混凝土结构技术规程》CECS 159:2004.北京:计划出版社. 2004
    95 L. H. Han. Fire Performance of Concrete-Filled Steel Tubular Beam-Columns. Journal of Constructional Steel Research. 2001, 57(6): 695~709
    96 X. X. Zha, S. T. Zhong. Behaviour of concrete filled steel tubular columns under fire. Journal of Harbin Institute of Technology. 2002, 9(3):292~296
    97 X. X. Zha. FE Analysis of Fire Resistance of Concrete Filled CHS Columns. Journal of Constructional Steel Research. 2003, 59(6): 769~779
    98李易,查晓雄,王靖涛.端部约束对钢管混凝土柱抗火性能的影响.中国钢结构协会钢-混凝土组合结构分会,第十次年会论文集.哈尔滨工业大学学报(增刊). 2005, l37: 438~441
    99 J. Yin, X. X. Zha. Fire Resistance of Axially Loaded Concrete Filled Steel Tube Columns. Journal of Constructional Steel Research. 2006, 62(7): 723~729
    100徐蕾.方钢管配筋混凝土柱耐火计算与设计.哈尔滨工程大学博士后出站报告. 2004
    101徐超,张耀春.四面受火方形薄壁钢管混凝土轴心受压短柱抗火性能分析.中国钢结构协会钢-混凝土组合结构分会,第十次年会论文集.哈尔滨工业大学学报(增刊). 2005, 37: 417~420
    102温海林,余志武,丁发兴.高温下钢管混凝土温度场的非线性有限元分析.铁道科学与工程学报. 2005, 2(5): 32~35
    103丁发兴,余志武.恒高温下混凝土及钢管混凝土受压力学性能研究.铁道科学与工程学报. 2005, 2(6): 9~14
    104丁发兴.圆钢管混凝土结构受力性能与设计方法研究.中南大学博士学位论文. 2006
    105时旭东.高温下钢筋混凝土杆系结构试验研究和非线性有限元分析.清华大学博士学位论文. 1992, 7
    106李明菲.带墙板约束钢柱抗火设计研究.同济大学硕士学位论文. 2003
    107 K. Ikeda, K. Matsui, H. Saito. Fire safety engineering of concrete filled steel tubular column without fire protection. Yokohama, Japan, SEWC. 2002:1~8
    108查晓雄,钟善桐.钢、混凝土和二者组合的构件在各种受火条件下温度场计算的分析方法.哈尔滨建筑大学学报. 2002, 35(2): 16~20
    109查晓雄,钟善桐.钢筋混凝土构件在受火时的力学性能分析.华中科技大学学报(城市科学版). 2002, 19(1): 86~90
    110吴国忠,齐晗兵,张文福,鲁刚.方形截面钢管混凝土非均匀受火温度场的数值模拟.大庆石油学院学报. 2003, 27(4): 87~89, 124
    111杨华.三面火灾作用下方钢管混凝土柱抗火性能与设计.哈尔滨工业大学博士后出站报告. 2006
    112余志武,丁发兴,林松.高温后钢管高性能混凝土轴压短柱力学性能研究.铁道学报. 2003, 25(4): 71~79
    113赵文艳,王娜,张文福.火灾后方钢管混凝土侧向力-位移曲线的理论分析.大庆石油学院学报. 2003, 27(1):74~77, 115.
    114奕波.火灾后钢管混凝土短柱力学性能研究.沈阳建筑工程学院硕士学位论文. 2004
    115李明.恒高温后方钢管混凝土双向偏压柱的力学性能研究.沈阳建筑大学硕士学位论文. 2005
    116杨华.恒高温作用后钢管混凝土轴压力学性能研究.哈尔滨工业大学硕士学位论文. 2000
    117程树良.高温后矩形钢管混凝土轴压力学性能的研究.哈尔滨工业大学硕士学位论文. 2001
    118韩林海,霍静思.火灾作用后钢管混凝土柱的承载力研究.土木工程学报. 2002, 35(4): 25~35
    119霍静思.标准火灾作用后钢管混凝土压弯构件力学性能研究.哈尔滨工业大学硕士学位论文. 2001
    120韩林海,杨有福,霍静思.钢管混凝土柱火灾后剩余承载力的试验研究.工程力学. 2001, 18(6): 100~106
    121中华人民共和国国家标准GB/T228-2002.金属材料室温拉伸试验方法.国家质量监督检验检疫总局.北京:中国计划出版社. 2002
    122中华人民共和国国家标准GB 50081-2002.普通混凝土力学性能试验方法标准.北京:中国建筑工业出版社. 2003
    123 ISO-834. Fire Resistance Tests-Elements-of building construction. International Standard 592 ISO-834, Geneva. l975
    124中华人民共和国国家标准GB/T9978-1999.建筑构件耐火试验方法,国家质量技术监督局.北京:中国标准出版社. 1999
    125李国强,蒋首超,林桂祥.钢结构抗火计算与设计.中国建筑工业出版社. 1999
    126徐蕾.方钢管混凝土柱耐火性能及抗火设计方法研究.哈尔滨工业大学博士学位论文. 2002
    127 CEN (European Committee for Standardization), BS EN 1994-1-2, Eurocode 4– Design of composite steel and concrete structures– Part 1-2, General rules– Structural fire design, British Standards Institution, London. 2005
    128胡克旭,徐朝晖.火灾下压型钢板-混凝土组合楼板温度场分析.同济大学学报. 2001: 644~647
    129 ECCS,‘European recommendations for the fire safety of steel structure’, Elsevier, Amsterdam, 1983
    130孙金香,高伟译.建筑物综合防火设计.天津科技翻译出版公司. 1994
    131 L. H. Han, Y. F. Yang, L.Xu. An experimental study and calculation on the fire resistance of concrete-filled SHS and RHS columns [J]. Journal of Constructional Steel Research. 2003, 59: 427~452
    132刘发起.矩形钢管混凝土柱三面受火的试验研究.哈尔滨工业大学硕士学位论文. 2010
    133唐贵和.不同受火方式下高强混凝土柱耐火性能研究.华南理工大学硕士学位论文. 2006: 15~20
    134 Harada. Strength, elasticity and thermal properties of concrete subjected to elevated temperature. Concrete for Nuclear Reactors. ACI SP-34, Detroit. 1972: 377~406
    135李引擎,马道贞,徐坚.建筑结构防火设计计算和构造处理.北京:中国建筑工业出版社. 1991
    136 S. Thelandersson. Modelling of combine thermal and mechanical action in concrete, journal of engineering mechanics. 1987, 113(6): 893~906
    137过镇海,李卫.混凝土耐热力学性能的试验研究总结.清华大学土木工程系. 1991: 9~20
    138陆洲导.钢筋混凝土梁对火灾反应的研究.同济大学博士学位论文. 1989,6
    139熊向军.钢筋混凝土材料抗火性能研究动态述评.四川建筑科学研究. 1999, (3):24~28
    140 Recommendations for design and construction of concrete-filled steel tubular structures: Architectural Institute of Japan. 1997
    141 Y. Anderberg. Predicted Fire Behavior of Steels and Concrete Structures, International Seminar on Three Decades of Structural Fire Safety, 22/23 feb.1983
    142胡海涛,董毓利.高温时高强混凝土瞬态热应变的试验研究.建筑结构学报. 2002, 23(4): 34~35
    143中山科学研究院化学研究所防火实验室.行家钢承板(BD-65)组合楼板2小时防火时效燃烧测试报告. 2000, 11
    144 ASCE Manuals and Reports on Engineering Practice No.78, Structure Fire Protection, publication, published by ASCE, New York
    145 Standards Australia, AS4100,‘Steel structures’. Sydney. 1990
    146韩林海.钢管混凝土结构的新进展.哈尔滨建筑大学学报增刊(中国钢协钢-混凝土组合结构协会第八次年会论文集). 2001, 34(9):49~53
    147钟善桐.钢管混凝土耐火性能研究的几个问题和方法.哈尔滨建筑大学学报. 1997, 30(4): 53~57
    148杨有福.矩形截面钢管混凝土构件力学性能的若干关键问题研究.哈尔滨工业大学博士学位论文. 2003:143~163
    149徐玉野.钢筋混凝土异形柱的抗火性能研究.华南理工大学博士学位论文. 2006: 61~62
    150 D. K. Kim, S. M. Choi, J. H. Kim, et al. Experimental study on fire resistance of Concrete-filled steel tube column under constant axial loads. Steel Structures. 2005(5):305~313
    151韩国规范《Methods of fire resistance test for elements of building construction-specific requirement for columns》.KSF 2257-7(in Korea)
    152福建工程建设地方标准《钢管混凝土结构技术规程》DBJ13-51-2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700